Skip to main content

Advertisement

Log in

Immunological function of Blimp-1 in dendritic cells and relevance to autoimmune diseases

  • AUTOIMMUNITY/IMMUNOREGULATION/INFLAMMATION
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Previous studies have identified the immunological functions of transcription factor B lymphocyte-induced maturation protein-1 (Blimp-1) in various adaptive immune cell types such as T and B lymphocytes. More recently, it has been shown that Blimp-1 extends its functional roles to dendritic cells (DCs) and macrophages, two cell types belonging to the innate immune system. The protein acts as a direct and indirect regulator of target genes by recruiting chromatin modification factors and by regulating microRNA expression, respectively. In DCs, Blimp-1 has been identified as one of the components involved in antigen presentation. Genome-wide association studies identified polymorphisms associated with multiple autoimmune diseases such as system lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease in PRDM1, the gene encoding Blimp-1 protein. In this review, we will discuss the immune regulatory functions of Blimp-1 in DCs with a main focus on the tolerogenic mechanisms of Blimp-1 required to protect against the development of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Keller AD, Maniatis T. Identification and characterization of a novel repressor of beta-interferon gene expression. Genes Dev. 1991;5(5):868–79.

    Article  CAS  PubMed  Google Scholar 

  2. Turner CA Jr, Mack DH, Davis MM. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell. 1994;77(2):297–306.

    Article  CAS  PubMed  Google Scholar 

  3. Huang S. Blimp-1 is the murine homolog of the human transcriptional repressor PRDI-BF1. Cell. 1994;78(1):9.

    Article  CAS  PubMed  Google Scholar 

  4. Keller AD, Maniatis T. Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol Cell Biol. 1992;12(5):1940–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kuo TC, Calame KL. B lymphocyte-induced maturation protein (Blimp)-1, IFN regulatory factor (IRF)-1, and IRF-2 can bind to the same regulatory sites. J Immunol. 2004;173(9):5556–63.

    Article  CAS  PubMed  Google Scholar 

  6. Dillon SC, Zhang X, Trievel RC, Cheng X. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227. doi:10.1186/gb-2005-6-8-227.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gyory I, Wu J, Fejer G, Seto E, Wright KL. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol. 2004;5(3):299–308. doi:10.1038/ni1046.

    Article  CAS  PubMed  Google Scholar 

  8. Ancelin K, Lange UC, Hajkova P, Schneider R, Bannister AJ, Kouzarides T, et al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells. Nat Cell Biol. 2006;8(6):623–30. doi:10.1038/ncb1413.

    Article  CAS  PubMed  Google Scholar 

  9. Shin HM, Kapoor VN, Guan T, Kaech SM, Welsh RM, Berg LJ. Epigenetic modifications induced by Blimp-1 Regulate CD8(+) T cell memory progression during acute virus infection. Immunity. 2013;39(4):661–75. doi:10.1016/j.immuni.2013.08.032.

    Article  CAS  PubMed  Google Scholar 

  10. Savitsky D, Calame K. B-1 B lymphocytes require Blimp-1 for immunoglobulin secretion. J Exp Med. 2006;203(10):2305–14. doi:10.1084/jem.20060411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Schliephake DE, Schimpl A. Blimp-1 overcomes the block in IgM secretion in lipopolysaccharide/anti-mu F(ab’)2-co-stimulated B lymphocytes. Eur J Immunol. 1996;26(1):268–71. doi:10.1002/eji.1830260142.

    Article  CAS  PubMed  Google Scholar 

  12. Genestier L, Taillardet M, Mondiere P, Gheit H, Bella C, Defrance T. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J Immunol. 2007;178(12):7779–86.

    Article  CAS  PubMed  Google Scholar 

  13. Capolunghi F, Cascioli S, Giorda E, Rosado MM, Plebani A, Auriti C, et al. CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 2008;180(2):800–8.

    Article  CAS  PubMed  Google Scholar 

  14. Ghamlouch H, Ouled-Haddou H, Guyart A, Regnier A, Trudel S, Claisse JF, et al. TLR9 ligand (CpG oligodeoxynucleotide) induces CLL B-cells to differentiate into CD20(+) antibody-secreting cells. Front Immunol. 2014;5:292. doi:10.3389/fimmu.2014.00292.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Li FJ, Schreeder DM, Li R, Wu J, Davis RS. FCRL3 promotes TLR9-induced B-cell activation and suppresses plasma cell differentiation. Eur J Immunol. 2013;43(11):2980–92. doi:10.1002/eji.201243068.

    Article  CAS  PubMed  Google Scholar 

  16. Gong D, Malek TR. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J Immunol. 2007;178(1):242–52.

    Article  CAS  PubMed  Google Scholar 

  17. Chen-Kiang S. Regulation of terminal differentiation of human B-cells by IL-6. Curr Top Microbiol Immunol. 1995;194:189–98.

    CAS  PubMed  Google Scholar 

  18. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol. 2004;173(9):5361–71.

    Article  CAS  PubMed  Google Scholar 

  19. Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, et al. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci USA. 1992;89(5):1890–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vasanwala FH, Kusam S, Toney LM, Dent AL. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol. 2002;169(4):1922–9.

    Article  CAS  PubMed  Google Scholar 

  21. Ohkubo Y, Arima M, Arguni E, Okada S, Yamashita K, Asari S, et al. A role for c-fos/activator protein 1 in B lymphocyte terminal differentiation. J Immunol. 2005;174(12):7703–10.

    Article  CAS  PubMed  Google Scholar 

  22. Mittrucker HW, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275(5299):540–3.

    Article  CAS  PubMed  Google Scholar 

  23. Sciammas R, Shaffer AL, Schatz JH, Zhao H, Staudt LM, Singh H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25(2):225–36. doi:10.1016/j.immuni.2006.07.009.

    Article  CAS  PubMed  Google Scholar 

  24. Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol. 2010;6(12):683–92. doi:10.1038/nrrheum.2010.176.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Barcellos LF, May SL, Ramsay PP, Quach HL, Lane JA, Nititham J, et al. High-density SNP screening of the major histocompatibility complex in systemic lupus erythematosus demonstrates strong evidence for independent susceptibility regions. PLoS Genet. 2009;5(10):e1000696. doi:10.1371/journal.pgen.1000696.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Rioux JD, Goyette P, Vyse TJ, Hammarstrom L, Fernando MM, Green T, et al. Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases. Proc Natl Acad Sci USA. 2009;106(44):18680–5. doi:10.1073/pnas.0909307106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kawasaki A, Furukawa H, Kondo Y, Ito S, Hayashi T, Kusaoi M, et al. TLR7 single-nucleotide polymorphisms in the 3’ untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study. Arthritis Res Ther. 2011;13(2):R41. doi:10.1186/ar3277.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Niewold TB, Kelly JA, Flesch MH, Espinoza LR, Harley JB, Crow MK. Association of the IRF5 risk haplotype with high serum interferon-alpha activity in systemic lupus erythematosus patients. Arthritis Rheum. 2008;58(8):2481–7. doi:10.1002/art.23613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Abelson AK, Delgado-Vega AM, Kozyrev SV, Sanchez E, Velazquez-Cruz R, Eriksson N, et al. STAT4 associates with systemic lupus erythematosus through two independent effects that correlate with gene expression and act additively with IRF5 to increase risk. Ann Rheum Dis. 2009;68(11):1746–53. doi:10.1136/ard.2008.097642.

    Article  CAS  PubMed  Google Scholar 

  30. Jacob CO, Zhu J, Armstrong DL, Yan M, Han J, Zhou XJ, et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci USA. 2009;106(15):6256–61. doi:10.1073/pnas.0901181106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 2011;43(3):253–8. doi:10.1038/ng.766.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wu H, Cantor RM, Graham DS, Lingren CM, Farwell L, Jager PL, et al. Association analysis of the R620W polymorphism of protein tyrosine phosphatase PTPN22 in systemic lupus erythematosus families: increased T allele frequency in systemic lupus erythematosus patients with autoimmune thyroid disease. Arthritis Rheum. 2005;52(8):2396–402. doi:10.1002/art.21223.

    Article  CAS  PubMed  Google Scholar 

  33. Liu JL, Zhang FY, Liang YH, Xiao FL, Zhang SQ, Cheng YL, et al. Association between the PD1.3A/G polymorphism of the PDCD1 gene and systemic lupus erythematosus in European populations: a meta-analysis. J Eur Acad Dermatol Venereol. 2009;23(4):425–32. doi:10.1111/j.1468-3083.2009.03087.x.

    Article  PubMed  Google Scholar 

  34. Lu R, Vidal GS, Kelly JA, Delgado-Vega AM, Howard XK, Macwana SR, et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 2009;10(5):397–403. doi:10.1038/gene.2009.19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Simpfendorfer KR, Olsson LM, Manjarrez Orduno N, Khalili H, Simeone AM, Katz MS, et al. The autoimmunity-associated BLK haplotype exhibits cis-regulatory effects on mRNA and protein expression that are prominently observed in B cells early in development. Hum Mol Genet. 2012;21(17):3918–25. doi:10.1093/hmg/dds220.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9. doi:10.1056/NEJMoa0707865.

    Article  CAS  PubMed  Google Scholar 

  37. Radanova M, Vasilev V, Dimitrov T, Deliyska B, Ikonomov V, Ivanova D. Association of rs172378 C1q gene cluster polymorphism with lupus nephritis in Bulgarian patients. Lupus. 2015;24(3):280–9. doi:10.1177/0961203314555173.

    Article  CAS  PubMed  Google Scholar 

  38. Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum. 2002;46(6):1563–71. doi:10.1002/art.10306.

    Article  CAS  PubMed  Google Scholar 

  39. Jonsen A, Gunnarsson I, Gullstrand B, Svenungsson E, Bengtsson AA, Nived O, et al. Association between SLE nephritis and polymorphic variants of the CRP and FcgammaRIIIa genes. Rheumatology (Oxford). 2007;46(9):1417–21. doi:10.1093/rheumatology/kem167.

    Article  CAS  Google Scholar 

  40. Li X, Wu J, Carter RH, Edberg JC, Su K, Cooper GS, et al. A novel polymorphism in the Fcgamma receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum. 2003;48(11):3242–52. doi:10.1002/art.11313.

    Article  CAS  PubMed  Google Scholar 

  41. Chen JY, Wang CM, Ma CC, Luo SF, Edberg JC, Kimberly RP, et al. Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum. 2006;54(12):3908–17. doi:10.1002/art.22220.

    Article  CAS  PubMed  Google Scholar 

  42. Fan Y, Li LH, Pan HF, Tao JH, Sun ZQ, Ye DQ. Association of ITGAM polymorphism with systemic lupus erythematosus: a meta-analysis. J Eur Acad Dermatol Venereol. 2011;25(3):271–5. doi:10.1111/j.1468-3083.2010.03776.x.

    Article  CAS  PubMed  Google Scholar 

  43. Toller-Kawahisa JE, Vigato-Ferreira IC, Pancoto JA, Mendes-Junior CT, Martinez EZ, Palomino GM, et al. The variant of CD11b, rs1143679 within ITGAM, is associated with systemic lupus erythematosus and clinical manifestations in Brazilian patients. Hum Immunol. 2014;75(2):119–23. doi:10.1016/j.humimm.2013.11.013.

    Article  CAS  PubMed  Google Scholar 

  44. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1228–33. doi:10.1038/ng.468.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Han JW, Zheng HF, Cui Y, Sun LD, Ye DQ, Hu Z, et al. Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet. 2009;41(11):1234–7. doi:10.1038/ng.472.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou XJ, Lu XL, Lv JC, Yang HZ, Qin LX, Zhao MH, et al. Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann Rheum Dis. 2011;70(7):1330–7. doi:10.1136/ard.2010.140111.

    Article  CAS  PubMed  Google Scholar 

  47. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42(12):1118–25. doi:10.1038/ng.717.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Martins G, Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol. 2008;26:133–69. doi:10.1146/annurev.immunol.26.021607.090241.

    Article  CAS  PubMed  Google Scholar 

  49. Chang DH, Angelin-Duclos C, Calame K. BLIMP-1: trigger for differentiation of myeloid lineage. Nat Immunol. 2000;1(2):169–76. doi:10.1038/77861.

    Article  CAS  PubMed  Google Scholar 

  50. Iwakoshi NN, Pypaert M, Glimcher LH. The transcription factor XBP-1 is essential for the development and survival of dendritic cells. J Exp Med. 2007;204(10):2267–75. doi:10.1084/jem.20070525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H, et al. XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity. 2004;21(1):81–93. doi:10.1016/j.immuni.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  52. Kim SJ, Zou YR, Goldstein J, Reizis B, Diamond B. Tolerogenic function of Blimp-1 in dendritic cells. J Exp Med. 2011;208(11):2193–9. doi:10.1084/jem.20110658.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Nurieva RI, Chung Y, Hwang D, Yang XO, Kang HS, Ma L, et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity. 2008;29(1):138–49. doi:10.1016/j.immuni.2008.05.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Poholek AC, Hansen K, Hernandez SG, Eto D, Chandele A, Weinstein JS, et al. In vivo regulation of Bcl6 and T follicular helper cell development. J Immunol. 2010;185(1):313–26. doi:10.4049/jimmunol.0904023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Choi YS, Eto D, Yang JA, Lao C, Crotty S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J Immunol. 2013;190(7):3049–53. doi:10.4049/jimmunol.1203032.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kim SJ, Gregersen PK, Diamond B. Regulation of dendritic cell activation by microRNA let-7c and BLIMP1. J Clin Invest. 2013;123(2):823–33. doi:10.1172/JCI64712.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Salehi S, Bankoti R, Benevides L, Willen J, Couse M, Silva JS, et al. B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL-17-producing CD4+ T cells. J Immunol. 2012;189(12):5682–93. doi:10.4049/jimmunol.1201966.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491(7422):119–24. doi:10.1038/nature11582.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Watchmaker PB, Lahl K, Lee M, Baumjohann D, Morton J, Kim SJ, et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol. 2014;15(1):98–108. doi:10.1038/ni.2768.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kim SJ, Goldstein J, Dorso K, Merad M, Mayer L, Crawford JM, et al. Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis. Mol Med. 2014;20:707–19. doi:10.2119/molmed.2014.00231.

    Article  PubMed Central  Google Scholar 

  61. Bianchi V, Maconi G, Ardizzone S, Colombo E, Ferrara E, Russo A, et al. Association of NOD2/CARD15 mutations on Crohn’s disease phenotype in an Italian population. Eur J Gastroenterol Hepatol. 2007;19(3):217–23. doi:10.1097/01.meg.0000250590.84102.12.

    Article  CAS  PubMed  Google Scholar 

  62. Piskurich JF, Lin KI, Lin Y, Wang Y, Ting JP, Calame K. BLIMP-I mediates extinction of major histocompatibility class II transactivator expression in plasma cells. Nat Immunol. 2000;1(6):526–32. doi:10.1038/82788.

    Article  CAS  PubMed  Google Scholar 

  63. Smith MA, Wright G, Wu J, Tailor P, Ozato K, Chen X, et al. Positive regulatory domain I (PRDM1) and IRF8/PU.1 counter-regulate MHC class II transactivator (CIITA) expression during dendritic cell maturation. J Biol Chem. 2011;286(10):7893–904. doi:10.1074/jbc.M110.165431.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. VanderLugt B, Khan AA, Hackney JA, Agrawal S, Lesch J, Zhou M, et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol. 2014;15(2):161–7. doi:10.1038/ni.2795.

    Article  CAS  Google Scholar 

  65. Cretney E, Xin A, Shi W, Minnich M, Masson F, Miasari M, et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol. 2011;12(4):304–11. doi:10.1038/ni.2006.

    Article  CAS  PubMed  Google Scholar 

  66. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature. 2005;435(7041):452–8. doi:10.1038/nature03555.

    Article  CAS  PubMed  Google Scholar 

  67. Arce E, Jackson DG, Gill MA, Bennett LB, Banchereau J, Pascual V. Increased frequency of pre-germinal center B cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J Immunol. 2001;167(4):2361–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ansel KM, McHeyzer-Williams LJ, Ngo VN, McHeyzer-Williams MG, Cyster JG. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med. 1999;190(8):1123–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kitano M, Moriyama S, Ando Y, Hikida M, Mori Y, Kurosaki T, et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity. 2011;34(6):961–72. doi:10.1016/j.immuni.2011.03.025.

    Article  CAS  PubMed  Google Scholar 

  70. Haynes NM, Allen CD, Lesley R, Ansel KM, Killeen N, Cyster JG. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol. 2007;179(8):5099–108.

    Article  CAS  PubMed  Google Scholar 

  71. Schmitt N, Liu Y, Bentebibel SE, Munagala I, Bourdery L, Venuprasad K, et al. The cytokine TGF-beta co-opts signaling via STAT3–STAT4 to promote the differentiation of human TFH cells. Nat Immunol. 2014;15(9):856–65. doi:10.1038/ni.2947.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Shi GP, Munger JS, Meara JP, Rich DH, Chapman HA. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem. 1992;267(11):7258–62.

    CAS  PubMed  Google Scholar 

  73. Riese RJ, Wolf PR, Bromme D, Natkin LR, Villadangos JA, Ploegh HL, et al. Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading. Immunity. 1996;4(4):357–66.

    Article  CAS  PubMed  Google Scholar 

  74. Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY. A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol. 2002;168(6):2618–25.

    Article  CAS  PubMed  Google Scholar 

  75. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol. 2009;10(4):375–84. doi:10.1038/ni.1704.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Yang H, Kala M, Scott BG, Goluszko E, Chapman HA, Christadoss P. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis. J Immunol. 2005;174(3):1729–37.

    Article  CAS  PubMed  Google Scholar 

  77. Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, et al. Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity. 1999;10(2):207–17.

    Article  CAS  PubMed  Google Scholar 

  78. Saegusa K, Ishimaru N, Yanagi K, Arakaki R, Ogawa K, Saito I, et al. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J Clin Invest. 2002;110(3):361–9. doi:10.1172/JCI14682.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Rupanagudi KV, Kulkarni OP, Lichtnekert J, Darisipudi MN, Mulay SR, Schott B, et al. Cathepsin S inhibition suppresses systemic lupus erythematosus and lupus nephritis because cathepsin S is essential for MHC class II-mediated CD4 T cell and B cell priming. Ann Rheum Dis. 2015;74(2):452–63. doi:10.1136/annrheumdis-2013-203717.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author wish to thank Dr. Betty Diamond for providing support and scientific criticisms throughout the project, Dr. Gregersen for guidance for human genetics and human samples, and Sylvia Jones for helping the manuscript. SJ Kim is supported by R01 AR065209 and K01 AR59378. Author has no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.J. Immunological function of Blimp-1 in dendritic cells and relevance to autoimmune diseases. Immunol Res 63, 113–120 (2015). https://doi.org/10.1007/s12026-015-8694-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8694-5

Keywords

Navigation