Skip to main content

Advertisement

Log in

Outcome of Poor-Grade Subarachnoid Hemorrhage as Determined by Biomarkers of Glucose Cerebral Metabolism

  • ORIGINAL ARTICLE
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine if the measurement of blood biomarkers of glucose cerebral metabolism, performed with retrograde jugular catheter, could predict the outcome of poor-grade aneurysmal subarachnoid hemorrhage (aSAH) patients.

Methods

This study was conducted in 68 poor-grade aSAH patients. A total of 4,024 blood samples obtained from jugular and radial catheters were analyzed for glucose, lactate, and oxygen content every 8 h for 10 ± 0.5 days. Metabolic ratio (MR) and lactate–oxygen index (LOI) were obtained by ratios using arterio-jugular differences. Functional outcome was evaluated at 12 months with the Glasgow Outcome Scale.

Results

Outcome was unfavorable in 40 patients. In this group of patients, the MR was significantly lower (p < 0.0001) and the LOI was significantly higher (p = 0.0001) than in the group with favorable outcome. The MR cutoff value, below which the patients are likely to have an unfavorable outcome, was determined to be 3.35. More interestingly, the data obtained in this study demonstrated that the patients achieving an unfavorable outcome were distinguished from those with a favorable outcome by having at least three events of MR inferior to 3.35 (sensitivity = 90 %, specificity = 82.1 %). Moreover, in patients who developed cerebral vasospasm, we observed a significant decrease in the MR.

Conclusion

Our data provide additional support to the view that the MR is a reliable marker for predicting the outcome of poor-grade aSAH patients. Prospective studies are needed to confirm its value in multimodal monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hackett ML, Anderson CS. Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology. 2000;55:658–62.

    Article  PubMed  CAS  Google Scholar 

  2. Coppadoro A, Citerio G. Subarachnoid hemorrhage: an update for the intensivist. Minerva Anestesiol. 2011;77:74–84.

    PubMed  CAS  Google Scholar 

  3. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE, Patel AB, Rosenwasser RH. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;40:994–1025.

    Article  PubMed  Google Scholar 

  4. Risselada R, Lingsma HF, Bauer-Mehren A, Friedrich CM, Molyneux AJ, Kerr RS, Yarnold J, Sneade M, Steyerberg EW, Sturkenboom MC. Prediction of 60 day case-fatality after aneurysmal subarachnoid haemorrhage: results from the International Subarachnoid Aneurysm Trial (ISAT). Eur J Epidemiol. 2010;25:261–6.

    Article  PubMed  CAS  Google Scholar 

  5. Wartenberg KE. Critical care of poor-grade subarachnoid hemorrhage. Curr Opin Crit Care. 2011;17:85–93.

    Article  PubMed  Google Scholar 

  6. Vespa PM. The implications of cerebral ischemia and metabolic dysfunction for treatment strategies in neurointensive care. Curr Opin Crit Care. 2006;12:119–23.

    Article  PubMed  Google Scholar 

  7. Stuart RM, Claassen J, Schmidt M, Helbok R, Kurtz P, Fernandez L, Lee K, Badjatia N, Mayer SA, Lavine S, Connolly ES. Multimodality neuromonitoring and decompressive hemicraniectomy after subarachnoid hemorrhage. Neurocrit Care. 2011;15:146–50.

    Article  PubMed  Google Scholar 

  8. Lieutaud T, Dailler F, Artru F, Renaud B. Neurochemical monitoring in neurointensive care using intracerebral microdialysis. In: Westerink BHC, Cremes IFH, editors. Handbook of microdialysis: methods, applications and clinical aspects. 1st ed. London: Elsevier; 2007. p. 659–74.

    Google Scholar 

  9. Le Roux PD, Elliott JP, Newell DW, Grady MS, Winn HR. Predicting outcome in poor-grade patients with subarachnoid hemorrhage: a retrospective review of 159 aggressively managed cases. J Neurosurg. 1996;85:39–49.

    Article  PubMed  Google Scholar 

  10. Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, Hovda DA, Bergsneider M, Hillered L, Martin NA. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lacate metabolism. J Cereb Blood Flow Metab. 2003;23:1239–50.

    Article  PubMed  CAS  Google Scholar 

  11. Oertel MF, Schwedler M, Stein M, Wachter D, Scharbrodt W, Schmidinger A, Boker DK. Cerebral energy failure after subarachnoid hemorrhage: the role of relative hyperglycolysis. J Clin Neurosci. 2007;14:948–54.

    Article  PubMed  CAS  Google Scholar 

  12. Teasdale GM, Drake CG, Hunt W, Kassell N, Sano K, Pertuiset B, De Villiers JC. A universal subarachnoid hemorrhage scale: report of a committee of the World Federation of Neurosurgical Societies. J Neurol Neurosurg Psychiatry. 1988;51:1457.

    Article  PubMed  CAS  Google Scholar 

  13. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning. Neurosurgery. 1980;6:1–9.

    Article  PubMed  CAS  Google Scholar 

  14. Mayberg MR, Batjer HH, Dacey R, Diringer M, Haley EC, Heros RC, Sternau LL, Torner J, Adams HP Jr, Feinberg W, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 1994;25:2315–28.

    Article  PubMed  CAS  Google Scholar 

  15. Rabinstein AA. The AHA guidelines for the management of SAH: what we know and so much we need to learn. Neurocrit Care. 2009;10:414–7.

    Article  PubMed  Google Scholar 

  16. Gibbs EL, Lennox WG, Nims LF, Gibbs FA. Arterial and cerebral venous blood: arterial-venous difference in man. J Biol Chem. 1942;144:325–32.

    CAS  Google Scholar 

  17. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet. 1975;1:480–4.

    Article  PubMed  CAS  Google Scholar 

  18. Feigin VL, Lawes CM, Benett DA, et al. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet. 2009;8:355–69.

    Article  Google Scholar 

  19. Taylor CJ, Robertson F, Brealey D, et al. Outcome in poor grade subarachnoid hemorrhage patients treated with acute endovascular coiling of aneurysms and aggressive intensive care. Neurocrit Care. 2010;14:341–7.

    Article  Google Scholar 

  20. Hunt WE, Hess RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysm. J Neurosurg. 1968;28:14–20.

    Article  PubMed  CAS  Google Scholar 

  21. Naval NS, Chang T, Caserta F, Kowalski RG, Carhuapoma JR, Tamargo RJ. Improved aneurysmal subarachnoid hemorrhage outcomes: a comparison of 2 decades at an academic center. J Crit Care. 2012. doi:10.1016/j.jcrc.2012.05.008.

    Google Scholar 

  22. Shirao S, Yoneda H, Kunitsugu I, et al. Preoperative prediction of outcome in 283 poor-grade patients with subarachnoid hemorrhage: a project of the Chugoku–Shikoku Division of the Japan Neurosurgical Society. Cerebrovasc Dis. 2010;30:105–13.

    Article  PubMed  Google Scholar 

  23. Robertson CL. Mitochondrial dysfunction contributes to cell death following traumatic brain injury in adult and immature animals. J Bioenerg Biomembr. 2004;36:363–8.

    Article  PubMed  CAS  Google Scholar 

  24. Yang MS, DeWitt DS, Becker DP, Hayes RL. Regional brain metabolite levels following mild experimental head injury in the cat. J Neurosurg. 1985;63:617–21.

    Article  PubMed  CAS  Google Scholar 

  25. Artru F, Dailler F, Burel E, Bodonian C, Grousson S, Convert J, Renaud B, Perret-Liaudet A. Assessment of jugular blood oxygen and lactate indices for detection of cerebral ischemia and prognosis. J Neurosurg Anesthesiol. 2004;16:226–31.

    Article  PubMed  Google Scholar 

  26. Erlichman JS, Hewitt A, Damon TL, Hart M, Kurascz J, Li A, Leiter JC. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis. J Neurosci. 2008;28:4888–96.

    Article  PubMed  CAS  Google Scholar 

  27. Bergersen LH. Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience. 2007;145:11–9.

    Article  PubMed  CAS  Google Scholar 

  28. Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res. 2005;79:11–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gandhi GK, Cruz NF, Ball KK, Dienel GA. Astrocytes are poised for lactate trafficking and release from activated brain and for supply of glucose to neurons. J Neurochem. 2009;111:522–36.

    Article  PubMed  CAS  Google Scholar 

  30. Pellerin L, Magistretti PJ. Food for thought: challenging the dogmas. J Cereb Blood Flow Metab. 2003;23:1282–6.

    Article  PubMed  Google Scholar 

  31. Dienel GA, Hertz L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia. 2005;50:362–88.

    Article  PubMed  Google Scholar 

  32. Oddo M, Levine JM, Frangos S, Maloney-Wilensky E, Carrera E, Daniel RT, Leviver M, Magistretti PJ, LeRoux PD. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43:1418–21.

    Article  PubMed  CAS  Google Scholar 

  33. Vespa P, Prins M, Ronne-Engstrom E, Caron M, Shalmon E, Hovda DA, Martin NA, Becker DP. Increase in extracellular glutamate caused by reduced cerebral perfusion pressure and seizures after human traumatic brain injury: a microdialysis study. J Neurosurg. 1998;89:971–82.

    Article  PubMed  CAS  Google Scholar 

  34. Gopinath SP, Robertson CS, Contant CF, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717–23.

    Article  PubMed  CAS  Google Scholar 

  35. White H, Baker A. Continous jugular venous oximetry in the neurointensive care unit—a brief review. Can J Anesth. 2002;49:623–9.

    Article  PubMed  Google Scholar 

  36. Cruz J, Hoffstad OJ, Jaggi JL. Cerebral lactate–oxygen index in acute brain injury with acute anemia: assessment of false versus true ischemia. Crit Care Med. 1994;22:1465–70.

    Article  PubMed  CAS  Google Scholar 

  37. Robertson CS, Narayan RK, Gokaslan ZL, Pahwa R, Grossman RG, Caram P Jr, Allen E. Cerebral arteriovenous oxygen difference as an estimate of cerebral blood flow in comatose patients. J Neurosurg. 1989;70:222–30.

    Article  PubMed  CAS  Google Scholar 

  38. Moritz S, Kasprzak P, Woertgen C, Taeger K, Metz C. The accuracy of jugular bulb venous monitoring in detecting cerebral ischemia in awake patients undergoing carotid endarterectomy. J Neurosurg Anesthesiol. 2008;20:8–14.

    Article  PubMed  Google Scholar 

  39. Poca MA, Sahuquillo J, Vilalta A, Garnacho A. Lack of utility of arteriojugular venous differences of lactate as a reliable indicator of increased brain anaerobic metabolism in traumatic brain injury. J Neurosurg. 2007;106:530–7.

    Article  PubMed  CAS  Google Scholar 

  40. Hasegawa Y, Suzuki H, Sozen T, Altay O, Zang JH. Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl. 2011;110:43–8.

    Article  PubMed  Google Scholar 

  41. Cormio M, Valadka AB, Robertson CS. Elevated jugular venous oxygen saturation after severe head injury. J Neurosurg. 1999;90:9–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the substantial contribution made by the staff of the Neurocritical Care Unit at Lyon University Hospital. We sincerely thank Dr. Benjamin Rich (Unit of Biostatistics, HCL) and Dr. Olivier Dauwalder (Unit of Bacteriology, HCL) for their invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleicy K. Barcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcelos, G.K., Tholance, Y., Grousson, S. et al. Outcome of Poor-Grade Subarachnoid Hemorrhage as Determined by Biomarkers of Glucose Cerebral Metabolism. Neurocrit Care 18, 234–244 (2013). https://doi.org/10.1007/s12028-012-9810-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-012-9810-1

Keywords

Navigation