Skip to main content
Log in

Computational approaches to understanding dendritic cell responses to influenza virus infection

  • Immunology at Mount Sinai
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The evolution of immunology research from measurements of single entities to large-scale data-intensive assays necessitates the integration of experimental work with bioinformatics and computational approaches. The introduction of physics into immunology has led to the study of new phenomena, such as cellular noise, which is likely to prove increasingly important to understand immune system responses. The fusion of “hard science” and biology is also leading to a re-examination of data acquisition, analysis, and statistical validation and is resulting in the development of easy-to-access tools for immunology research. Here, we review some of our models, computational tools, and results related to studies of the innate immune response of human dendritic cells to viral infection. Our project functions on an open model across institutions with electronic record keeping and public sharing of data. Our tools, models, and data can be accessed at http://tsb.mssm.edu/primeportal/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Honda K, Sakaguchi S, Nakajima C, Watanabe A, Yanai H, et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc Nat Acad Sci USA. 2003;100:10872–7.

    Article  PubMed  CAS  Google Scholar 

  2. Park M-S, Shaw ML, Munoz-Jordan J, Cros JF, Nakaya T, et al. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J Virol. 2003;77:1501–11.

    Article  PubMed  CAS  Google Scholar 

  3. García-Sastre A. Induction and evasion of type I interferon responses by influenza viruses. Virus Res. 2011;162:12–8.

    Article  PubMed  Google Scholar 

  4. Rao CV, Wolf DM, Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature. 2002;420:231–7.

    Article  PubMed  CAS  Google Scholar 

  5. Eldar A, Elowitz MB. Functional roles for noise in genetic circuits. Nature. 2010;467:167–73.

    Article  PubMed  CAS  Google Scholar 

  6. Ferrell JE, Machleder EM. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science. 1998;280:895–8.

    Article  PubMed  CAS  Google Scholar 

  7. Hayot F. Simulations of stochastic biological phenomena. Sci Signal. 2011;4:tr13.

    Article  PubMed  CAS  Google Scholar 

  8. Zaslavsky E, Hershberg U, Seto J, Pham A, Marquez S, et al. Antiviral response dictated by choreographed cascade of transcription factors. J Immunol. 2010;184:2908–17.

    Article  PubMed  CAS  Google Scholar 

  9. Gillespie DT. Exact stochastic simulation of coupled chemical-reactions. J Phys Chem. 1977;36(5):2340–61.

    Article  Google Scholar 

  10. Hu J, Sealfon SC, Hayot F, Jayaprakash C, Kumar M, et al. Chromosome-specific and noisy IFNB1 transcription in individual virus-infected human primary dendritic cells. Nucleic Acids Res. 2007;35:5232–41.

    Article  PubMed  CAS  Google Scholar 

  11. Hu J, Iyer-Biswas S, Sealfon SC, Wetmur J, Jayaprakash C, et al. Power-laws in interferon-B mRNA distribution in virus-infected dendritic cells. Biophys J. 2009;97:1984–9.

    Article  PubMed  CAS  Google Scholar 

  12. Apostolou E, Thanos D. Virus infection induces NF-kappaB-dependent interchromosomal associations mediating monoallelic IFN-beta gene expression. Cell. 2008;134:85–96.

    Article  PubMed  CAS  Google Scholar 

  13. Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci USA. 2001;98:8614–9.

    Article  PubMed  CAS  Google Scholar 

  14. Hu J, Nudelman G, Shimoni Y, Kumar M, Ding Y, et al. Role of cell-to-cell variability in activating a positive feedback antiviral response in human dendritic cells. PLoS ONE. 2011;6:e16614.

    Article  PubMed  CAS  Google Scholar 

  15. Qiao L, Phipps-Yonas H, Hartmann B, Moran TM, Sealfon SC, et al. Immune response modeling of interferon beta-pretreated influenza virus-infected human dendritic cells. Biophys J. 2010;98:505–14.

    Article  PubMed  CAS  Google Scholar 

  16. Seto J, Qiao L, Guenzel CA, Xiao S, Shaw ML, et al. Novel Nipah virus immune-antagonism strategy revealed by experimental and computational study. J Virol. 2010;84:10965–73.

    Article  PubMed  CAS  Google Scholar 

  17. Haller O, Kochs G, Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology. 2006;344:119–30.

    Article  PubMed  CAS  Google Scholar 

  18. Shimoni Y, Fink MY, Choi SG, Sealfon SC. Plato’s cave algorithm: inferring functional signaling networks from early gene expression shadows. PLoS Comput Biol. 2010;6:e1000828.

    Article  PubMed  Google Scholar 

  19. Bruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN. Modular response analysis of cellular regulatory networks. J Theor Biol. 2002;218:507–20.

    PubMed  CAS  Google Scholar 

  20. Sugár IP, Sealfon SC. Misty Mountain clustering: application to fast unsupervised flow cytometry gating. BMC Bioinf. 2010;11:502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart C. Sealfon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaslavsky, E., Hayot, F. & Sealfon, S.C. Computational approaches to understanding dendritic cell responses to influenza virus infection. Immunol Res 54, 160–168 (2012). https://doi.org/10.1007/s12026-012-8322-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-012-8322-6

Keywords

Navigation