Skip to main content
Log in

Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4+CD25+ T cells

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

CD4+CD25+ regulatory T cells (Treg), if properly expanded from umbilical cord blood (UCB), may provide a promising immunotherapeutic tool. Our previous data demonstrated that UCB CD4+CD25+ T cells with 4-day stimulation have comparable phenotypes and suppressive function to that of adult peripheral blood (APB) CD4+CD25+ T cells. We further examined whether 2-week culture would achieve higher expansion levels of Tregs. UCB CD4+CD25+ T cells and their APB counterparts were stimulated with anti-CD3/anti-CD28 in the presence of IL-2 or IL-15 for 2 weeks. The cell proliferation and forkhead box P3 (FoxP3) expression were examined. The function of the expanded cells was then investigated by suppressive assay. IL-21 was applied to study whether it counteracts the function of UCB and APB CD4+CD25+ T cells. The results indicate that UCB CD4+CD25+ T cells expanded much better than their APB counterparts. IL-2 was superior to expand UCB and APB Tregs for 2 weeks than IL-15. FoxP3 expression which peaked on Day 10–14 was comparable. Most importantly, expanded UCB Tregs showed greater suppressive function in allogeneic mixed lymphocyte reaction. The addition of IL-21, however, counteracted the suppressive function of expanded UCB and APB Tregs. The results support using UCB as a source of Treg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2011;182(1):18–32.

    Article  Google Scholar 

  2. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531–62.

    Article  CAS  PubMed  Google Scholar 

  3. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4+CD25+ regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196(3):389–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4+CD25+ immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99(10):3493–9.

    Article  CAS  PubMed  Google Scholar 

  5. June CH, Blazar BR. Clinical application of expanded CD4+25+ cells. Semin Immunol. 2006;18(2):78–88.

    Article  CAS  PubMed  Google Scholar 

  6. Godfrey WR, Spoden DJ, Ge YG, et al. Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood. 2005;105(2):750–8.

    Article  CAS  PubMed  Google Scholar 

  7. Takahata Y, Nomura A, Takada H, et al. CD4+CD25+ T cells in human cord blood: an immunoregulatory subset with naive phenotype and specific expression of forkhead box p3 (Foxp3) gene. Exp Hematol. 2004;32(7):622–9.

    Article  CAS  PubMed  Google Scholar 

  8. Brown JA, Boussiotis VA. Umbilical cord blood transplantation: basic biology and clinical challenges to immune reconstitution. Clin Immunol. 2008;127(3):286–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lin SJ, Yan DC, Lee YC, Hsiao HS, Lee PT, Liang YW, Kuo ML. Umbilical cord blood immunology: relevance to stem cell transplantation. Clin Rev Allergy Immunol. 2012;42(1):45–57.

    Article  PubMed  Google Scholar 

  10. Brunstein CG, Miller JS, Cao Q, et al. Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood. 2011;117(3):1061–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zorn E, Mohseni M, Kim H, et al. Combined CD4+ donor lymphocyte infusion and low-dose recombinant IL-2 expand FOXP3+ regulatory T cells following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(3):382–8.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Carson WE, Giri JG, Lindemann MJ, et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J Exp Med. 1994;180(4):1395–403.

    Article  CAS  PubMed  Google Scholar 

  13. Imamichi H, Sereti I, Lane HC. IL-15 acts as a potent inducer of CD4+CD25hi cells expressing FOXP3. Eur J Immunol. 2008;38(6):1621–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yates J, Rovis F, Mitchell P, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol. 2007;19(6):785–99.

    Article  CAS  PubMed  Google Scholar 

  15. Lee CC, Lin SJ, Cheng PJ, Kuo ML. The regulatory function of umbilical cord blood CD4+CD25+ T cells stimulated with anti-CD3/anti-CD28 and exogenous IL-2 or IL-15. Pediatr Allergy Immunol. 2009;20(7):624–32.

    Article  PubMed  Google Scholar 

  16. Chang CC, Satwani P, Oberfield N, Vlad G, Simpson LL, Cairo MS. Increased induction of allogeneic-specific cord blood CD4+CD25+ regulatory T (Treg) cells: a comparative study of naive and antigenic-specific cord blood Treg cells. Exp Hematol. 2005;33(12):1508–20.

    Article  CAS  PubMed  Google Scholar 

  17. Asanuma S, Tanaka J, Sugita J, et al. Expansion of CD4+CD25+ regulatory T cells from cord blood CD4+ cells using the common γ-chain cytokines (IL-2 and IL-15) and rapamycin. Ann Hematol. 2011;90(6):617–24.

    Article  CAS  PubMed  Google Scholar 

  18. Wuest TY, Willette-Brown J, Durum SK, Hurwitz AA. The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T cells. J Leukoc Biol. 2008;84(4):973–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Geiger TL, Tauro S. Nature and nurture in Foxp3+ regulatory T cell development, stability, and function. Hum Immunol. 2012;73(3):232–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rowe JH, Ertelt JM, Way SS. Foxp3+ regulatory T cells, immune stimulation and host defense against infection. Immunology. 2012;136(1):1–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol. 2005;35(6):1681–91.

    Article  CAS  PubMed  Google Scholar 

  22. Fritzsching B, Oberle N, Pauly E, et al. Naive regulatory T cells: a novel subpopulation defined by resistance toward CD95L-mediated cell death. Blood. 2006;108(10):3371–8.

    Article  CAS  PubMed  Google Scholar 

  23. Peluso I, Fantini MC, Fina D, Caruso R, Boirivant M, MacDonald TT, Pallone F, Monteleone G. IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol. 2007;178(2):732–9.

    Article  CAS  PubMed  Google Scholar 

  24. Monteleone G, Pallone F, MacDonald TT. Interleukin-21: a critical regulator of the balance between effector and regulatory T-cell responses. Trends Immunol. 2008;29(6):290–4.

    Article  CAS  PubMed  Google Scholar 

  25. Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ, Young DA, Collins M, Grusby MJ. IL-21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J Exp Med. 2002;196(7):969–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Suto A, Wurster AL, Reiner SL, Grusby MJ. IL-21 inhibits IFN-gamma production in developing Th1 cells through the repression of Eomesodermin expression. J Immunol. 2006;177(6):3721–7.

    Article  CAS  PubMed  Google Scholar 

  27. Fröhlich A, Marsland BJ, Sonderegger I, Kurrer M, Hodge MR, Harris NL, Kopf M. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood. 2007;109(5):2023–31.

    Article  PubMed  Google Scholar 

  28. Attridge K, Wang CJ, Wardzinski L, Kenefeck R, Chamberlain JL, Manzotti C, Kopf M, Walker LS. IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood. 2012;119(20):4656–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the health volunteers for participating in this study. This study was supported in part by grants from National Science Council of Republic of China: NSC96-2314-B182A-042-MY2 and NSC101-2314-B-182-033 and grants from Chang Gung Memorial Hospital: CMRPG4A0052, CMRPD4A0053, CMRPD1A0172~3, and CMRPD190511~3.

Conflict of interest

The authors declare no financial or commercial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ling Kuo.

Additional information

Syh-Jae Lin and Chun-Hao Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, SJ., Lu, CH., Yan, DC. et al. Expansion of regulatory T cells from umbilical cord blood and adult peripheral blood CD4+CD25+ T cells. Immunol Res 60, 105–111 (2014). https://doi.org/10.1007/s12026-014-8488-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-014-8488-1

Keywords

Navigation