Skip to main content
Log in

Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The pre-B lymphocyte protein 3 (VPREB3) is expressed during B cell differentiation and in subsets of mature B lymphocytes and is mainly found in bone marrow and lymphoid tissue germinative centers. So far, its function in B cells remains to be clarified. The messenger RNA (mRNA) of VPREB3 was previously detected in aldosterone-producing adenomas (APA); however, further information about this protein in human adrenocortical cells and tissues is currently unavailable. Therefore, in the present study, we, for the first time, investigate the protein expression of VPREB3 in human adrenocortical tissues. In addition, we approach the previously suggested similarities in expression patterns of aldosterone-producing cells and Purkinje neurons. Immunohistochemical analysis of VPREB3 was performed in 13 nonpathological adrenals (NA), 6 adrenal glands with idiopathic hyperaldosteronism (IHA), 18 APA, 5 cortisol-producing adenomas (CPA), and 5 nonpathological human cerebellum specimens. The mRNA levels of VPREB3, steroidogenic enzymes, and other aldosterone biosynthesis markers were detected in 53 APA samples using real-time RT-PCR (qPCR) and compared to the clinical data of APA patients. In our results, the VPREB3 protein was diffusely detected in APA, partially or weakly detected in CPA, and immunolocalized in the zona glomerulosa of NA and IHA, as well as in the cytoplasm of cerebellar Purkinje cells. In APA, VPREB3 mRNA levels were significantly correlated to plasma aldosterone (P = 0.026; R = 0.30), KCNJ5 mutations (P = 0.0061; mutated 34:19 wild type), CYP11B2 (P < 0.0001; R = 0.65), Purkinje cell protein 4 (PCP4; P < 0.0001; R = 0.53), and voltage-dependent calcium channels CaV1.3 (P = 0.023; R = 0.31) and CaV3.2 (P = 0.0019; R = 0.42). Based on our data, we hypothesize a possible role for VPREB3 in aldosterone biosynthesis, and present ideas for future functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. LeBien TW, Tedder TF (2008) B lymphocytes: how they develop and function. Blood. 112:1570–1580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Rosnet O, Mattéi MG, Delattre O, Schiff C (1999) VPREB3: cDNA characterization and expression in human and chromosome mapping in human and mouse. Cytogenet Cell Genet. 87:205–208.

    Article  CAS  PubMed  Google Scholar 

  3. Rodig SJ, Kutok JL, Paterson JC, Nitta H, Zhang W, Chapuy B, Tumwine LK, Montes-Moreno S, Agostinelli C, Johnson NA, Ben-Neriah S, Farinha P, Shipp MA, Piris MA, Grogan TM, Pileri SA, Gascoyne RD, Marafioti T (2010) The pre-B-cell receptor associated protein VpreB3 is a useful diagnostic marker for identifying c-MYC translocated lymphomas. Haematologica. 95:2056–2062.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wang X, Parra ZE, Miller RD (2012) A VpreB3 homologue in a marsupial, the gray short-tailed opossum, Monodelphis domestica. Immunogenetics. 64:647–652.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rosnet O, Blanco-Betancourt C, Grivel K, Richter K, Schiff C (2004) Binding of free immunoglobulin light chains to VpreB3 inhibits their maturation and secretion in chicken B cells. J Biol Chem. 279:10228–10236.

    Article  CAS  PubMed  Google Scholar 

  6. Wang T, Satoh F, Morimoto R, Nakamura Y, Sasano H, Auchus RJ, Edwards MA, Rainey WE (2011) Gene expression profiles in aldosterone-producing adenomas and adjacent adrenal glands. Eur J Endocrinol. 164:613–619.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. MacKenzie SM, Clark CJ, Fraser R, Gómez-Sánchez CE, Connell JM, Davies E (2000) Expression of 11beta-hydroxylase and aldosterone synthase genes in the rat brain. J Mol Endocrinol. 24:321–328.

    Article  CAS  PubMed  Google Scholar 

  8. Felizola SJA, Nakamura Y, Ono Y, Kitamura K, Kikuchi K, Onodera Y, Ise K, Takase K, Sugawara A, Hattangady N, Rainey WE, Satoh F, Sasano H (2014) PCP4: a regulator of aldosterone synthesis in human adrenocortical tissues. J Mol Endocrinol. 52:159–167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Felizola SJA, Nakamura Y, Satoh F, Morimoto R, Kikuchi K, Nakamura T, Hozawa A, Wang L, Onodera Y, Ise K et al. (2014) Glutamate receptors and the regulation of steroidogenesis in the human adrenal gland: The metabotropic pathway. Mol Cell Endocrinol. 382:170–177.

    Article  CAS  PubMed  Google Scholar 

  10. Felizola SJA, Maekawa T, Nakamura Y, Satoh F, Ono Y, Kikuchi K, Aritomi S, Ikeda K, Yoshimura M, Tojo K, Sasano H (2014) Voltage-gated calcium channels in the human adrenal and primary aldosteronism. J Steroid Biochem Mol Biol. 144 Pt B:410–416.

    Article  PubMed  Google Scholar 

  11. Felizola SJA, Nakamura Y, Arata Y, Ise K, Satoh F, Rainey WE, Midorikawa S, Suzuki S, Sasano H (2014) Metallothionein-3 (MT-3) in the human adrenal cortex and its disorders. Endocr Pathol. 25:229–235.

    Article  CAS  PubMed  Google Scholar 

  12. Satoh F, Abe T, Tanemoto M, Nakamura M, Abe M, Uruno A, Morimoto R, Sato A, Takase K, Ishidoya S et al. (2007) Localization of aldosterone-producing adrenocortical adenomas: significance of adrenal venous sampling. Hypertens Res 30:1083–1095.

    Article  CAS  PubMed  Google Scholar 

  13. Sukor N, Gordon RD, Ku YK, Jones M, Stowasser M (2009) Role of unilateral adrenalectomy in bilateral primary aldosteronism: a 22-year single center experience. J Clin Endocrinol Metab 94:2437–2445.

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura Y, Satoh F, Morimoto R, Kudo M, Takase K, Gomez-Sanchez CE, Honma S, Okuyama M, Yamashita K, Rainey WE et al. (2011) 18-oxocortisol measurement in adrenal vein sampling as a biomarker for subclassifying primary aldosteronism. J Clin Endocrinol Metab. 96:E1272-1278.

    Article  CAS  PubMed  Google Scholar 

  15. Konosu-Fukaya S, Nakamura Y, Satoh F, Felizola SJA, Maekawa T, Ono Y, Morimoto R, Ise K, Takeda K, Katsu K, Fujishima F, Kasajima A, Watanabe M, Arai Y, Gomez-Sanchez EP, Gomez-Sanchez CE, Doi M, Okamura H, Sasano H (2014) 3β-hydroxysteroid dehydrogenase isoforms in human aldosterone-producing adenoma. Molecular and Cellular Endocrinology. [In Press] doi: 10.1016/j.mce.2014.10.008.

  16. Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N, Okuno Y, Tsujimoto G, Kanematsu A, Ogawa O, Todo T, Tsutsui K, van der Horst GT, Okamura H (2010) Salt-sensitive hypertension in circadian clock-deficient Cry-null mice involves dysregulated adrenal Hsd3b6. Nat Med. 16:67–74.

    Article  CAS  PubMed  Google Scholar 

  17. Doi M, Satoh F, Maekawa T, Nakamura Y, Fustin JM, Tainaka M, Hotta Y, Takahashi Y, Morimoto R, Takase K, Ito S, Sasano H, Okamura H (2014) Isoform-specific monoclonal antibodies against 3β-hydroxysteroid dehydrogenase/isomerase family provide markers for subclassification of human primary aldosteronism. J Clin Endocrinol Metab. 99:E257-262.

    Article  CAS  PubMed  Google Scholar 

  18. Nogueira EF, Vargas CA, Otis M, Gallo-Payet N, Bollag WB, Rainey WE (2007) Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells. J Mol Endocrinol. 39:365–374.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura Y, Felizola SJA, Konosu-Fukaya S, Satoh F, Sasano H (2014) Dissecting the molecular pathways of primary aldosteronism. Pathology International. 64:482–489.

    Article  CAS  PubMed  Google Scholar 

  20. Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson-Williams C, Ji W, Cho Y, Patel A, Men CJ et al. (2011) K+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science.331:768 –772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Breese CR, Logel J, Adams C, Leonard SS (1996) Regional gene expression of the glutamate receptor subtypes GluR1, GluR2, and GluR3 in human postmortem brain. J Mol Neurosci. 7:277–289.

    Article  CAS  PubMed  Google Scholar 

  22. Ganor Y, Besser M, Ben-Zakay N, Unger T, Levite M (2003) Human T cells express a functional ionotropic glutamate receptor GluR3, and glutamate by itself triggers integrin-mediated adhesion to laminin and fibronectin and chemotactic migration. J Immunol. 170:4362–4372.

    Article  CAS  PubMed  Google Scholar 

  23. Vawter MP, Ferran E, Galke B, Cooper K, Bunney WE, Byerley W (2004) Microarray screening of lymphocyte gene expression differences in a multiplex schizophrenia pedigree. Schizophr Res. 67:41–52.

    Article  PubMed  Google Scholar 

  24. Glynne R, Ghandour G, Rayner J, Mack DH, Goodnow CC (2000) B-lymphocyte quiescence, tolerance and activation as viewed by global gene expression profiling on microarrays. Immunol Rev. 176:216–246.

    Article  CAS  PubMed  Google Scholar 

  25. Wei P, Blundon JA, Rong Y, Zakharenko SS, Morgan JI (2011) Impaired Locomotor Learning and Altered Cerebellar Synaptic Plasticity in pep-19/pcp4-Null Mice. Mol Cell Biol. 31:2838–2844.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hu C, Rusin CG, Tan Z, Guagliardo NA, Barrett PQ (2012) Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electricaloscillators. J Clin Invest. 122: 2046–2053.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Azizan EA, Poulsen H, Tuluc P, Zhou J, Clausen MV, Lieb A, Maniero C, Garg S, Bochukova EG, Zhao W, Shaikh LH, Brighton CA, Teo AE, Davenport AP, Dekkers T, Tops B, Küsters B, Ceral J, Yeo GS, Neogi SG, McFarlane I, Rosenfeld N, Marass F, Hadfield J, Margas W, Chaggar K, Solar M, Deinum J, Dolphin AC, Farooqi IS, Striessnig J, Nissen P, Brown MJ (2013) Somatic mutations in ATP1A1 and CACNA1D underlie a common subtype of adrenal hypertension. Nat Genet. 45:1055–1060.

    Article  CAS  PubMed  Google Scholar 

  28. Zennaro MC, Jeunemaitre X (2011) Mutations in KCNJ5 gene cause hyperaldosteronism. Circ Res. 108:1417–1418.

    Article  CAS  PubMed  Google Scholar 

  29. Beranova M, Mandakova P, Sima P, Slipka J, Vozeh F, Kocova J, Cervinkova M, Sykora J (2002) Morphology of adrenal gland and lymph organs is impaired in neurodeficient lurcher mutant mice. Acta Veterinaria Brno. 71:23–28.

    Article  Google Scholar 

  30. Bouillet P, Robati M, Adams JM, Strasser A (2003) Loss of pro-apoptotic BH3-only Bcl-2 family member Bim does not protect mutant Lurcher mice from neurodegeneration. J Neurosci Res. 74:777–781.

    Article  CAS  PubMed  Google Scholar 

  31. Selimi F, Lohof AM, Heitz S, Lalouette A, Jarvis CI, Bailly Y, Mariani J (2003) Lurcher GRID2-induced death and depolarization can be dissociated in cerebellar Purkinje cells. Neuron. 37:813–819.

    Article  CAS  PubMed  Google Scholar 

  32. Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, Watanabe M, Yuzaki M (2007) Ca2+ permeability of the channel pore is not essential for the delta2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol. 579:729–735.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, Chandy N, Hill RS, Partlow JN, Al-Saffar M, Nasir R, Stoler JM, Barkovich AJ, Watanabe M, Yuzaki M, Mochida GH (2013) Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans. Neurology. 81:1378–1386.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Utine GE, Haliloğlu G, Salanci B, Çetinkaya A, Kiper PÖ, Alanay Y, Aktas D, Boduroğlu K, Alikaşifoğlu M (2013) A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy. J Child Neurol. 28:926–932.

    Article  PubMed  Google Scholar 

  35. Van Schil K, Meire F, Karlstetter M, Bauwens M, Verdin H, Coppieters F, Scheiffert E, Van Nechel C, Langmann T, Deconinck N, De Baere E (2014) Early-onset autosomal recessive cerebellar ataxia associated with retinal dystrophy: new human hotfoot phenotype caused by homozygous GRID2 deletion. Genet Med. [Epub ahead of print] doi: 10.1038/gim.2014.95.

Download references

Conflicts of Interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saulo J. A. Felizola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felizola, S.J.A., Katsu, K., Ise, K. et al. Pre-B Lymphocyte Protein 3 (VPREB3) Expression in the Adrenal Cortex: Precedent for non-Immunological Roles in Normal and Neoplastic Human Tissues. Endocr Pathol 26, 119–128 (2015). https://doi.org/10.1007/s12022-015-9366-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-015-9366-7

Keywords

Navigation