Skip to main content

Advertisement

Log in

Medullary Thyroid Carcinoma: Recent Advances Including MicroRNA Expression

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Medullary thyroid carcinoma (MTC) is an uncommon neuroendocrine tumor arising from the C cells in the thyroid and accounts for about 5 % of all thyroid cancers. MTC exhibits more aggressive behavior than follicular tumors, with the majority of cases presenting with lymph node metastasis. It is particularly common among patients carrying germline RET mutations with almost 100 % penetrance. Because activating RET mutations occur in over 90 % of hereditary and 40 % of sporadic MTC, clinical trials of several RET-targeting multikinase inhibitors (MKIs) have resulted in FDA approval of vandetanib and cabozantinib for the treatment of MTC. Nevertheless, in light of significant individual differences in tumor behavior and treatment responses, there has been a persistent need for research efforts to decipher the molecular events within RET-driven or non-RET-driven tumors. Recently, the gene regulatory roles of microRNAs (miRNAs) in MTC have been studied extensively. Multiple miRNA deregulations have been discovered in MTC with potential prognostic and therapeutic implications. This review provides an overview of the basic pathology of MTC and an update on recent investigational progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pueblitz S, Weinberg AG, Albores-Saavedra J (1993) Thyroid C cells in the DiGeorge anomaly: a quantitative study. Pediatr Pathol 13 (4):463–473

    Article  CAS  PubMed  Google Scholar 

  2. Johansson E, Andersson L, Ornros J, Carlsson T, Ingeson-Carlsson C, Liang S, Dahlberg J, Jansson S, Parrillo L, Zoppoli P, Barila GO, Altschuler DL, Padula D, Lickert H, Fagman H, Nilsson M (2015) Revising the embryonic origin of thyroid C cells in mice and humans. Development 142 (20):3519–3528. doi:10.1242/dev.126581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Song Y, Washington MK, Crawford HC (2010) Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res 70 (5):2115–2125. doi:10.1158/0008-5472.CAN-09-2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tang Y, Shu G, Yuan X, Jing N, Song J (2011) FOXA2 functions as a suppressor of tumor metastasis by inhibition of epithelial-to-mesenchymal transition in human lung cancers. Cell Res 21 (2):316–326. doi:10.1038/cr.2010.126

    Article  CAS  PubMed  Google Scholar 

  5. Laury AR, Bongiovanni M, Tille JC, Kozakewich H, Nose V (2011) Thyroid pathology in PTEN-hamartoma tumor syndrome: characteristic findings of a distinct entity. Thyroid 21 (2):135–144. doi:10.1089/thy.2010.0226

    Article  PubMed  Google Scholar 

  6. Tomita T, Millard DM (1992) C-cell hyperplasia in secondary hyperparathyroidism. Histopathology 21 (5):469–474

    Article  CAS  PubMed  Google Scholar 

  7. LiVolsi VA, Feind CR, LoGerfo P, Tashjian AH, Jr. (1973) Demonstration by immunoperoxidase staining of hyperplasia of parafollicular cells in the thyroid gland in hyperparathyroidism. J Clin Endocrinol Metab 37 (4):550–559. doi:10.1210/jcem-37-4-550

    Article  CAS  PubMed  Google Scholar 

  8. Guyetant S, Wion-Barbot N, Rousselet MC, Franc B, Bigorgne JC, Saint-Andre JP (1994) C-cell hyperplasia associated with chronic lymphocytic thyroiditis: a retrospective quantitative study of 112 cases. Hum Pathol 25 (5):514–521

    Article  CAS  PubMed  Google Scholar 

  9. Biddinger PW, Brennan MF, Rosen PP (1991) Symptomatic C-cell hyperplasia associated with chronic lymphocytic thyroiditis. Am J Surg Pathol 15 (6):599–604

    Article  CAS  PubMed  Google Scholar 

  10. Morillo-Bernal J, Fernandez-Santos JM, Utrilla JC, de Miguel M, Garcia-Marin R, Martin-Lacave I (2009) Functional expression of the thyrotropin receptor in C cells: new insights into their involvement in the hypothalamic-pituitary-thyroid axis. J Anat 215 (2):150–158. doi:10.1111/j.1469-7580.2009.01095.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark OH, Rehfeld SJ, Castner B, Stroop J, Loken HF, Deftos LJ (1978) Iodine deficiency produces hypercalcemia and hypercalcitonemia in rats. Surgery 83 (6):626–632

    CAS  PubMed  Google Scholar 

  12. Scopsi L, Di Palma S, Ferrari C, Holst JJ, Rehfeld JF, Rilke F (1991) C-cell hyperplasia accompanying thyroid diseases other than medullary carcinoma: an immunocytochemical study by means of antibodies to calcitonin and somatostatin. Mod Pathol 4 (3):297–304

    CAS  PubMed  Google Scholar 

  13. Baschieri L, Castagna M, Fierabracci A, Antonelli A, Del Guerra P, Squartini F (1989) Distribution of calcitonin- and somatostatin-containing cells in thyroid lymphoma and in Hashimoto’s thyroiditis. Appl Pathol 7 (2):99–104

    CAS  PubMed  Google Scholar 

  14. Machens A, Holzhausen HJ, Thanh PN, Dralle H (2003) Malignant progression from C-cell hyperplasia to medullary thyroid carcinoma in 167 carriers of RET germline mutations. Surgery 134 (3):425–431

    Article  PubMed  Google Scholar 

  15. Kazaure HS, Roman SA, Sosa JA (2012) Medullary thyroid microcarcinoma: a population-level analysis of 310 patients. Cancer 118 (3):620–627. doi:10.1002/cncr.26283

    Article  PubMed  Google Scholar 

  16. Machens A, Dralle H (2012) Biological relevance of medullary thyroid microcarcinoma. J Clin Endocrinol Metab 97 (5):1547–1553. doi:10.1210/jc.2011-2534

    Article  CAS  PubMed  Google Scholar 

  17. Rios Moreno MJ, Galera-Ruiz H, De Miguel M, Lopez MI, Illanes M, Galera-Davidson H (2011) Inmunohistochemical profile of solid cell nest of thyroid gland. Endocr Pathol 22 (1):35–39. doi:10.1007/s12022-010-9145-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Asioli S, Erickson LA, Lloyd RV (2009) Solid cell nests in Hashimoto’s thyroiditis sharing features with papillary thyroid microcarcinoma. Endocr Pathol 20 (4):197–203. doi:10.1007/s12022-009-9095-x

    Article  CAS  PubMed  Google Scholar 

  19. Pinto A, Nose V (2013) Localized amyloid in thyroid: are we missing it? Adv Anat Pathol 20 (1):61–67. doi:10.1097/PAP.0b013e31827b6519

    Article  CAS  PubMed  Google Scholar 

  20. Pusztaszeri MP, Bongiovanni M, Faquin WC (2014) Update on the cytologic and molecular features of medullary thyroid carcinoma. Adv Anat Pathol 21 (1):26–35. doi:10.1097/PAP.0000000000000004

    Article  PubMed  Google Scholar 

  21. Nieuwenhuijzen Kruseman AC, Bosman FT, van Bergen Henegouw JC, Cramer-Knijnenburg G, Brutel de la Riviere G (1982) Medullary differentiation of anaplastic thyroid carcinoma. Am J Clin Pathol 77 (5):541–547

    Article  CAS  PubMed  Google Scholar 

  22. Lloyd RV, Sisson JC, Marangos PJ (1983) Calcitonin, carcinoembryonic antigen and neuron-specific enolase in medullary thyroid carcinoma. Cancer 51 (12):2234–2239

    Article  CAS  PubMed  Google Scholar 

  23. Schroder S, Bocker W, Baisch H, Burk CG, Arps H, Meiners I, Kastendieck H, Heitz PU, Kloppel G (1988) Prognostic factors in medullary thyroid carcinomas. Survival in relation to age, sex, stage, histology, immunocytochemistry, and DNA content. Cancer 61 (4):806–816

    Article  CAS  PubMed  Google Scholar 

  24. Uribe M, Fenoglio-Preiser CM, Grimes M, Feind C (1985) Medullary carcinoma of the thyroid gland. Clinical, pathological, and immunohistochemical features with review of the literature. Am J Surg Pathol 9 (8):577–594

    Article  CAS  PubMed  Google Scholar 

  25. Takami H, Bessho T, Kameya T, Mimura T, Ito K, Abe O, Hosoda Y, Shikata J (1988) Immunohistochemical study of medullary thyroid carcinoma: relationship of clinical features to prognostic factors in 36 patients. World J Surg 12 (4):572–579

    Article  CAS  PubMed  Google Scholar 

  26. Sikri KL, Varndell IM, Hamid QA, Wilson BS, Kameya T, Ponder BA, Lloyd RV, Bloom SR, Polak JM (1985) Medullary carcinoma of the thyroid. An immunocytochemical and histochemical study of 25 cases using eight separate markers. Cancer 56 (10):2481–2491

    Article  CAS  PubMed  Google Scholar 

  27. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci U S A 83 (10):3500–3504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vyberg M, Horn T, Francis D, Askaa J (1990) Immunohistochemical identification of neuron-specific enolase, synaptophysin, chromogranin and endocrine granule constituent in neuroendocrine tumours. Acta Histochem Suppl 38:179–181

    CAS  PubMed  Google Scholar 

  29. Satoh F, Umemura S, Yasuda M, Osamura RY (2001) Neuroendocrine marker expression in thyroid epithelial tumors. Endocr Pathol 12 (3):291–299

    Article  CAS  PubMed  Google Scholar 

  30. Holm R, Sobrinho-Simoes M, Nesland JM, Gould VE, Johannessen JV (1985) Medullary carcinoma of the thyroid gland: an immunocytochemical study. Ultrastruct Pathol 8 (1):25–41

    Article  CAS  PubMed  Google Scholar 

  31. Krisch K, Krisch I, Horvat G, Neuhold N, Ulrich W (1985) The value of immunohistochemistry in medullary thyroid carcinoma: a systematic study of 30 cases. Histopathology 9 (10):1077–1089

    Article  CAS  PubMed  Google Scholar 

  32. Katoh R, Miyagi E, Nakamura N, Li X, Suzuki K, Kakudo K, Kobayashi M, Kawaoi A (2000) Expression of thyroid transcription factor-1 (TTF-1) in human C cells and medullary thyroid carcinomas. Hum Pathol 31 (3):386–393

    Article  CAS  PubMed  Google Scholar 

  33. Steiner F, Hauser-Kronberger C, Rendl G, Rodrigues M, Pirich C (2016) Expression of tenascin C, EGFR, E-cadherin, and TTF-1 in medullary thyroid carcinoma and the correlation with RET mutation status. Int J Mol Sci 17 (7). doi:10.3390/ijms17071093

  34. Erickson LA, Vrana JA, Theis J, Rivera M, Lloyd RV, McPhail E, Zhang J (2015) Analysis of amyloid in medullary thyroid carcinoma by mass spectrometry-based proteomic analysis. Endocr Pathol 26 (4):291–295. doi:10.1007/s12022-015-9390-7

    Article  CAS  PubMed  Google Scholar 

  35. Eusebi V, Damiani S, Riva C, Lloyd RV, Capella C (1990) Calcitonin free oat-cell carcinoma of the thyroid gland. Virchows Arch A Pathol Anat Histopathol 417 (3):267–271

    Article  CAS  PubMed  Google Scholar 

  36. Saad MF, Ordonez NG, Guido JJ, Samaan NA (1984) The prognostic value of calcitonin immunostaining in medullary carcinoma of the thyroid. J Clin Endocrinol Metab 59 (5):850–856. doi:10.1210/jcem-59-5-850

    Article  CAS  PubMed  Google Scholar 

  37. Mendelsohn G, Wells SA, Jr., Baylin SB (1984) Relationship of tissue carcinoembryonic antigen and calcitonin to tumor virulence in medullary thyroid carcinoma. An immunohistochemical study in early, localized, and virulent disseminated stages of disease. Cancer 54 (4):657–662

    Article  CAS  PubMed  Google Scholar 

  38. Richards ML (2009) Thyroid cancer genetics: multiple endocrine neoplasia type 2, non-medullary familial thyroid cancer, and familial syndromes associated with thyroid cancer. Surg Oncol Clin N Am 18 (1):39–52, viii. doi:10.1016/j.soc.2008.08.002

    Article  PubMed  Google Scholar 

  39. Saad MF, Ordonez NG, Rashid RK, Guido JJ, Hill CS, Jr., Hickey RC, Samaan NA (1984) Medullary carcinoma of the thyroid. A study of the clinical features and prognostic factors in 161 patients. Medicine (Baltimore) 63 (6):319–342

    Article  CAS  Google Scholar 

  40. Carney JA, Sizemore GW, Hayles AV (1979) C-cell disease of the thyroid gland in multiple endocrine neoplasia, type 2b. Cancer 44 (6):2173–2183

    Article  CAS  PubMed  Google Scholar 

  41. Scopsi L, Sampietro G, Boracchi P, Del Bo R, Gullo M, Placucci M, Pilotti S (1996) Multivariate analysis of prognostic factors in sporadic medullary carcinoma of the thyroid. A retrospective study of 109 consecutive patients. Cancer 78 (10):2173–2183

    Article  CAS  PubMed  Google Scholar 

  42. Romei C, Pardi E, Cetani F, Elisei R (2012) Genetic and clinical features of multiple endocrine neoplasia types 1 and 2. J Oncol 2012:705036. doi:10.1155/2012/705036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Farndon JR, Leight GS, Dilley WG, Baylin SB, Smallridge RC, Harrison TS, Wells SA, Jr. (1986) Familial medullary thyroid carcinoma without associated endocrinopathies: a distinct clinical entity. Br J Surg 73 (4):278–281

    Article  CAS  PubMed  Google Scholar 

  44. Feldman GL, Edmonds MW, Ainsworth PJ, Schuffenecker I, Lenoir GM, Saxe AW, Talpos GB, Roberson J, Petrucelli N, Jackson CE (2000) Variable expressivity of familial medullary thyroid carcinoma (FMTC) due to a RET V804M (GTG-->ATG) mutation. Surgery 128 (1):93–98. doi:10.1067/msy.2000.107103

    Article  CAS  PubMed  Google Scholar 

  45. Raue F, Kotzerke J, Reinwein D, Schroder S, Roher HD, Deckart H, Hofer R, Ritter M, Seif F, Buhr H, et al. (1993) Prognostic factors in medullary thyroid carcinoma: evaluation of 741 patients from the German Medullary Thyroid Carcinoma Register. Clin Investig 71 (1):7–12

    Article  CAS  PubMed  Google Scholar 

  46. Lai AZ, Gujral TS, Mulligan LM (2007) RET signaling in endocrine tumors: delving deeper into molecular mechanisms. Endocr Pathol 18 (2):57–67

    Article  CAS  PubMed  Google Scholar 

  47. Giunti S, Antonelli A, Amorosi A, Santarpia L (2013) Cellular signaling pathway alterations and potential targeted therapies for medullary thyroid carcinoma. Int J Endocrinol 2013:803171. doi:10.1155/2013/803171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF, van Amstel HK, Lips CJ, Nishisho I, Takai SI, Marsh DJ, Robinson BG, Frank-Raue K, Raue F, Xue F, Noll WW, Romei C, Pacini F, Fink M, Niederle B, Zedenius J, Nordenskjold M, Komminoth P, Hendy GN, Mulligan LM, et al. (1996) The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276 (19):1575–1579

    Article  CAS  PubMed  Google Scholar 

  49. Frank-Raue K, Hoppner W, Frilling A, Kotzerke J, Dralle H, Haase R, Mann K, Seif F, Kirchner R, Rendl J, Deckart HF, Ritter MM, Hampel R, Klempa J, Scholz GH, Raue F (1996) Mutations of the ret protooncogene in German multiple endocrine neoplasia families: relation between genotype and phenotype. German Medullary Thyroid Carcinoma Study Group. J Clin Endocrinol Metab 81 (5):1780–1783. doi:10.1210/jcem.81.5.8626834

    CAS  PubMed  Google Scholar 

  50. Romei C, Mariotti S, Fugazzola L, Taccaliti A, Pacini F, Opocher G, Mian C, Castellano M, degli Uberti E, Ceccherini I, Cremonini N, Seregni E, Orlandi F, Ferolla P, Puxeddu E, Giorgino F, Colao A, Loli P, Bondi F, Cosci B, Bottici V, Cappai A, Pinna G, Persani L, Verga U, Boscaro M, Castagna MG, Cappelli C, Zatelli MC, Faggiano A, Francia G, Brandi ML, Falchetti A, Pinchera A, Elisei R, Ita MENn (2010) Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes. Eur J Endocrinol 163 (2):301–308. doi:10.1530/EJE-10-0333

  51. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43 (Database issue):D805–D811. doi:10.1093/nar/gku1075

    Article  PubMed  Google Scholar 

  52. Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M, Fusco A, Vecchio G, Matoskova B, Kraus MH, et al. (1995) Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 267 (5196):381–383

    Article  CAS  PubMed  Google Scholar 

  53. Freche B, Guillaumot P, Charmetant J, Pelletier L, Luquain C, Christiansen D, Billaud M, Manie SN (2005) Inducible dimerization of RET reveals a specific AKT deregulation in oncogenic signaling. J Biol Chem 280 (44):36584–36591. doi:10.1074/jbc.M505707200

    Article  CAS  PubMed  Google Scholar 

  54. Gujral TS, Singh VK, Jia Z, Mulligan LM (2006) Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2B. Cancer Res 66 (22):10741–10749. doi:10.1158/0008-5472.CAN-06-3329

    Article  CAS  PubMed  Google Scholar 

  55. Leboulleux S, Travagli JP, Caillou B, Laplanche A, Bidart JM, Schlumberger M, Baudin E (2002) Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course. Cancer 94 (1):44–50

    Article  CAS  PubMed  Google Scholar 

  56. Jasim S, Ying AK, Waguespack SG, Rich TA, Grubbs EG, Jimenez C, Hu MI, Cote G, Habra MA (2011) Multiple endocrine neoplasia type 2B with a RET proto-oncogene A883F mutation displays a more indolent form of medullary thyroid carcinoma compared with a RET M918T mutation. Thyroid 21 (2):189–192. doi:10.1089/thy.2010.0328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plaza Menacho I, Koster R, van der Sloot AM, Quax WJ, Osinga J, van der Sluis T, Hollema H, Burzynski GM, Gimm O, Buys CH, Eggen BJ, Hofstra RM (2005) RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor. Cancer Res 65 (5):1729–1737. doi:10.1158/0008-5472.CAN-04-2363

    Article  PubMed  Google Scholar 

  58. Engelmann D, Koczan D, Ricken P, Rimpler U, Pahnke J, Li Z, Putzer BM (2009) Transcriptome analysis in mouse tumors induced by Ret-MEN2/FMTC mutations reveals subtype-specific role in survival and interference with immune surveillance. Endocr Relat Cancer 16 (1):211–224. doi:10.1677/ERC-08-0158

    Article  CAS  PubMed  Google Scholar 

  59. Mise N, Drosten M, Racek T, Tannapfel A, Putzer BM (2006) Evaluation of potential mechanisms underlying genotype-phenotype correlations in multiple endocrine neoplasia type 2. Oncogene 25 (50):6637–6647. doi:10.1038/sj.onc.1209669

    Article  CAS  PubMed  Google Scholar 

  60. Baylin SB, Hsu SH, Gann DS, Smallridge RC, Wells SA, Jr. (1978) Inherited medullary thyroid carcinoma: a final monoclonal mutation in one of multiple clones of susceptible cells. Science 199 (4327):429–431

    Article  CAS  PubMed  Google Scholar 

  61. Ye L, Santarpia L, Cote GJ, El-Naggar AK, Gagel RF (2008) High resolution array-comparative genomic hybridization profiling reveals deoxyribonucleic acid copy number alterations associated with medullary thyroid carcinoma. J Clin Endocrinol Metab 93 (11):4367–4372. doi:10.1210/jc.2008-0912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heilmann AM, Subbiah V, Wang K, Sun JX, Elvin JA, Chmielecki J, Sherman SI, Murthy R, Busaidy NL, Subbiah I, Yelensky R, Nangia C, Vergilio JA, Khan SA, Erlich RL, Lipson D, Ross JS, Miller VA, Shah MH, Ali SM, Stephens PJ (2016) Comprehensive genomic profiling of clinically advanced medullary thyroid carcinoma. Oncology 90 (6):339–346. doi:10.1159/000445978

    Article  CAS  PubMed  Google Scholar 

  63. Capp C, Wajner SM, Siqueira DR, Brasil BA, Meurer L, Maia AL (2010) Increased expression of vascular endothelial growth factor and its receptors, VEGFR-1 and VEGFR-2, in medullary thyroid carcinoma. Thyroid 20 (8):863–871. doi:10.1089/thy.2009.0417

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez-Antona C, Pallares J, Montero-Conde C, Inglada-Perez L, Castelblanco E, Landa I, Leskela S, Leandro-Garcia LJ, Lopez-Jimenez E, Leton R, Cascon A, Lerma E, Martin MC, Carralero MC, Mauricio D, Cigudosa JC, Matias-Guiu X, Robledo M (2010) Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocr Relat Cancer 17 (1):7–16. doi:10.1677/ERC-08-0304

    Article  CAS  PubMed  Google Scholar 

  65. Lin H, Jiang X, Zhu H, Jiang W, Dong X, Qiao H, Sun X, Jiang H (2016) 2ME2 inhibits the activated hypoxia-inducible pathways by cabozantinib and enhances its efficacy against medullary thyroid carcinoma. Tumour Biol 37 (1):381–391. doi:10.1007/s13277-015-3816-1

    Article  CAS  PubMed  Google Scholar 

  66. Moura MM, Cavaco BM, Pinto AE, Domingues R, Santos JR, Cid MO, Bugalho MJ, Leite V (2009) Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas. Br J Cancer 100 (11):1777–1783. doi:10.1038/sj.bjc.6605056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Eng C, Mulligan LM, Healey CS, Houghton C, Frilling A, Raue F, Thomas GA, Ponder BA (1996) Heterogeneous mutation of the RET proto-oncogene in subpopulations of medullary thyroid carcinoma. Cancer Res 56 (9):2167–2170

    CAS  PubMed  Google Scholar 

  68. Moura MM, Cavaco BM, Pinto AE, Leite V (2011) High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab 96 (5):E863–E868. doi:10.1210/jc.2010-1921

    Article  CAS  PubMed  Google Scholar 

  69. Moura MM, Cavaco BM, Leite V (2015) RAS proto-oncogene in medullary thyroid carcinoma. Endocr Relat Cancer 22 (5):R235–R252. doi:10.1530/ERC-15-0070

    Article  CAS  PubMed  Google Scholar 

  70. Ciampi R, Mian C, Fugazzola L, Cosci B, Romei C, Barollo S, Cirello V, Bottici V, Marconcini G, Rosa PM, Borrello MG, Basolo F, Ugolini C, Materazzi G, Pinchera A, Elisei R (2013) Evidence of a low prevalence of RAS mutations in a large medullary thyroid cancer series. Thyroid 23 (1):50–57. doi:10.1089/thy.2012.0207

    Article  CAS  PubMed  Google Scholar 

  71. Mancikova V, Inglada-Perez L, Curras-Freixes M, de Cubas AA, Gomez A, Leton R, Kersten I, Leandro-Garcia LJ, Comino-Mendez I, Apellaniz-Ruiz M, Sanchez L, Cascon A, Sastre-Marcos J, Garcia JF, Rodriguez-Antona C, Robledo M (2014) VEGF, VEGFR3, and PDGFRB protein expression is influenced by RAS mutations in medullary thyroid carcinoma. Thyroid 24 (8):1251–1255. doi:10.1089/thy.2013.0579

    Article  CAS  PubMed  Google Scholar 

  72. Sherman SI, Cohen EEW, Schoffski P, Elisei R, Schlumberger M, Wirth LJ, Mangeshkar M, Aftab DT, Clary DO, Brose MS (2013) Efficacy of cabozantinib (Cabo) in medullary thyroid cancer (MTC) patients with RAS or RET mutations: Results from a phase III study. Journal of Clinical Oncology (Meeting Abstracts) 31 (Suppl):Abstr 6000

  73. Rowinsky EK, Windle JJ, Von Hoff DD (1999) Ras protein farnesyltransferase: A strategic target for anticancer therapeutic development. J Clin Oncol 17 (11):3631–3652

    CAS  PubMed  Google Scholar 

  74. Hong DS, Cabanillas ME, Wheler J, Naing A, Tsimberidou AM, Ye L, Busaidy NL, Waguespack SG, Hernandez M, El Naggar AK, Bidyasar S, Wright J, Sherman SI, Kurzrock R (2011) Inhibition of the Ras/Raf/MEK/ERK and RET kinase pathways with the combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in medullary and differentiated thyroid malignancies. J Clin Endocrinol Metab 96 (4):997–1005. doi:10.1210/jc.2010-1899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ahmed M, Barbachano Y, Riddell A, Hickey J, Newbold KL, Viros A, Harrington KJ, Marais R, Nutting CM (2011) Analysis of the efficacy and toxicity of sorafenib in thyroid cancer: a phase II study in a UK based population. Eur J Endocrinol 165 (2):315–322. doi:10.1530/EJE-11-0129

    Article  CAS  PubMed  Google Scholar 

  76. Santarpia L, Calin GA, Adam L, Ye L, Fusco A, Giunti S, Thaller C, Paladini L, Zhang X, Jimenez C, Trimarchi F, El-Naggar AK, Gagel RF (2013) A miRNA signature associated with human metastatic medullary thyroid carcinoma. Endocr Relat Cancer 20 (6):809–823. doi:10.1530/ERC-13-0357

    Article  CAS  PubMed  Google Scholar 

  77. Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L, Robinson BG, Sidhu SB (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 17 (14):4772–4781. doi:10.1158/1078-0432.CCR-11-0242

    Article  CAS  PubMed  Google Scholar 

  78. Mian C, Pennelli G, Fassan M, Balistreri M, Barollo S, Cavedon E, Galuppini F, Pizzi M, Vianello F, Pelizzo MR, Girelli ME, Rugge M, Opocher G (2012) MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid 22 (9):890–896. doi:10.1089/thy.2012.0045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hudson J, Duncavage E, Tamburrino A, Salerno P, Xi L, Raffeld M, Moley J, Chernock RD (2013) Overexpression of miR-10a and miR-375 and downregulation of YAP1 in medullary thyroid carcinoma. Exp Mol Pathol 95 (1):62–67. doi:10.1016/j.yexmp.2013.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pennelli G, Galuppini F, Barollo S, Cavedon E, Bertazza L, Fassan M, Guzzardo V, Pelizzo MR, Rugge M, Mian C (2015) The PDCD4/miR-21 pathway in medullary thyroid carcinoma. Hum Pathol 46 (1):50–57. doi:10.1016/j.humpath.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  81. Puppin C, Durante C, Sponziello M, Verrienti A, Pecce V, Lavarone E, Baldan F, Campese AF, Boichard A, Lacroix L, Russo D, Filetti S, Damante G (2014) Overexpression of genes involved in miRNA biogenesis in medullary thyroid carcinomas with RET mutation. Endocrine 47 (2):528–536. doi:10.1007/s12020-014-0204-3

    Article  CAS  PubMed  Google Scholar 

  82. Hardin H, Guo Z, Shan W, Montemayor-Garcia C, Asioli S, Yu XM, Harrison AD, Chen H, Lloyd RV (2014) The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am J Pathol 184 (8):2342–2354. doi:10.1016/j.ajpath.2014.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Modigliani E, Cohen R, Campos JM, Conte-Devolx B, Maes B, Boneu A, Schlumberger M, Bigorgne JC, Dumontier P, Leclerc L, Corcuff B, Guilhem I (1998) Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d’etude des tumeurs a calcitonine. Clin Endocrinol (Oxf) 48 (3):265–273

    Article  CAS  Google Scholar 

  84. Chong GC, Beahrs OH, Sizemore GW, Woolner LH (1975) Medullary carcinoma of the thyroid gland. Cancer 35 (3):695–704

    Article  CAS  PubMed  Google Scholar 

  85. Pelizzo MR, Boschin IM, Bernante P, Toniato A, Piotto A, Pagetta C, Nibale O, Rampin L, Muzzio PC, Rubello D (2007) Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients. Eur J Surg Oncol 33 (4):493–497. doi:10.1016/j.ejso.2006.10.021

    Article  CAS  PubMed  Google Scholar 

  86. Deutschbein T, Matuszczyk A, Moeller LC, Unger N, Yuece A, Lahner H, Mann K, Petersenn S (2011) Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine: a single-center experience. Exp Clin Endocrinol Diabetes 119 (9):540–543. doi:10.1055/s-0031-1279704

    Article  CAS  PubMed  Google Scholar 

  87. Wu LT, Averbuch SD, Ball DW, de Bustros A, Baylin SB, McGuire WP, 3rd (1994) Treatment of advanced medullary thyroid carcinoma with a combination of cyclophosphamide, vincristine, and dacarbazine. Cancer 73 (2):432–436

    Article  CAS  PubMed  Google Scholar 

  88. Nocera M, Baudin E, Pellegriti G, Cailleux AF, Mechelany-Corone C, Schlumberger M (2000) Treatment of advanced medullary thyroid cancer with an alternating combination of doxorubicin-streptozocin and 5 FU-dacarbazine. Groupe d’Etude des Tumeurs a Calcitonine (GETC). Br J Cancer 83 (6):715–718. doi:10.1054/bjoc.2000.1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R (1985) A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer 56 (9):2155–2160

    Article  CAS  PubMed  Google Scholar 

  90. Wells, SA Jr., Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, Lee N, Machens A, Moley JF, Pacini F, Raue F, Frank-Raue K, Robinson B, Rosenthal MS, Santoro M, Schlumberger M, Shah M, Waguespack SG, American Thyroid Association Guidelines Task Force on Medullary Thyroid C (2015) Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 25 (6):567–610. doi:10.1089/thy.2014.0335

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wells SA, Jr., Gosnell JE, Gagel RF, Moley J, Pfister D, Sosa JA, Skinner M, Krebs A, Vasselli J, Schlumberger M (2010) Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 28 (5):767–772. doi:10.1200/JCO.2009.23.6604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Robinson BG, Paz-Ares L, Krebs A, Vasselli J, Haddad R (2010) Vandetanib (100 mg) in patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Endocrinol Metab 95 (6):2664–2671. doi:10.1210/jc.2009-2461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, Pfister DG, Cohen EE, Janisch L, Nauling F, Hong DS, Ng CS, Ye L, Gagel RF, Frye J, Muller T, Ratain MJ, Salgia R (2011) Activity of XL184 (Cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol 29 (19):2660–2666. doi:10.1200/JCO.2010.32.4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J, Sammet S, Hall NC, Wakely PE, Jr., Vasko VV, Saji M, Snyder PJ, Wei L, Arbogast D, Collamore M, Wright JJ, Moley JF, Villalona-Calero MA, Shah MH (2010) Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. J Clin Oncol 28 (14):2323–2330. doi:10.1200/JCO.2009.25.0068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cohen EE, Rosen LS, Vokes EE, Kies MS, Forastiere AA, Worden FP, Kane MA, Sherman E, Kim S, Bycott P, Tortorici M, Shalinsky DR, Liau KF, Cohen RB (2008) Axitinib is an active treatment for all histologic subtypes of advanced thyroid cancer: results from a phase II study. J Clin Oncol 26 (29):4708–4713. doi:10.1200/JCO.2007.15.9566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Locati LD, Licitra L, Agate L, Ou SH, Boucher A, Jarzab B, Qin S, Kane MA, Wirth LJ, Chen C, Kim S, Ingrosso A, Pithavala YK, Bycott P, Cohen EE (2014) Treatment of advanced thyroid cancer with axitinib: phase 2 study with pharmacokinetic/pharmacodynamic and quality-of-life assessments. Cancer 120 (17):2694–2703. doi:10.1002/cncr.28766

    Article  CAS  PubMed  Google Scholar 

  97. Cohen EE, Needles BM, Cullen KJ, Wong SJ, Wade III JL, Ivy SP, Villaflor VM, Seiwert TY, Nichols K, Vokes EE (2008) Phase 2 study of sunitinib in refractory thyroid cancer. Journal of Clinical Oncology (Meeting Abstracts) 26 (15S):6025

    Google Scholar 

  98. De Souza JA, Busaidy N, Zimrin A, Seiwert TY, Villaflor VM, Poluru KB, Reddy PL, Nam J, Vokes EE, Cohen EE (2010) Phase II trial of sunitinib in medullary thyroid cancer (MTC). Journal of Clinical Oncology (Meeting Abstracts) 28 (15S):5504

    Google Scholar 

  99. Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, Bauman JE, Martins RG (2010) Phase II study of daily sunitinib in FDG-PET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res 16 (21):5260–5268. doi:10.1158/1078-0432.CCR-10-0994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schneider TC, de Wit D, Links TP, van Erp NP, van der Hoeven JJ, Gelderblom H, van Wezel T, van Eijk R, Morreau H, Guchelaar HJ, Kapiteijn E (2015) Beneficial effects of the mTOR inhibitor everolimus in patients with advanced medullary thyroid carcinoma: subgroup results of a phase ii trial. Int J Endocrinol 2015:348124. doi:10.1155/2015/348124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schlumberger M, Jarzab B, Cabanillas ME, Robinson B, Pacini F, Ball DW, McCaffrey J, Newbold K, Allison R, Martins RG, Licitra LF, Shah MH, Bodenner D, Elisei R, Burmeister L, Funahashi Y, Ren M, O’Brien JP, Sherman SI (2016) A phase II trial of the multitargeted tyrosine kinase inhibitor lenvatinib (E7080) in advanced medullary thyroid cancer. Clin Cancer Res 22 (1):44–53. doi:10.1158/1078-0432.CCR-15-1127

    Article  CAS  PubMed  Google Scholar 

  102. Bible KC, Suman VJ, Molina JR, Smallridge RC, Maples WJ, Menefee ME, Rubin J, Karlin N, Sideras K, Morris JC III, McIver B, Hay I, Fatourechi V, Burton JK, Webster KP, Bieber C, Traynor AM, Flynn PJ, Cher Goh B, Isham CR, Harris P, Erlichman C, Endocrine Malignancies Disease Oriented Group MCCC, the Mayo Phase C (2014) A multicenter phase 2 trial of pazopanib in metastatic and progressive medullary thyroid carcinoma: MC057H. J Clin Endocrinol Metab 99 (5):1687–1693. doi:10.1210/jc.2013-3713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Groot JW, Zonnenberg BA, van Ufford-Mannesse PQ, de Vries MM, Links TP, Lips CJ, Voest EE (2007) A phase II trial of imatinib therapy for metastatic medullary thyroid carcinoma. J Clin Endocrinol Metab 92 (9):3466–3469. doi:10.1210/jc.2007-0649

    Article  PubMed  CAS  Google Scholar 

  104. Wells SA, Jr., Robinson BG, Gagel RF, Dralle H, Fagin JA, Santoro M, Baudin E, Elisei R, Jarzab B, Vasselli JR, Read J, Langmuir P, Ryan AJ, Schlumberger MJ (2012) Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J Clin Oncol 30 (2):134–141. doi:10.1200/JCO.2011.35.5040

    Article  CAS  PubMed  Google Scholar 

  105. Elisei R, Schlumberger MJ, Muller SP, Schoffski P, Brose MS, Shah MH, Licitra L, Jarzab B, Medvedev V, Kreissl MC, Niederle B, Cohen EE, Wirth LJ, Ali H, Hessel C, Yaron Y, Ball D, Nelkin B, Sherman SI (2013) Cabozantinib in progressive medullary thyroid cancer. J Clin Oncol 31 (29):3639–3646. doi:10.1200/JCO.2012.48.4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Carlomagno F, Guida T, Anaganti S, Vecchio G, Fusco A, Ryan AJ, Billaud M, Santoro M (2004) Disease associated mutations at valine 804 in the RET receptor tyrosine kinase confer resistance to selective kinase inhibitors. Oncogene 23 (36):6056–6063. doi:10.1038/sj.onc.1207810

    Article  CAS  PubMed  Google Scholar 

  107. Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5 (3):e39. doi:10.1371/journal.pbio.0050039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Kamba T, McDonald DM (2007) Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br J Cancer 96 (12):1788–1795. doi:10.1038/sj.bjc.6603813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Ying-Hsia Chu received a grant from the Department of Pathology and Laboratory Medicine at the University of Wisconsin School of Medicine and Public Health to study non-coding RNAs in MTC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YH., Lloyd, R.V. Medullary Thyroid Carcinoma: Recent Advances Including MicroRNA Expression. Endocr Pathol 27, 312–324 (2016). https://doi.org/10.1007/s12022-016-9449-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-016-9449-0

Keywords

Navigation