Skip to main content

Advertisement

Log in

Stage-Specific Embryonic Antigen-1 (SSEA-1) Expression in Thyroid Tissues

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Stage-specific embryonic antigen-1 (SSEA-1), also known as CD15, is a member of a cluster of differentiation antigens that have been identified in various normal tissues and in different types of cancers including papillary and medullary thyroid carcinoma. SSEA-1 may be expressed in normal stem cells and cancer stem-like cells. To evaluate the potential diagnostic and prognostic utility of SSEA-1 in thyroid tumors, we analyzed the expression of SSEA-1 in normal and neoplastic thyroid tissues by immunohistochemistry (IHC) using a tissue microarray with 158 different tissue cores. To evaluate the potential utility of SSEA-1 as a surface marker, we also assessed the expression of SSEA-1 in thyroid cell lines by flow cytometric analysis. SSEA-1 immunoreactivity was identified in malignant thyroid follicular epithelial cancers but not in the benign thyroid tissues. Anaplastic thyroid (ATC) (80 %) and conventional papillary thyroid carcinoma (PTC) (60.7 %) showed significantly higher percentage of cases that were SSEA-1 immunoreactive than follicular variant of papillary thyroid carcinoma (FVPTC) (20.6 %) and follicular carcinoma (FCA) (32.1 %). Flow cytometric analysis of cultured thyroid cell lines showed that a small subpopulation of ATC and PTC thyroid tumor cells had SSEA-1 immunoreactivity which may represent thyroid cancer stem-like cells. The ATC cells expressed more SSEA-1 immunoreactive cells than the PTC cell lines. Our findings suggest that expression of SSEA-1 immunoreactivity in thyroid neoplasms was associated with more aggressive thyroid carcinomas. SSEA-1 is a marker that detects malignant thyroid neoplasms in formalin-fixed paraffin-embedded thyroid tissue sections and may be a useful marker for thyroid cancer stem-like cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanjan SNS, Kearney JF, Cooper MD. A monoclonal antibody (MMA) that identifies a differentiation antigen on human myelomonocytic cells. Clin Immunol Immunopathol. 23:172–188, 1982.

    Article  CAS  PubMed  Google Scholar 

  2. Hsu SM, Jaffe ES. Leu-M1 and peanut agglutinin stain the neoplastic cells of Hodgkin’s disease. Am J Clin Pathol. 82:29–32, 1984.

    Article  CAS  PubMed  Google Scholar 

  3. Jang TJ, Park JB, Lee JI. The Expression of CD10 and CD15 Is Progressively Increased during Colorectal Cancer Development. Korean J Pathol, 47:340–347, 2003.

    Article  Google Scholar 

  4. Kadota A, Masutani M, Takei M, Horie T. Evaluation of expression of CD15 and sCD15 in non-small cell lung cancer. Int J Oncol. 15:1081–1089, 1999.

    CAS  PubMed  Google Scholar 

  5. Brooks SA, Leathem AJ. Expression of the CD15 antigen (Lewis x) in breast cancer. Histochem J. 27:689–693, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Shirahama T, Ikoma M, Muramatsu T, Ohi Y. Expression of SSEA-1 carbohydrate antigen correlates with stage, grade and metastatic potential of transitional cell carcinoma of the bladder. J Urol. 148:1319–1322, 1992.

    CAS  PubMed  Google Scholar 

  7. Miettinen M, Kärkkäinen P. Differential reactivity of HBME-1 and CD15 antibodies in benign and malignant thyroid tumours. Preferential reactivity with malignant tumours. Virchows Arch. 429:213–219, 1996.

    CAS  PubMed  Google Scholar 

  8. Fonseca E, Castanhas S, Sobrinho-Simões M. Carbohydrate antigens as oncofetal antigens in papillary carcinoma of the thyroid gland. Endocr Pathol. 8:301–303, 1997.

    Article  PubMed  Google Scholar 

  9. Fonseca E, Castanhas S, Sobrinho-Simões M. Expression of simple mucin type antigens and Lewis type 1 and type 2 chain antigens in the thyroid gland. An immunohistochemical study of normal thyroid tissues, benign lesions and malignant tumors. Endocr Pathol. 7:291–301, 1996.

    Article  PubMed  Google Scholar 

  10. Van Hoeven KH, Kovatich AJ, Miettinen M. Immunocytochemical evaluation of HBME-1, CA 19-9, and CD-15 (Leu-M1) in fine-needle aspirates of thyroid nodules. Diagn Cytopathol. 18:93–97, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Koo JS, Shin E, Hong SW. Immunohistochemical characteristics of diffuse sclerosing variant of papillary carcinoma: comparison with conventional papillary carcinoma. APMIS. 118:744–752, 2010.

    Article  PubMed  Google Scholar 

  12. Ohta M, Ookoshi T, Naiki H, Imamura Y. HBME-1 and CD15 immunocytochemistry in the follicular variant of thyroid papillary carcinoma. Pathol Int. 65:119–125, 2015.

    Article  CAS  PubMed  Google Scholar 

  13. Schr/Sder S, Schwarz W, Rehpenning W, Loning T, Becker W. Prognostic significance of Leu-M1 immunostaining in papillary carcinomas of the thyroid gland. Virchows Arch. 411:435–439, 1998.

    Article  Google Scholar 

  14. Willgeroth C, Floegel R, Rosler B. The importance of S-100 protein positive Langerhans cells and Leu-M1 positive tumor cells for prognosis of papillary thyroid cancer. Zentralbl Chir. 117:603–606, 1992.

    CAS  PubMed  Google Scholar 

  15. Neuhold N, Langle F, Gnant M, Hollenstein U, Niederie B. Relationship of CD15 immunoreactivity and prognosis in sporadic medullary thyroid carcinoma. J Cancer Res Clin Oncol. 118:629–634, 1992.

    Article  CAS  PubMed  Google Scholar 

  16. Langel F, Soliman T, Neuhold N, Widhalm G, Niederie B, Roka S, Kaserer K, Blauensteiner W, Dam K, Clodi M, et al. CD15 (LeuM1) immunoreactivity: prognostic factor for sporadic and hereditary medullary thyroid cancer? Study Group on Multiple Endocrine Neoplasia of Austria. World J Surg. 18:583–587, 1994.

    Google Scholar 

  17. Ma R, Bonnefond S, Morshed SA, Latif R, Davies TF. Stemness is derived from thyroid cancer cells. Front Endocrinol (Lausanne). 5:114, 2014.

    Google Scholar 

  18. Ma R, Minsky N, Morshed SA, Davies TF. Stemness in human thyroid cancers and derived cell lines: the role of asymmetrically dividing cancer stem cells resistant to chemotherapy. J Clin Endocrinol Metab. 99:E400–E409, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scaffidi P, Misteli T. In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol. 13:1051–1061, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hardin H Guo Z, Shan W, Montemayor-Garcia C, Asioli S, Yu X-M, Harrison AD, Chen H, Lloyd RV. The roles of the epithelial-mesenchymal transition marker PRRX1 and miR-146b-5p in papillary thyroid carcinoma progression. Am J Pathol 184:2342–2354, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hardin H, Yu X-M, Harrison AD et al. Generation of Novel thyroid cancer stem-like cell clones: Effects of resveratrol and valproic acid. Am J Pathol. 186:1662–1673, 2016..

    Article  CAS  PubMed  Google Scholar 

  22. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, Chen H, Lloyd RV. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol 26:54–61, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Son MJ, Woolard K, Nam DH, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor initiating cells in human glioblastoma. Cell Stem Cell 4:440–442, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Kim Y, Jeong J, Kang H, Lim J, Heo J, Ratajczak J, Ratajczak MZ, Shin DM, The molecular nature of very small embryonic-like stem cells in adult tissues. J Stem Cells 7: 55–62, 2014.

    Article  CAS  Google Scholar 

  25. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: A paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol doi:10.1001/jamaoncol.2016.0386, 2016.

    Google Scholar 

  26. Yanagisawa M. Stem cell glycolipids. Neurochem Res 36:1623–1635, 2011.

    Article  CAS  PubMed  Google Scholar 

  27. Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66: 9339–9344, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Son MJ, Woolard K, Nam DH, et al. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 4:440–452, 2009.

    Article  CAS  PubMed  Google Scholar 

  29. Read TA, Fogarty MP, Markant SL, et al. Identification of CD15 as a marker for tumor- propagating cells cells in a mouse model of medulloblastoma. Cancer Cell. 15:135–147, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We kindly thank Dr. John A. Copland III (Mayo Clinic, Jacksonville, FL) for the THJ-16T and THJ-21T cell lines, Dr. Rebecca E. Schweppe (University of Colorado, Denver, CO) for the BCPAP cell line, Dr. Daniel T. Ruan (Brigham and Women’s Hospital, Boston, MA) for the TPC-1 cell line, and the staffs of the Translational Research in Pathology (TRIP), Flow Cytometry, 3P, and Experimental Pathology laboratories (University of Wisconsin Carbone Cancer Center Cancer Center Support Grant P30 CA014520) for their services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Presented as a Poster Session at the 105th Meeting of the United States and Canadian Academy of Pathology in Seattle WA, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Hardin, H., Zhang, R. et al. Stage-Specific Embryonic Antigen-1 (SSEA-1) Expression in Thyroid Tissues. Endocr Pathol 27, 271–275 (2016). https://doi.org/10.1007/s12022-016-9448-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-016-9448-1

Keywords

Navigation