Skip to main content

Advertisement

Log in

Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the immunomodulatory effect of cisplatin (DDP) on the frequency, phenotype and function of myeloid-derived suppressor cells (MDSC) in a murine B16 melanoma model. C57BL/6 mice were inoculated with B16 cells to establish the murine melanoma model and randomly received treatment with different doses of DDP. The percentages and phenotype of MDSC after DDP treatment were detected by flow cytometry. The immunoinhibitory function of MDSC was analyzed by assessing the immune responses of cocultured effector cells through CFSE-labeling assay, detection of interferon-γ production and MTT cytotoxic assay, respectively. Tumor growth and mice survival were monitored to evaluate the antitumor effect of combined DDP and adoptive cytokine-induced killer (CIK) cell therapy. DDP treatment selectively decreased the percentages, modulated the surface molecules and attenuated the immunoinhibitory effects of MDSC in murine melanoma model. The combination of DDP treatment and CIK therapy exerted synergistic antitumor effect against B16 melanoma. DDP treatment selectively downregulated the frequency and immunoinhibitory function of MDSC in B16 melanoma model, indicating the potential mechanisms mediating its immunomodulatory effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ATRA:

All-trans-retinoic acid

CFSE:

Carboxyfluorescein succinimidyl ester

CIK:

Cell cytokine-induced killer cell

DC:

Dendritic cells

DDP:

Cisplatin

IFN-γ:

Interferon-γ

IL-2:

Interleukin-2

i.p.:

Intraperitoneally

i.v.:

Intravenously

MDSC:

Myeloid-derived suppressor cells

MFI:

Mean fluorescence index

MHC:

Major histocompatibility complex

MTT:

Methyl thiazolyl tetrazolium

NS:

Normal saline

PB:

Peripheral blood

TDLN:

Tumor-draining lymph node

References

  1. Messmer MN, Netherby CS, Banik D. Abrams SI Tumor-induced myeloid dysfunction and its implications for cancer immunotherapy. Cancer Immunol Immunother. 2015;64:1–13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol. 2014;41:174–84.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V, Mandruzzato S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J Immunother. 2012;35:107–15.

    Article  PubMed  Google Scholar 

  4. Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res. 2015;128:95–139.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Khaled YS, Ammori BJ, Elkord E. Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol. 2013;91:493–502.

    Article  PubMed  CAS  Google Scholar 

  6. Pan W, Sun Q, Wang Y, Wang J, Cao S, Ren X. Highlights on mechanisms of drugs targeting MDSCs: providing a novel perspective on cancer treatment. Tumour Biol. 2015;36:3159–69.

    Article  PubMed  CAS  Google Scholar 

  7. Seung LP, Rowley DA, Dubey P, Schreiber H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proc Natl Acad Sci USA. 1995;92:6254–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Roth F, De La Fuente AC, Vella JL, Zoso A, Inverardi L, Serafini P. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression. Cancer Res. 2012;72:1373–83.

    Article  PubMed  CAS  Google Scholar 

  9. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, Zanovello P. IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 2009;182:6562–8.

    Article  PubMed  CAS  Google Scholar 

  10. Qin H, Lerman B, Sakamaki I, Wei G, Cha SC, Rao SS, Qian J, Hailemichael Y, Nurieva R, Dwyer KC, Roth J, Yi Q, Overwijk WW, Kwak LW. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med. 2014;20:676–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11:6713–21.

    Article  PubMed  CAS  Google Scholar 

  12. Bunt SK, Mohr AM, Bailey JM, Grandgenett PM, Hollingsworth MA. Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother. 2012;62:225–36.

    Article  PubMed  CAS  Google Scholar 

  13. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A, Martin F, Apetoh L, Rébé C, Ghiringhelli F. 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res. 2010;70:3052–61.

    Article  PubMed  CAS  Google Scholar 

  14. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY. A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res. 2010;16:4583–94.

    Article  PubMed  CAS  Google Scholar 

  15. Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B, Katsanis E, Larmonier N. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 2014;74:104–18.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Chen J, Huang X, Huang G, Chen Y, Chen L, Song H. Preconditioning chemotherapy with cisplatin enhances the antitumor activity of cytokine-induced killer cells in a murine melanoma model. Cancer Biother Radiopharm. 2012;27:210–20.

    Article  PubMed  CAS  Google Scholar 

  17. Huang X, Huang G, Song H, Chen L. Preconditioning chemotherapy with paclitaxel and cisplatin enhances the antitumor activity of cytokine induced-killer cells in a murine lung carcinoma model. Int J Cancer. 2011;129:648–58.

    Article  PubMed  CAS  Google Scholar 

  18. Huang X, Chen YT, Song HZ, Huang GC, Chen LB. Cisplatin pretreatment enhances anti-tumor activity of cytokine-induced killer cells. World J Gastroenterol. 2011;17:3002–11.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Jure-Kunkel M, Masters G, Girit E, Dito G, Lee F, Hunt JT, Humphrey R. Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models. Cancer Immunol Immunother. 2013;62:1533–45.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Peng S, Lyford-Pike S, Akpeng B, Wu A, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine. Cancer Immunol Immunother. 2013;62:171–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Han RX, Liu X, Pan P, Jia YJ, Yu JC. Effectiveness and safety of chemotherapy combined with dendritic cells co-cultured with cytokine-induced killer cells in the treatment of advanced non-small-cell lung cancer: a systematic review and meta-analysis. PLoS ONE. 2014;9:e108958.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Makkouk A, Weiner GJ. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 2015;75:5–10.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480:480–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Dolan DE, Gupta S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014;21:231–7.

    PubMed  Google Scholar 

  25. Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–339.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ, Mulder GE, Toebes M, Vesely MD, Lam SS, Korman AJ, Allison JP, Freeman GJ, Sharpe AH, Pearce EL, Schumacher TN, Aebersold R, Rammensee HG, Melief CJ, Mardis ER, Gillanders WE, Artyomov MN, Schreiber RD. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515:577–81.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  PubMed  CAS  Google Scholar 

  28. Zavala VA, Kalergis AM. New clinical advances in immunotherapy for the treatment of solid tumours. Immunology. 2015;145:182–201.

    Article  PubMed  CAS  Google Scholar 

  29. Gajewski TF. The next hurdle in cancer immunotherapy: overcoming the non-T-cell-inflamed tumor microenvironment. Semin Oncol. 2015;42:663–71.

    Article  PubMed  Google Scholar 

  30. Butt AQ, Mills KH. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene. 2014;33:4623–31.

    Article  PubMed  CAS  Google Scholar 

  31. de Aquino MT, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett. 2015;166:117–33.

    Article  PubMed  CAS  Google Scholar 

  32. Martin F, Apetoh L, Ghiringhelli F. Role of myeloid-derived suppressor cells in tumor immunotherapy. Immunotherapy. 2012;4:43–57.

    Article  PubMed  CAS  Google Scholar 

  33. Filipazzi P, Huber V, Rivoltini L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother. 2012;61:255–63.

    Article  PubMed  CAS  Google Scholar 

  34. Chandra D, Gravekamp C. Myeloid-derived suppressor cells: cellular missiles to target tumors. Oncoimmunology. 2013;2:e26967.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Albeituni SH, Ding C, Yan J. Hampering immune suppressors: therapeutic targeting of myeloid-derived suppressor cells in cancer. Cancer J. 2013;19:490–501.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology. 2015;4:e954829.

    Article  PubMed  Google Scholar 

  37. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006;66:9299–307.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Ko HJ, Lee JM, Kim YJ, Kim YS, Lee KA, Kang CY. Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol. 2009;182:1818–28.

    Article  PubMed  CAS  Google Scholar 

  39. Lee JM, Seo JH, Kim YJ, Kim YS, Ko HJ, Kang CY. The restoration of myeloid-derived suppressor cells as functional antigen-presenting cells by NKT cell help and all-trans-retinoic acid treatment. Int J Cancer. 2012;131:741–51.

    Article  PubMed  CAS  Google Scholar 

  40. Wu AA, Drake V, Huang HS, Chiu S, Zheng L. Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology. 2015;4:e1016700.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (NSFC 81201597) to Xiang Huang and grant from the National Natural Science Foundation of China (NSFC 81502611) to Shiyun Cui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqian Shu.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Xiang Huang and Shiyun Cui have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Cui, S. & Shu, Y. Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol Res 64, 160–170 (2016). https://doi.org/10.1007/s12026-015-8734-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8734-1

Keywords

Navigation