Skip to main content

Advertisement

Log in

In ACPA-positive RA patients, antibodies to EBNA35-58Cit, a citrullinated peptide from the Epstein–Barr nuclear antigen-1, strongly cross-react with the peptide β60-74Cit which bears the immunodominant epitope of citrullinated fibrin

  • DIAGNOSTICS AND ENVIRONMENTAL FACTORS
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Although several infectious agents and particularly Epstein–Barr virus (EBV) have been suspected to be involved in aetiology of rheumatoid arthritis (RA), their role still remains elusive. Almost 80 % of RA sera contain antibodies to citrullinated proteins/peptides. Among them, the autoantibodies to citrullinated human fibrinogen (AhFibA) are composed of two non-cross-reactive subsets directed to immunodominant epitopes borne by the α36-50Cit and β60-74Cit fibrin peptides. RA sera also contain antibodies towards the citrullinated EBNA35-58Cit peptide derived from the EBNA-1 protein of EBV. Here, using a large cohort of RA patients and controls, we showed that for a diagnostic specificity of 98.5 %, 47 % of the AhFibA-positive patients were anti-EBNA35-58Cit-positive and that almost all (98.5 %) the anti-EBNA35-58Cit-positive were AhFibA-positive, whereas 86 % were anti-β60-74Cit-positive and only 43 % anti-α36-50Cit-positive. AhFibA, anti-EBNA35-58Cit- and anti-β60-74Cit-antibody titres were significantly correlated. Competition assays showed that anti-EBNA35-58Cit antibodies are highly cross-reactive with the β60-74Cit peptide. The demonstration that a citrullinated peptide derived from the EBNA-1 protein of EBV presents a molecular mimicry with human citrullinated fibrin constitutes an additional argument for a possible role of EBV in RA aetiopathogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alamanos Y, Voulgari PV, Drosos AA. Incidence and prevalence of rheumatoid arthritis, based on the 1987 American College of Rheumatology criteria: a systematic review. Semin Arthritis Rheum. 2006;36:182–8.

    Article  PubMed  Google Scholar 

  2. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.

    Article  CAS  PubMed  Google Scholar 

  3. van der Helm-van Mil AH, Wesoly JZ, Huizinga TW. Understanding the genetic contribution to rheumatoid arthritis. Curr Opin Rheumatol. 2005;17:299–304.

    Article  PubMed  Google Scholar 

  4. de Vries RR, Huizinga TW, Toes RE. Redefining the HLA and RA association: to be or not to be anti-CCP positive. J Autoimmun. 2005;25(Suppl):21–5.

    Article  PubMed  Google Scholar 

  5. Costenbader KH, Chang SC, De Vivo I, Plenge R, Karlson EW. Genetic polymorphisms in PTPN22, PADI-4, and CTLA-4 and risk for rheumatoid arthritis in two longitudinal cohort studies: evidence of gene-environment interactions with heavy cigarette smoking. Arthritis Res Ther. 2008;10:R52.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Pedersen M, Jacobsen S, Garred P, Madsen HO, Klarlund M, Svejgaard A, et al. Strong combined gene-environment effects in anti-cyclic citrullinated peptide-positive rheumatoid arthritis: a nationwide case-control study in Denmark. Arthritis Rheum. 2007;56:1446–53.

    Article  PubMed  Google Scholar 

  7. Becker HE, Vierbuchen C, Federlin K. Influence of Epstein–Barr virus infection on B lymphocyte responses in patients with rheumatoid arthritis. J Autoimmun. 1989;2:825–31.

    Article  CAS  PubMed  Google Scholar 

  8. Lotz M, Roudier J. Epstein–Barr virus and rheumatoid arthritis: cellular and molecular aspects. Rheumatol Int. 1989;9:147–52.

    CAS  PubMed  Google Scholar 

  9. Toussirot E, Roudier J. Pathophysiological links between rheumatoid arthritis and the Epstein–Barr virus: an update. Joint Bone Spine. 2007;74:418–26.

    Article  CAS  PubMed  Google Scholar 

  10. McGeoch DJ, Rixon FJ, Davison AJ. Topics in herpesvirus genomics and evolution. Virus Res. 2006;117:90–104.

    Article  CAS  PubMed  Google Scholar 

  11. Kutok JL, Wang F. Spectrum of Epstein–Barr virus-associated diseases. Annu Rev Pathol. 2006;1:375–404.

    Article  CAS  PubMed  Google Scholar 

  12. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA. EBV persistence in memory B cells in vivo. Immunity. 1998;9:395–404.

    Article  CAS  PubMed  Google Scholar 

  13. Thorley-Lawson DA. Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1:75–82.

    Article  CAS  PubMed  Google Scholar 

  14. Klein G, Klein E, Kashuba E. Interaction of Epstein–Barr virus (EBV) with human B-lymphocytes. Biochem Biophys Res Commun. 2010;396:67–73.

    Article  CAS  PubMed  Google Scholar 

  15. Alspaugh MA, Jensen FC, Rabin H, Tan EM. Lymphocytes transformed by Epstein–Barr virus. Induction of nuclear antigen reactive with antibody in rheumatoid arthritis. J Exp Med. 1978;147:1018–27.

    Article  CAS  PubMed  Google Scholar 

  16. Billings PB, Hoch SO, White PJ, Carson DA, Vaughan JH. Antibodies to the Epstein–Barr virus nuclear antigen and to rheumatoid arthritis nuclear antigen identify the same polypeptide. Proc Natl Acad Sci USA. 1983;80:7104–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Baboonian C, Halliday D, Venables PJ, Pawlowski T, Millman G, Maini RN. Antibodies in rheumatoid arthritis react specifically with the glycine alanine repeat sequence of Epstein–Barr nuclear antigen-1. Rheumatol Int. 1989;9:161–6.

    CAS  PubMed  Google Scholar 

  18. Catalano MA, Carson DA, Slovin SF, Richman DD, Vaughan JH. Antibodies to Epstein–Barr virus-determined antigens in normal subjects and in patients with seropositive rheumatoid arthritis. Proc Natl Acad Sci USA. 1979;76:5825–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yokochi T, Yanagawa A, Kimura Y, Mizushima Y. High titer of antibody to the Epstein–Barr virus membrane antigen in sera from patients with rheumatoid arthritis and systemic lupus erythematosus. J Rheumatol. 1989;16:1029–32.

    CAS  PubMed  Google Scholar 

  20. Balandraud N, Meynard JB, Auger I, Sovran H, Mugnier B, Reviron D, et al. Epstein–Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum. 2003;48:1223–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tosato G, Steinberg AD, Blaese RM. Defective EBV-specific suppressor T-cell function in rheumatoid arthritis. N Engl J Med. 1981;305:1238–43.

    Article  CAS  PubMed  Google Scholar 

  22. Lunemann JD, Frey O, Eidner T, Baier M, Roberts S, Sashihara J, et al. Increased frequency of EBV-specific effector memory CD8+ T cells correlates with higher viral load in rheumatoid arthritis. J Immunol. 2008;181:991–1000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Klatt T, Ouyang Q, Flad T, Koetter I, Buhring HJ, Kalbacher H, et al. Expansion of peripheral CD8+ CD28− T cells in response to Epstein–Barr virus in patients with rheumatoid arthritis. J Rheumatol. 2005;32:239–51.

    CAS  PubMed  Google Scholar 

  24. Costenbader KH, Karlson EW. Epstein–Barr virus and rheumatoid arthritis: is there a link? Arthritis Res Ther. 2006;8:204.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pratesi F, Tommasi C, Anzilotti C, Chimenti D, Migliorini P. Deiminated Epstein–Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 2006;54:733–41.

    Article  CAS  PubMed  Google Scholar 

  26. Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. 2012;72:1559–68.

    Article  PubMed  Google Scholar 

  27. Sebbag M, Clavel C, Nogueira L, Arnaud J, Serre G. Autoimmune response to posttranslationally modified (citrullinated) proteins: prime suspect in the pathophysiology of rheumatoid arthritis. In: Zouali M, editor. The epigenetics of autoimmune diseases. Chichester:Wiley; 2009. p. 279–308. doi: 10.1002/9780470743553.

  28. Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 2004;50:380–6.

    Article  PubMed  Google Scholar 

  29. Nienhuis RL, Mandema E. A new serum factor in patients with rheumatoid arthritis; the antiperinuclear factor. Ann Rheum Dis. 1964;23:302–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Girbal-Neuhauser E, Durieux JJ, Arnaud M, Dalbon P, Sebbag M, Vincent C, et al. The epitopes targeted by the rheumatoid arthritis-associated antifilaggrin autoantibodies are posttranslationally generated on various sites of (pro)filaggrin by deimination of arginine residues. J Immunol. 1999;162:585–94.

    CAS  PubMed  Google Scholar 

  31. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest. 1998;101:273–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Masson-Bessière C, Sebbag M, Girbal-Neuhauser E, Nogueira L, Vincent C, Senshu T, et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J Immunol. 2001;166:4177–84.

    Article  PubMed  Google Scholar 

  33. Tilleman K, Van Steendam K, Cantaert T, De Keyser F, Elewaut D, Deforce D. Synovial detection and autoantibody reactivity of processed citrullinated isoforms of vimentin in inflammatory arthritides. Rheumatology (Oxford). 2008;47:597–604.

    Article  CAS  Google Scholar 

  34. Kinloch A, Tatzer V, Wait R, Peston D, Lundberg K, Donatien P, et al. Identification of citrullinated alpha-enolase as a candidate autoantigen in rheumatoid arthritis. Arthritis Res Ther. 2005;7:R1421–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chapuy-Regaud S, Nogueira L, Clavel C, Sebbag M, Vincent C, Serre G. IgG subclass distribution of the rheumatoid arthritis-specific autoantibodies to citrullinated fibrin. Clin Exp Immunol. 2005;139:542–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nielen MM, van der Horst AR, van Schaardenburg D, van der Horst-Bruinsma IE, van de Stadt RJ, Aarden L, et al. Antibodies to citrullinated human fibrinogen (ACF) have diagnostic and prognostic value in early arthritis. Ann Rheum Dis. 2005;64:1199–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Vander Cruyssen B, Cantaert T, Nogueira L, Clavel C, De Rycke L, Dendoven A, et al. Diagnostic value of anti-human citrullinated fibrinogen ELISA and comparison with four other anti-citrullinated protein assays. Arthritis Res Ther. 2006;8:R122.

    Article  Google Scholar 

  38. Sebbag M, Moinard N, Auger I, Clavel C, Arnaud J, Nogueira L, et al. Epitopes of human fibrin recognized by the rheumatoid arthritis-specific autoantibodies to citrullinated proteins. Eur J Immunol. 2006;36:2250–63.

    Article  CAS  PubMed  Google Scholar 

  39. Cornillet M, Sebbag M, Verrouil E, Magyar A, Babos F, Ruyssen-Witrand A, et al. The fibrin-derived citrullinated peptide beta60-74Cit60,72,74 bears the major ACPA epitope recognised by the rheumatoid arthritis-specific anticitrullinated fibrinogen autoantibodies and anti-CCP2 antibodies. Ann Rheum Dis. 2014. doi:10.1136/annrheumdis-2012-202868.

    PubMed  Google Scholar 

  40. Marchini B, Dolcher MP, Sabbatini A, Klein G, Migliorini P. Immune response to different sequences of the EBNA I molecule in Epstein–Barr virus-related disorders and in autoimmune diseases. J Autoimmun. 1994;7:179–91.

    Article  CAS  PubMed  Google Scholar 

  41. Merlini G, Anzilotti C, Chimenti D, Tommasi C, Bombardieri S, Migliorini P. A deiminated viral peptide to detect antibodies in rheumatoid arthritis. Ann N Y Acad Sci. 2005;1050:243–9.

    Article  CAS  PubMed  Google Scholar 

  42. Anzilotti C, Merlini G, Pratesi F, Tommasi C, Chimenti D, Migliorini P. Antibodies to viral citrullinated peptide in rheumatoid arthritis. J Rheumatol. 2006;33:647–51.

    CAS  PubMed  Google Scholar 

  43. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31:315–24.

    Article  CAS  PubMed  Google Scholar 

  44. Iobagiu C, Magyar A, Nogueira L, Cornillet M, Sebbag M, Arnaud J, et al. The antigen specificity of the rheumatoid arthritis-associated ACPA directed to citrullinated fibrin is very closely restricted. J Autoimmun. 2011;37:263–72.

    Article  CAS  PubMed  Google Scholar 

  45. McKenzie DP, Vida S, Mackinnon AJ, Onghena P, Clarke DM. Accurate confidence intervals for measures of test performance. Psychiatry Res. 1997;69:207–9.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Quan H, Ng J, Stepanavage ME. Some statistical methods for multiple endpoints in clinical trials. Control Clin Trials. 1997;18:204–21.

    Article  CAS  PubMed  Google Scholar 

  47. Pratesi F, Tommasi C, Anzilotti C, Puxeddu I, Sardano E, Di Colo G, et al. Antibodies to a new viral citrullinated peptide, VCP2: fine specificity and correlation with anti-cyclic citrullinated peptide (CCP) and anti-VCP1 antibodies. Clin Exp Immunol. 2011;164:337–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ioan-Facsinay A, el-Bannoudi H, Scherer HU, van der Woude D, Menard HA, Lora M, et al. Anti-cyclic citrullinated peptide antibodies are a collection of anti-citrullinated protein antibodies and contain overlapping and non-overlapping reactivities. Ann Rheum Dis. 2011;70:188–93.

    Article  CAS  PubMed  Google Scholar 

  49. Amara K, Steen J, Murray F, Morbach H, Fernandez-Rodriguez BM, Joshua V, et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J Exp Med. 2013;210:445–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. van de Stadt LA, van der Horst AR, de Koning MH, Bos WH, Wolbink GJ, van de Stadt RJ, et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann Rheum Dis. 2011;70:128–33.

    Article  PubMed  Google Scholar 

  51. Willemze A, Bohringer S, Knevel R, Levarht EW, Stoeken-Rijsbergen G, Houwing-Duistermaat JJ, et al. The ACPA recognition profile and subgrouping of ACPA-positive RA patients. Ann Rheum Dis. 2012;71:268–74.

    Article  CAS  PubMed  Google Scholar 

  52. Cai XM, Dass C. Conformational analysis of proteins and peptides. Curr Org Chem. 2003;7:1841–54.

    Article  CAS  Google Scholar 

  53. Hermansson M, Artemenko K, Ossipova E, Eriksson H, Lengqvist J, Makrygiannakis D, et al. MS analysis of rheumatoid arthritic synovial tissue identifies specific citrullination sites on fibrinogen. Proteomics Clin Appl. 2010;4:511–8.

    CAS  PubMed  Google Scholar 

  54. Tutturen AE, Fleckenstein B, de Souza GA. Assessing the citrullinome in rheumatoid arthritis synovial fluid with and without enrichment of citrullinated peptides. J Proteome Res. 2014;13:2867–73.

    Article  CAS  PubMed  Google Scholar 

  55. Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009;. doi:10.1371/journal.pmed.0060001.

    PubMed Central  PubMed  Google Scholar 

  56. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity. 1998;9:405–11.

    Article  CAS  PubMed  Google Scholar 

  57. Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N, et al. Mimicry of CD40 signals by Epstein–Barr virus LMP1 in B lymphocyte responses. Science. 1999;286:300–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by research grants from the “Université of Toulouse”, the “Centre National de la Recherche Scientifique” (CNRS), the “Institut National de la Santé et de la Recherche Médicale” (INSERM) and the “Agence Nationale de la Recherche” (ANR : ANR-09-BLAN-0398). We thank Pr. B. Fournié (Centre de Rhumatologie, Hôpital Purpan, Toulouse), for providing patient sera. We also thank Marie-Françoise Isaïa, Axel Legué, Emilie Parra and Albano Lima Pérez for their excellent technical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Nogueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornillet, M., Verrouil, E., Cantagrel, A. et al. In ACPA-positive RA patients, antibodies to EBNA35-58Cit, a citrullinated peptide from the Epstein–Barr nuclear antigen-1, strongly cross-react with the peptide β60-74Cit which bears the immunodominant epitope of citrullinated fibrin. Immunol Res 61, 117–125 (2015). https://doi.org/10.1007/s12026-014-8584-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8584-2

Keywords

Navigation