Skip to main content
Log in

Villous Papillary Thyroid Carcinoma: a Variant Associated with Marfan Syndrome

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Marfan syndrome (MFS) is an autosomal dominant hereditary disorder of connective tissue associated with perturbations in transforming growth factor β (TGF-β) biology, most often due to mutations in FBN1 gene that encodes fibrillin-1. To our knowledge, there is no known association of MFS with thyroid carcinoma. We report a 46-year-old man with known history of MFS who developed an unusual histological variant of papillary thyroid carcinoma. The tumor exhibited a widely invasive florid papillary growth pattern with prominent long villous fronds. Immunohistochemical and molecular analysis revealed a BRAFV600E mutation, evidence of aggressive biomarker expression (positivity for HBME-1, cytokeratin 19, galectin-3 and cyclin D1, and loss of p27), and changes associated with TGF-β-related epithelial-to-mesenchymal transition with active phospho-SMAD signaling. We introduce a unique histological pattern of papillary thyroid carcinoma that is associated with MFS. The combination of BRAFV600E mutation in the setting of altered TGF-β signaling and weak connective tissue integrity associated with MFS may cooperate and possibly be responsible to form this unique villous morphology with epithelial-to-mesenchymal transition and invasive growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Robinson PN, Arteaga-Solis E, Baldock C, Collod-Béroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M. The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787, 2006.

    Article  PubMed  CAS  Google Scholar 

  2. Dexeus FH, Logothetis CJ, Chong C, Sella A, Ogden S. Genetic abnormalities in men with germ cell tumors. J Urol 140:80–84, 1988.

    PubMed  CAS  Google Scholar 

  3. Finlay M, Laperriere N, Bristow RG. Radiotherapy and Marfan syndrome: a report of two cases. Clin Oncol (R Coll Radiol) 17:54–56, 2005.

    Article  CAS  Google Scholar 

  4. Newbold SG, Shafer AD, Goodwin CD., Nanagas VN, and Dimlich SH. Stage III Wilms’ tumor of a solitary kidney in a patient with Marfan’s syndrome: A 5-yr survival. J Pediatr Surg 17:841–842, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Kraemer DM, Waschke J, Kunzmann V, Wilhelm M. Veno-occlusive disease in a male patient with Marfan syndrome and common acute lymphoblastic leukemia during induction therapy. Ann Hematol 82:444–447, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Gruber HL, Samuel J. Hamartoma of the heart and carcinoma of the tongue associated with Marfan’s syndrome. J Indian Med Assoc 40:23–28, 1963.

    PubMed  CAS  Google Scholar 

  7. Roopnariane A, Freed RJ, Price S, Fox EJ, Ritty TM. Osteosarcoma in a Marfan patient with a novel premature termination codon in the FBN1 gene. Connect Tissue Res 52:157–165, 2011.

    Article  PubMed  CAS  Google Scholar 

  8. Kondo T, Ezzat S, Asa SL Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306, 2006.

    Article  PubMed  CAS  Google Scholar 

  9. Howlader N NA, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (eds). SEER Cancer Statistics Review, 1975–2008, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2008/, based on November 2010 SEER data submission, posted to the SEER web site, 2011.

  10. LiVolsi VA. Papillary carcinoma tall cell variant (TCV): a review. Endocr Pathol 21:12–15, 2010.

    Article  PubMed  Google Scholar 

  11. La Perle KM, Jhiang SM, Capen CC Loss of p53 promotes anaplasia and local invasion in ret/PTC1-induced thyroid carcinomas. Am J Pathol 157:671–677, 2000.

    Article  PubMed  Google Scholar 

  12. Hosal SA, Apel RL, Freeman JL, Azadian A, Rosen IB, LiVolsi VA, Asa SL. Immunohistochemical Localization of p53 in Human Thyroid Neoplasms: Correlation with Biological Behavior. Endocr Pathol 8:21–28, 1997.

    Article  PubMed  Google Scholar 

  13. Khoo ML, Ezzat S, Freeman JL, Asa SL Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification. J Clin Endocrinol Metab 87:1810–1813, 2002.

    Article  PubMed  CAS  Google Scholar 

  14. Khoo ML, Beasley NJ, Ezzat S, Freeman JL, Asa SL. Overexpression of cyclin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. J Clin Endocrinol Metab 87:1814–1818, 2002.

    Article  PubMed  CAS  Google Scholar 

  15. Khoo ML, Freeman JL, Witterick IJ, Irish JC, Rotstein LE, Gullane PJ, Asa SL. Underexpression of p27/Kip in thyroid papillary microcarcinomas with gross metastatic disease. Arch Otolaryngol Head Neck Surg 128:253–257, 2002.

    PubMed  Google Scholar 

  16. Cheng S, Serra S, Mercado M, Ezzat S, Asa SL 2011 A high-throughput proteomic approach provides distinct signatures for thyroid cancer behavior. Clin Cancer Res 17:2385–2394, 2011.

    Article  PubMed  CAS  Google Scholar 

  17. Vasko V, Espinosa AV, Scouten W, He H, Auer H, Liyanarachchi S, Larin A, Savchenko V, Francis GL, de la Chapelle A, Saji M, Ringel MD. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A 104:2803–2808, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Jing Y, Han Z, Zhang S, Liu Y, Wei L. Epithelial-Mesenchymal Transition in tumor microenvironment. Cell Biosci 1:29, 2011.

    Article  PubMed  CAS  Google Scholar 

  19. Mete O, Asa SL. Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation. Mod Pathol 24:1545–1552, 2011.

    Article  PubMed  Google Scholar 

  20. Ikushima H, Miyazono K TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Elisei R, Ugolini C, Viola D, Lupi C, Biagini A, Giannini R, Romei C, Miccoli P, Pinchera A, Basolo F. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J Clin Endocrinol Metab 93:3943–3949, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Mizuguchi T, Matsumoto N. Recent progress in genetics of Marfan syndrome and Marfan-associated disorders. J Hum Genet 52:1–12, 2007.

    Article  PubMed  CAS  Google Scholar 

  23. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, Allard D, Varret M, Claustres M, Morisaki H, Ihara M, Kinoshita A, Yoshiura K, Junien C, Kajii T, Jondeau G, Ohta T, Kishino T, Furukawa Y, Nakamura Y, Niikawa N, Boileau C, Matsumoto N. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36:855–860, 2007.

    Article  Google Scholar 

  24. Knauf JA, Sartor MA, Medvedovic M, Lundsmith E, Ryder M, Salzano M, Nikiforov YE, Giordano TJ, Ghossein RA, Fagin JA. Progression of BRAF-induced thyroid cancer is associated with epithelial-mesenchymal transition requiring concomitant MAP kinase and TGFbeta signaling. Oncogene 30:3153–3162, 2011.

    Article  PubMed  CAS  Google Scholar 

  25. Xing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321:86–93, 2010.

    Article  PubMed  CAS  Google Scholar 

  26. Riesco-Eizaguirre G, Rodriguez I, De la Vieja A, Costamagna E, Carrasco N, Nistal M, Santisteban P. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res 69:8317–8325, 2009.

    Article  PubMed  CAS  Google Scholar 

  27. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, Hill CS, Beug H, Downward J. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14:2610–2622, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J, Beug H, Grunert S. Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–313, 2002.

    Article  PubMed  CAS  Google Scholar 

  29. Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, Nikiforova MN. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol 18:2035–2041, 2011.

    Article  PubMed  Google Scholar 

  30. Nose V. Familial non-medullary thyroid carcinoma: an update. Endocr Pathol 19:226–240, 2008.

    Article  PubMed  Google Scholar 

  31. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci U S A 104:9001–9006, 2007.

    Article  PubMed  CAS  Google Scholar 

  32. Mete O, Asa SL. Oncocytes, oxyphils, Hurthle, and Askanazy cells: morphological and molecular features of oncocytic thyroid nodules. Endocr Pathol 21:16–24, 2010.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Mete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winer, D.A., Winer, S., Rotstein, L. et al. Villous Papillary Thyroid Carcinoma: a Variant Associated with Marfan Syndrome. Endocr Pathol 23, 254–259 (2012). https://doi.org/10.1007/s12022-012-9219-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-012-9219-6

Keywords

Navigation