Skip to main content

Advertisement

Log in

The Role of Epithelial Mesenchymal Transition Markers in Thyroid Carcinoma Progression

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Understanding the molecular mechanisms involved in thyroid cancer progression may provide targets for more effective treatment of aggressive thyroid cancers. Epithelial mesenchymal transition (EMT) is a major pathologic mechanism in tumor progression and is linked to the acquisition of stem-like properties of cancer cells. We examined expression of ZEB1 which activates EMT by binding to the E-box elements in the E-cadherin promoter, and expression of E-cadherin in normal and neoplastic thyroid tissues in a tissue microarray which included 127 neoplasms and 10 normal thyroid specimens. Thyroid follicular adenomas (n = 32), follicular thyroid carcinomas (n = 28), and papillary thyroid carcinomas (n = 57) all expressed E-cadherin and were mostly negative for ZEB1 while most anaplastic thyroid carcinomas (ATC, n = 10) were negative for E-cadherin, but positive for ZEB1. A validation set of 10 whole sections of ATCs showed 90 % of cases positive for ZEB1 and all cases were negative for E-cadherin. Analysis of three cell lines (normal thyroid, NTHY-OR13-1; PTC, TPC-1, and ATC, THJ-21T) showed that the ATC cell line expressed the highest levels of ZEB1 while the normal thyroid cell line expressed the highest levels of E-Cadherin. Quantitative RT-PCR analyses showed that Smad7 mRNA was significantly higher in ATC than in any other group (p < 0.05). These results indicate that ATCs show evidence of EMT including decreased expression of E-cadherin and increased expression of ZEB1 compared to well-differentiated thyroid carcinomas and that increased expression of Smad7 may be associated with thyroid tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kebebew E, Greenspan FS, Clark OH, Woeber KA, McMillan A. Anaplastic thyroid carcinoma, treatment outcome and prognostic factors. Cancer 103:1330–1335, 2005.

    Google Scholar 

  2. Foote RL, Molina JR, Kasperbauer JL, Lloyd RV, McIver B, Morris JC, Grant CS, Thompson GB, Richards ML, Hay ID, Smallridge RC, Bible KC. Enhanced survival in locoregionally confined anaplastic thyroid carcinoma: a single-institution experience using aggressive multimodal therapy. Thyroid 21:25–30, 2011.

    Article  PubMed  Google Scholar 

  3. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890, 2009.

    Article  PubMed  CAS  Google Scholar 

  4. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Das, S, Becker BN, Hoffmann FM, Mertz JE. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol 10:94–112. 2009.

    Article  PubMed  Google Scholar 

  6. Kurahara H Takao S, Maemura K, Mataki Y, Kuwahata T, Maeda K, Ding Q, Sakoda M, Lino S, Ishigami S, Ueno S, Shinchi H, Natsugoe S. Epithelial-mesenchymal transition and mesenchymal-epithelial transition via regulation of ZEB-1 and ZEB-2 expression in pancreatic cancer. J Surg Oncol 105:655–661, 2012.

    Article  PubMed  CAS  Google Scholar 

  7. Moustakas A, Helding CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98:1512–1520, 2007.

    Article  PubMed  CAS  Google Scholar 

  8. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307:1603–1609, 2005.

    Article  PubMed  CAS  Google Scholar 

  9. Massague J. TGFB signaling in context. Nat Rev Mol Cell Biol 13:616–30, 2012.

    Article  PubMed  CAS  Google Scholar 

  10. Drabsch Y, ten Dijke P. TGF-B signaling and its role in cancer progression and metastasis. Cancer Metastasis Rev 31:553–568, 2012.

    Article  PubMed  CAS  Google Scholar 

  11. Katsuno Y, Lamouille S, Derynck R. (2013). TGFB signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol 25:78–84, 2013.

    Google Scholar 

  12. Spaderna S, Schmaljofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A, Kirchner T, Behrens J, Brabletz T. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res 68:537–544, 2008.

    Article  PubMed  CAS  Google Scholar 

  13. Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 318:89–99, 2008.

    Article  PubMed  CAS  Google Scholar 

  14. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W Brabletz T, Strand D, Obrist P, Sommergruber W, Schweifer N, Wernitznig A, Beug H, Foisner R, Eger A. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26:6979–6988, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Aigner K,Descovich L, Mikula M, Sultan A, Dampier B, Bonne S, van Roy F, Mikulits W, Schreiber M, Brabletz T, Sommergruber W, Schweifer N, Werntznig A, Berg H, Foisner R, Eager A. The transcription factor ZEB1(deltaEF) repressed Plakophilin 3 during human cancer progression. FEBS Lett 581:1617–1624, 2007.

    Article  PubMed  CAS  Google Scholar 

  16. Braun J, Hoang-Vu C, Dralle H, Huttelmaier S. Downregulation of microRNAs directs the EMT and invasive potential of anaplastic thyroid carcinomas. Oncogene 29:4237–4244, 2010.

    Article  PubMed  CAS  Google Scholar 

  17. Hebrant A, Dom G, Deqaele M, Andry G, Tresallet C, Leteurte E, Dumont JE, Maenhaut C. mRNA expression in papillary and anaplastic thyroid carcinoma: molecular anatomy of a killing switch. PLoS One 7:e37807, 2012.

    Article  PubMed  CAS  Google Scholar 

  18. Buehler D, Hardin H, Shan W, Montemayor-Garcia C, Rush PS, Asioli S, Chen H, Lloyd RV. Expression of epithelial-mesenchymal transition regulators SNAI2 and TWIST1 in thyroid carcinomas. Mod Pathol 26:54–61, 2013.

    Article  PubMed  CAS  Google Scholar 

  19. Saiselet M, Floor S, Tarabichi M, Dom G, Hebrant A, van Staveren WGG, Maenhauf C. Thyroid cancer cell lines: an overview. Frontiers in endocrinology 3:1–9, 2012.

    Google Scholar 

  20. Salerno P, Garcia-Rostan G, Piccinin S, Bencivenga TC, Di Maro G, Doglioni C, Basolo F, Maetro R, Fusco A, Santor M, Salvatore G. TWIST1 plays a pleotrophic role in determining the anaplastic thyroid carcinoma phenotype. J Clin Endocrinol Metab 96:E772-E781, 2011.

    Article  PubMed  CAS  Google Scholar 

  21. Hardy RG, Vincente-Duenas C, Gonzalez-Herrero I, Anderson C, Flores T, Hughes S, Tselepis C, Ross JA, Sanchez-Garcia I. Snail family transcription factors are implicated in thyroid carcinogenesis. Am J Patho 171:1037–1046, 2007.

    Article  CAS  Google Scholar 

  22. Liu J Brown RE. Immunohistochemical detection of epithelial mesenchymal transition associated with stemness phenotype in anaplastic thyroid carcinoma. Int J Exp Pathol 3:755–762, 2010.

    Google Scholar 

  23. Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ, Ghossein RA, Fagin JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFbeta signaling. Oncogene 30:3153–3162, 2011.

    Article  PubMed  CAS  Google Scholar 

  24. Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci USA 20:2803–2808, 2007.

    Article  Google Scholar 

  25. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ. A double negative feedback between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T. A reciprocal repression between ZEB1 and members of the miR200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Curtis MW, Johnson KR, Wheelock MJ. E-cadherin/catenin complexes are formed co-translationally in the endoplasmic reticulum/Golgi compartments. Cell Commun Adhes 15: 365–378, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Guarino M, Rubino B, Ballabio G. The role of epithelialmesencymal transition in cancer pathology. Pathology 39:305–318, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Matsuo SE, Fiore AP, Siguematu SM, Ebina KN, Frigulietti CU, Ferro MC, Kulcsar MA, Kimura ET. Expression of SMAD proteins, TGF-beta/activin signaling mediators, in human thyroid tissues. Arg Bras Endocrinol Metabol 54:406–412, 2010.

    Article  Google Scholar 

  30. Ishisaki A, Yamato K, Nakao A, Nonaka K, Ohguchi M, ten Dijke P, Nishihara T. Smad7 is an activin-inhibin inhibitor of activin-induced growth arrest and apopstosis in mouse B cells. J Biol Chem 273:24293–24296, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Halder SK, Beauchamp RD, Datta PK. Smad7 induces tumorigenesis by blocking TGF-beta-induced growth inhibition and apopstosis. Exp Cell Res 307:231–246, 2005.

    Article  PubMed  CAS  Google Scholar 

  32. Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin CH, Heldin NE, ten Kijke P. Transforming growth factor beta1 induces nuclear export of inhibitory smad 7. J Biol Chem 273:29195–29201, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. Boulay JL, Mild G, Lowy A, Reuter J, Langrange M, Terracciano L, Laffer U, Herrmann R, Rochlitz C. SMAD7 is a prognostic marker in patients with colorectal cancer. Int J cancer 104:446–449, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Dowdy SC, Mariani A, Reinholz MM, Keeney GL, Spelsberg TC, Podratz KC, Janknecht R. Overexpression of the TGF-beta antagonist Smad7 in endometrial cancer. Gynecol Oncol 96:368–373, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Eloy C, Santos J, Cameselle-Teijeiro J, Soares P, Sobrinho-Simoes M. TGF-beta/Smad pathway and RAF mutation play different roles in circumscribed and infiltrative papillary thyroid carcinoma. Virchows Arch 460:587–600, 2012.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. J Copland at the Mayo Clinic Jacksonville for the THJ-21T cell line, and the Translational Research in Pathology Lab at the UW School of Medicine for the TMA construction and immunohistochemistry analyses. The study was supported by NIH-R01 CA121115 and American Cancer Society MEN2 Thyroid Cancer Professorship (HC) and CCSG P30 CA014520-39(RVL).

Disclosure Statement

The authors declare no disclosures or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd.

Additional information

This work was presented in part at the 102nd US and Canadian Academy of Pathology Annual Meeting, Baltimore Maryland, March 1–8, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montemayor-Garcia, C., Hardin, H., Guo, Z. et al. The Role of Epithelial Mesenchymal Transition Markers in Thyroid Carcinoma Progression. Endocr Pathol 24, 206–212 (2013). https://doi.org/10.1007/s12022-013-9272-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-013-9272-9

Keywords

Navigation