Skip to main content
Log in

Immunobiology of TNFSF15 and TNFRSF25

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

TNFRSF25 is an understudied broad-acting T cell costimulator with high homology to TNFR1, however, the overall role of this receptor in T cell immunobiology is unclear. Ligation of TNFRSF25 by its monogamous ligand, TNFSF15 (TL1A), leads to recruitment of TNFR-associated factor 2 and TNFR-associated death domain in primary T cells with downstream activation of both NFκB as well as the PI3K/Akt axis. These signaling pathways are dependent upon coordinated engagement of the T cell receptor and interleukin-2 receptor and leads to the constitutive proliferation of CD4+FoxP3+ regulatory T cells (Treg) as a result of tonic exposure to self-antigen. Concurrent activation of CD4+ or CD8+ conventional T cell clones is dependent upon the availability of cognate foreign antigen. Here, we provide a review of both the literature and our work on this receptor and propose that the overall function of TL1A signaling to TNFRSF25 in T cells is to provide simultaneous costimulation of foreign-antigen-specific effector T cells and pre-existing Treg in order to focus the clonality of effector immunity to pathogen-derived antigens and reduce the risk of bystander inflammation toward self- or endogenous microbial antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  1. Bamias G, et al. Expression, localization, and functional activity of TL1A, a novel Th1-polarizing cytokine in inflammatory bowel disease. J Immunol. 2003;171:4868–74.

    Article  CAS  PubMed  Google Scholar 

  2. Bull MJ, et al. The death receptor 3-TNF-like protein 1A pathway drives adverse bone pathology in inflammatory arthritis. J Exp Med. 2008;205:2457–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cassatella MA, et al. Soluble TNF-like cytokine (TL1A) production by immune complexes stimulated monocytes in rheumatoid arthritis. J Immunol. 2007;178:7325–33.

    Article  CAS  PubMed  Google Scholar 

  4. Meylan F, et al. The TNF-family receptor DR3 is essential for diverse T cell-mediated inflammatory diseases. Immunity. 2008;29:79–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Migone TS, et al. TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity. 2002;16:479–92.

    Article  CAS  PubMed  Google Scholar 

  6. Pappu BP, et al. TL1A-DR3 interaction regulates Th17 cell function and Th17-mediated autoimmune disease. J Exp Med. 2008;205:1049–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Takedatsu H, et al. TL1A (TNFSF15) regulates the development of chronic colitis by modulating both T-helper 1 and T-helper 17 activation. Gastroenterology. 2008;135:552–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Fang L, Adkins B, Deyev V, Podack ER. Essential role of TNF receptor superfamily 25 (TNFRSF25) in the development of allergic lung inflammation. J Exp Med. 2008;205:1037–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Schreiber TH, Wolf D, Podack ER. The role of TNFRSF25: TNFSF15 in disease and health? Adv Exp Med Biol. 2011;691:289–98.

    Article  CAS  PubMed  Google Scholar 

  10. Kitson J, et al. A death-domain-containing receptor that mediates apoptosis. Nature. 1996;384:372–5.

    Article  CAS  PubMed  Google Scholar 

  11. Chinnaiyan AM, et al. Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science. 1996;274:990–2.

    Article  CAS  PubMed  Google Scholar 

  12. Bodmer JL, et al. TRAMP, a novel apoptosis-mediating receptor with sequence homology to tumor necrosis factor receptor 1 and Fas(Apo-1/CD95). Immunity. 1997;6:79–88.

    Article  CAS  PubMed  Google Scholar 

  13. Screaton GR, et al. LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing. Proc Natl Acad Sci USA. 1997;94:4615–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Tan KB, et al. Characterization of a novel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes and their constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene. 1997;204:35–46.

    Article  CAS  PubMed  Google Scholar 

  15. Marsters SA, et al. Apo-3, a new member of the tumor necrosis factor receptor family, contains a death domain and activates apoptosis and NF-kappa B. Curr Biol. 1996;6:1669–76.

    Article  CAS  PubMed  Google Scholar 

  16. Wang EC, Kitson J, Thern A, Williamson J, Farrow SN, Owen MJ. Genomic structure, expression, and chromosome mapping of the mouse homologue for the WSL-1 (DR3, Apo3, TRAMP, LARD, TR3, TNFRSF12) gene. Immunogenetics. 2001;53:59–63.

    Article  CAS  PubMed  Google Scholar 

  17. Schreiber TH, et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Investig. 2010;120:3629–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Warzocha K, Ribeiro P, Charlot C, Renard N, Coiffier B, Salles G. A new death receptor 3 isoform: expression in human lymphoid cell lines and non-Hodgkin’s lymphomas. Biochem Biophys Res Commun. 1998;242:376–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281:1305–8.

    Article  CAS  PubMed  Google Scholar 

  20. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114:181–90.

    Article  CAS  PubMed  Google Scholar 

  21. Wen L, Zhuang L, Luo X, Wei P. TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem. 2003;278:39251–8.

    Article  CAS  PubMed  Google Scholar 

  22. Wang EC, Thern A, Denzel A, Kitson J, Farrow SN, Owen MJ. DR3 regulates negative selection during thymocyte development. Mol Cell Biol. 2001;21:3451–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Al-Lamki RS, et al. TL1A both promotes and protects from renal inflammation and injury. J Am Soc Nephrol. 2008;19:953–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bamias G, et al. Role of TL1A and its receptor DR3 in two models of chronic murine ileitis. Proc Natl Acad Sci USA. 2006;103:8441–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Prehn JL, Thomas LS, Landers CJ, Yu QT, Michelsen KS, Targan SR. The T cell costimulator TL1A is induced by FcgammaR signaling in human monocytes and dendritic cells. J Immunol. 2007;178:4033–8.

    Article  CAS  PubMed  Google Scholar 

  26. Jin T, Guo F, Kim S, Howard A, Zhang YZ. X-ray crystal structure of TNF ligand family member TL1A at 2.1A. Biochem Biophys Res Commun. 2007;364:1–6.

    Article  CAS  PubMed  Google Scholar 

  27. Papadakis KA, et al. TL1A synergizes with IL-12 and IL-18 to enhance IFN-gamma production in human T cells and NK cells. J Immunol. 2004;172:7002–7.

    Article  CAS  PubMed  Google Scholar 

  28. Prehn JL, et al. Potential role for TL1A, the new TNF-family member and potent costimulator of IFN-gamma, in mucosal inflammation. Clin Immunol. 2004;112:66–77.

    Article  CAS  PubMed  Google Scholar 

  29. Papadakis KA, et al. Dominant role for TL1A/DR3 pathway in IL-12 plus IL-18-induced IFN-gamma production by peripheral blood and mucosal CCR9+ T lymphocytes. J Immunol. 2005;174:4985–90.

    Article  CAS  PubMed  Google Scholar 

  30. Thiebaut R, et al. TNFSF15 polymorphisms are associated with susceptibility to inflammatory bowel disease in a new European cohort. Am J Gastroenterol. 2009;104:384–91.

    Article  CAS  PubMed  Google Scholar 

  31. Yamazaki K, et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum Mol Genet. 2005;14:3499–506.

    Article  CAS  PubMed  Google Scholar 

  32. Kugathasan S, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40:1211–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Kakuta Y, Kinouchi Y, Negoro K, Takahashi S, Shimosegawa T. Association study of TNFSF15 polymorphisms in Japanese patients with inflammatory bowel disease. Gut. 2006;55:1527–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kakuta Y, et al. TNFSF15 transcripts from risk haplotype for Crohn’s disease are overexpressed in stimulated T cells. Hum Mol Genet. 2009;18:1089–98.

    Article  CAS  PubMed  Google Scholar 

  35. Zinovieva E, et al. Comprehensive linkage and association analyses identify haplotype, near to the TNFSF15 gene, significantly associated with spondyloarthritis. PLoS Genet. 2009;5:e1000528.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Zhang FR, et al. Genomewide association study of leprosy. N Engl J Med. 2009;361:2609–18.

    Article  CAS  PubMed  Google Scholar 

  37. Nakamura M, et al. Genome-wide association study identifies TNFSF15 and POU2AF1 as susceptibility loci for primary biliary cirrhosis in the Japanese population. Am J Hum Genet. 2012;91:721–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kayamuro H, et al. TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant. Biochem Biophys Res Commun. 2009;384:296–300.

    Article  CAS  PubMed  Google Scholar 

  39. Heidemann SC, Chavez V, Landers CJ, Kucharzik T, Prehn JL, Targan SR. TL1A selectively enhances IL-12/IL-18-induced NK cell cytotoxicity against NK-resistant tumor targets. J Clin Immunol. 2010;30:531–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Slebioda TJ, et al. Triggering of TNFRSF25 promotes CD8(+) T-cell responses and anti-tumor immunity. Eur J Immunol. 2011;41:2606–11.

    Article  CAS  PubMed  Google Scholar 

  41. Schreiber TH, Wolf D, Bodero M, Gonzalez L, Podack ER. T cell costimulation by TNFR superfamily (TNFRSF)4 and TNFRSF25 in the context of vaccination. J Immunol. 2012;189:3311–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Khan SQ, Tsai MS, Schreiber TH, Wolf D, Deyev VV, Podack ER. Cloning, expression, and functional characterization of TL1A-Ig. J Immunol. 2013;190:1540–50.

    Article  CAS  PubMed  Google Scholar 

  43. Meylan F, et al. The TNF-family cytokine TL1A drives IL-13-dependent small intestinal inflammation. Mucosal Immunol. 2011;4:172–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Taraban VY, et al. Sustained TL1A expression modulates effector and regulatory T-cell responses and drives intestinal goblet cell hyperplasia. Mucosal Immunol. 2011;4:186–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. JR PB, et al. TNFRSF25 agonistic antibody and galectin-9 combination therapy controls herpes simplex virus-induced immunoinflammatory lesions. J Virol. 2012;86:10606–20.

    Article  Google Scholar 

  46. Wolf D, et al. Tregs expanded in vivo by TNFRSF25 agonists promote cardiac allograft survival. Transplantation. 2012;94:569–74.

    Article  CAS  PubMed  Google Scholar 

  47. Sauer S, et al. T cell receptor signaling controls Foxp3 expression via PI3 K, Akt, and mTOR. Proc Natl Acad Sci USA. 2008;105:7797–802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chinen T, Volchkov PY, Chervonsky AV, Rudensky AY. A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J Exp Med. 2010;207:2323–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity. 2009;31:401–11.

    Article  CAS  PubMed  Google Scholar 

  50. Vu MD, et al. OX40 costimulation turns off Foxp3+ Tregs. Blood. 2007;110:2501–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Schreiber TH, Wolf D, Bodero M, Podack E. Tumor antigen specific iTreg accumulate in the tumor microenvironment and suppress therapeutic vaccination. Oncoimmunology. 2012;1:642–8.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor H. Schreiber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, T.H., Podack, E.R. Immunobiology of TNFSF15 and TNFRSF25. Immunol Res 57, 3–11 (2013). https://doi.org/10.1007/s12026-013-8465-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8465-0

Keywords

Navigation