Skip to main content

Advertisement

Log in

PreSurgMapp: a MATLAB Toolbox for Presurgical Mapping of Eloquent Functional Areas Based on Task-Related and Resting-State Functional MRI

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The main goal of brain tumor surgery is to maximize tumor resection while minimizing the risk of irreversible postoperative functional sequelae. Eloquent functional areas should be delineated preoperatively, particularly for patients with tumors near eloquent areas. Functional magnetic resonance imaging (fMRI) is a noninvasive technique that demonstrates great promise for presurgical planning. However, specialized data processing toolkits for presurgical planning remain lacking. Based on several functions in open-source software such as Statistical Parametric Mapping (SPM), Resting-State fMRI Data Analysis Toolkit (REST), Data Processing Assistant for Resting-State fMRI (DPARSF) and Multiple Independent Component Analysis (MICA), here, we introduce an open-source MATLAB toolbox named PreSurgMapp. This toolbox can reveal eloquent areas using comprehensive methods and various complementary fMRI modalities. For example, PreSurgMapp supports both model-based (general linear model, GLM, and seed correlation) and data-driven (independent component analysis, ICA) methods and processes both task-based and resting-state fMRI data. PreSurgMapp is designed for highly automatic and individualized functional mapping with a user-friendly graphical user interface (GUI) for time-saving pipeline processing. For example, sensorimotor and language-related components can be automatically identified without human input interference using an effective, accurate component identification algorithm using discriminability index. All the results generated can be further evaluated and compared by neuro-radiologists or neurosurgeons. This software has substantial value for clinical neuro-radiology and neuro-oncology, including application to patients with low- and high-grade brain tumors and those with epilepsy foci in the dominant language hemisphere who are planning to undergo a temporal lobectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. http://www.fil.ion.ucl.ac.uk/spm

  2. http://www.restfmri.net (Song et al. 2011)

  3. http://rfmri.org/DPARSF (Yan and Zang 2010)

  4. http://icatb.sourceforge.net/

  5. http://www.nitrc.org/projects/cogicat (Zhang et al. 2010)

  6. http://www.mricro.com/

References

  • Abou-Elseoud, A., Starck, T., Remes, J., Nikkinen, J., Tervonen, O., & Kiviniemi, V. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 1207–1216.

    PubMed  Google Scholar 

  • Arfanakis, K., Cordes, D., Haughton, V. M., Moritz, C. H., Quigley, M. A., & Meyerand, M. E. (2000). Combining independent component analysis and correlation analysis to probe interregional connectivity in fMRI task activation datasets. Magnetic Resonance Imaging, 18(8), 921–930.

    Article  CAS  PubMed  Google Scholar 

  • Atlas, S. W., Howard, R. S., Maldjian, J., Alsop, D., Detre, J. A., Listerud, J., et al. (1996). Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: findings and implications for clinical management. Neurosurgery, 38(2), 329–338.

    Article  CAS  PubMed  Google Scholar 

  • Bartels, A., & Zeki, S. (2004). The chronoarchitecture of the human brain—natural viewing conditions reveal a time-based anatomy of the brain. NeuroImage, 22(1), 419–433.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1457), 1001–1013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  CAS  PubMed  Google Scholar 

  • Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Böttger, J., Margulies, D. S., Horn, P., Thomale, U. W., Podlipsky, I., Shapira-Lichter, I., et al. (2011). A software tool for interactive exploration of intrinsic functional connectivity opens new perspectives for brain surgery. Acta Neurochirurgica, 153(8), 1561–1572.

    Article  PubMed  Google Scholar 

  • Briganti, C., Sestieri, C., Mattei, P., Esposito, R., Galzio, R., Tartaro, A., et al. (2012). Reorganization of functional connectivity of the language network in patients with brain gliomas. American Journal of Neuroradiology, 33(10), 1983–1990.

    Article  CAS  PubMed  Google Scholar 

  • Coello, A. F., Moritz-Gasser, S., Martino, J., Martinoni, M., Matsuda, R., & Duffau, H. (2013). Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks: a review. Journal of Neurosurgery, 119(6), 1380–1394.

    Article  Google Scholar 

  • Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., et al. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. American Journal of Neuroradiology, 22(7), 1326–1333.

    CAS  PubMed  Google Scholar 

  • DeCarlo, L. T. (1998). Signal detection theory and generalized linear models. Psychological Methods, 3(2), 186.

    Article  Google Scholar 

  • Fesl, G., Moriggl, B., Schmid, U., Naidich, T., Herholz, K., & Yousry, T. (2003). Inferior central sulcus: variations of anatomy and function on the example of the motor tongue area. NeuroImage, 20(1), 601–610.

    Article  CAS  PubMed  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.

    Article  CAS  PubMed  Google Scholar 

  • Fransson, P., Merboldt, K.-D., Petersson, K. M., Ingvar, M., & Frahm, J. (2002). On the effects of spatial filtering—a comparative fMRI study of episodic memory encoding at high and low resolution. NeuroImage, 16(4), 977–984.

    Article  PubMed  Google Scholar 

  • Geissler, A., Lanzenberger, R., Barth, M., Tahamtan, A. R., Milakara, D., Gartus, A., et al. (2005). Influence of fMRI smoothing procedures on replicability of fine scale motor localization. NeuroImage, 24(2), 323–331.

    Article  PubMed  Google Scholar 

  • Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424–430.

    Article  PubMed  Google Scholar 

  • Håberg, A., Kvistad, K. A., Unsgård, G., & Haraldseth, O. (2004). Preoperative blood oxygen level-dependent functional magnetic resonance imaging in patients with primary brain tumors: clinical application and outcome. Neurosurgery, 54(4), 902–915.

    Article  PubMed  Google Scholar 

  • Hall, W. A., Liu, H., & Truwit, C. L. (2005). Functional magnetic resonance imaging–guided resection of low-grade gliomas. Surgical Neurology, 64(1), 20–27.

    Article  PubMed  Google Scholar 

  • Jia, W., Zhang, H., Liao, W., & Zang, Y. (2013). “Correctsensorimotor network detected by independent component analysis on resting-state fMRI. In Paper presented at the Organization of Human Brain Mapping (OHBM). Seattle: USA.

    Google Scholar 

  • Kiviniemi, V., Kantola, J.-H., Jauhiainen, J., Hyvärinen, A., & Tervonen, O. (2003). Independent component analysis of nondeterministic fMRI signal sources. NeuroImage, 19(2), 253–260.

    Article  PubMed  Google Scholar 

  • Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., et al. (2009). Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapping, 30(12), 3865–3886.

    Article  PubMed  Google Scholar 

  • Kokkonen, S.-M., Nikkinen, J., Remes, J., Kantola, J., Starck, T., Haapea, M., et al. (2009). Preoperative localization of the sensorimotor area using independent component analysis of resting-state fMRI. Magnetic Resonance Imaging, 27(6), 733–740.

    Article  PubMed  Google Scholar 

  • Kristo, G., Rutten, G. J., Raemaekers, M., Gelder, B., Rombouts, S. A., & Ramsey, N. F. (2014). Task and task-free FMRI reproducibility comparison for motor network identification. Human Brain Mapping, 35(1), 340–352.

    Article  PubMed  Google Scholar 

  • Lee, M., Smyser, C., & Shimony, J. (2013). Resting-state fMRI: a review of methods and clinical applications. American Journal of Neuroradiology, 34(10), 1866–1872.

    Article  CAS  PubMed  Google Scholar 

  • Lehéricy, S., Duffau, H., Cornu, P., Capelle, L., Pidoux, B., Carpentier, A., et al. (2000). Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. Journal of Neurosurgery, 92(4), 589–598.

    Article  PubMed  Google Scholar 

  • Li, Z., Dai, J., Jiang, T., Li, S., Sun, Y., Liang, X., et al. (2006). Function magnetic resonance imaging and diffusion tensor tractography in patients with brain gliomas involving motor areas: clinical application and outcome. Zhonghua wai ke za zhi [Chinese journal of surgery], 44(18), 1275–1279.

    Google Scholar 

  • Li, Y.-O., Adalı, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28(11), 1251–1266. doi:10.1002/hbm.20359.

    Article  PubMed  Google Scholar 

  • Liu, H., Buckner, R. L., Talukdar, T., Tanaka, N., Madsen, J. R., & Stufflebeam, S. M. (2009). Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity: laboratory investigation. Journal of Neurosurgery, 111(4), 746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Logothetis, N. K. (2003). The underpinnings of the BOLD functional magnetic resonance imaging signal. The Journal of Neuroscience, 23(10), 3963–3971.

    CAS  PubMed  Google Scholar 

  • Lu, H., Zuo, Y., Gu, H., Waltz, J. A., Zhan, W., Scholl, C. A., et al. (2007). Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proceedings of the National Academy of Sciences, 104(46), 18265–18269.

    Article  CAS  Google Scholar 

  • Majos, A., Tybor, K., Stefańczyk, L., & Góraj, B. (2005). Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. European Radiology, 15(6), 1148–1158.

    Article  PubMed  Google Scholar 

  • Manglore, S., Bharath, R. D., Panda, R., George, L., Thamodharan, A., & Gupta, A. K. (2013). Utility of resting fMRI and connectivity in patients with brain tumor. Neurology India, 61(2), 144–151. doi:10.4103/0028-3886.111120.

    Article  PubMed  Google Scholar 

  • Mannfolk, P., Nilsson, M., Hansson, H., Ståhlberg, F., Fransson, P., Weibull, A., et al. (2011). Can resting-state functional MRI serve as a complement to task-based mapping of sensorimotor function? A test–retest reliability study in healthy volunteers. Journal of Magnetic Resonance Imaging, 34(3), 511–517. doi:10.1002/jmri.22654.

    Article  PubMed  Google Scholar 

  • Matthews, P. M., Honey, G. D., & Bullmore, E. T. (2006). Applications of fMRI in translational medicine and clinical practice. Nature Reviews. Neuroscience, 7(9), 732–744.

    Article  CAS  PubMed  Google Scholar 

  • Moritz, C., & Haughton, V. (2003). Functional MR imaging: paradigms for clinical preoperative mapping. Magnetic Resonance Imaging Clinics of North America, 11(4), 529–542.

    Article  PubMed  Google Scholar 

  • Naidich, T. P., Valavanis, A. G., & Kubik, S. (1995). Anatomic relationships along the low-middle convexity: part I–normal specimens and magnetic resonance imaging. Neurosurgery, 36(3), 517–532.

    Article  CAS  PubMed  Google Scholar 

  • Naidich, T. P., Blum, J. T., & Firestone, M. I. (2001a). The parasagittal line: an anatomic landmark for axial imaging. American Journal of Neuroradiology, 22(5), 885–895.

    CAS  PubMed  Google Scholar 

  • Naidich, T. P., Hof, P. R., Yousry, T. A., & Yousry, I. (2001b). The motor cortex: anatomic substrates of function. Neuroimaging Clinics of North America, 11(2), 171–193.

    CAS  PubMed  Google Scholar 

  • Ohgaki, H., & Kleihues, P. (2005). Epidemiology and etiology of gliomas. Acta Neuropathologica, 109(1), 93–108. doi:10.1007/s00401-005-0991-y.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Pillai, J. (2010). The evolution of clinical functional imaging during the past 2 decades and its current impact on neurosurgical planning. American Journal of Neuroradiology, 31(2), 219–225.

    Article  CAS  PubMed  Google Scholar 

  • Pillai, J. (2013). The significance of streamlined postprocessing approaches for clinical FMRI. American Journal of Neuroradiology, 34(6), 1194–1196.

    Article  CAS  PubMed  Google Scholar 

  • Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8(2–3), 102–108.

    Article  CAS  PubMed  Google Scholar 

  • Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.

    Article  CAS  PubMed  Google Scholar 

  • Rigolo, L., Stern, E., Deaver, P., Golby, A. J., & Mukundan, S. (2011). Development of a clinical functional magnetic resonance imaging service. Neurosurgery Clinics of North America, 22(2), 307–314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rössler, K., Donat, M., Lanzenberger, R., Novak, K., Geissler, A., Gartus, A., et al. (2005). Evaluation of preoperative high magnetic field motor functional MRI (3 tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 76(8), 1152–1157.

    Article  Google Scholar 

  • Roux, F.-E., Boulanouar, K., Lotterie, J.-A., Mejdoubi, M., LeSage, J. P., & Berry, I. (2003). Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery, 52(6), 1335–1347.

    Article  PubMed  Google Scholar 

  • Schlosser, M. J., McCarthy, G., Fulbright, R. K., Gore, J. C., & Awad, I. A. (1997). Cerebral vascular malformations adjacent to sensorimotor and visual cortex functional magnetic resonance imaging studies before and after therapeutic intervention. Stroke, 28(6), 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzbaum, J. A., Fisher, J. L., Aldape, K. D., & Wrensch, M. (2006). Epidemiology and molecular pathology of glioma. Nature Clinical Practice. Neurology, 2(9), 494–503.

    Article  PubMed  Google Scholar 

  • Shimony, J. S., Zhang, D., Johnston, J. M., Fox, M. D., Roy, A., & Leuthardt, E. C. (2009). Resting-state spontaneous fluctuations in brain activity: a new paradigm for presurgical planning using fMRI. Academic Radiology, 16(5), 578–583.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu, H., Cheng, Y., & Zhang, H. (1989). The naming consistency, familiarity, representation consistency and visual complexity of 235 pictures. Acta Psychologica Sinica, 21(4), 389–396.

    Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. doi:10.1073/pnas.0905267106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6(2), 174.

    CAS  Google Scholar 

  • Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6(9), e25031. doi:10.1371/journal.pone.0025031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tie, Y., Rigolo, L., Norton, I. H., Huang, R. Y., Wu, W., Orringer, D., et al. (2014). Defining language networks from resting-state fMRI for surgical planning—a feasibility study. Human Brain Mapping, 35(3), 1018–1030.

    Article  PubMed  Google Scholar 

  • Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.

    Article  PubMed  Google Scholar 

  • Vlieger, E.-J., Majoie, C. B., Leenstra, S., & den Heeten, G. J. (2004). Functional magnetic resonance imaging for neurosurgical planning in neurooncology. European Radiology, 14(7), 1143–1153.

    Article  PubMed  Google Scholar 

  • Wengenroth, M., Blatow, M., Guenther, J., Akbar, M., Tronnier, V., & Stippich, C. (2011). Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex. European Radiology, 21(7), 1517–1525.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, C., & Zang, Y. (2010). DPARSF: a MATLAB toolbox for” pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

    Google Scholar 

  • Yetkin, F. Z., Mueller, W. M., Morris, G. L., McAuliffe, T. L., Ulmer, J. L., Cox, R. W., et al. (1997). Functional MR activation correlated with intraoperative cortical mapping. American Journal of Neuroradiology, 18(7), 1311–1315.

    CAS  PubMed  Google Scholar 

  • Zacà, D., Jovicich, J., Nadar, S. R., Voyvodic, J. T., & Pillai, J. J. (2014). Cerebrovascular reactivity mapping in patients with low grade gliomas undergoing presurgical sensorimotor mapping with BOLD fMRI. Journal of Magnetic Resonance Imaging, 40(2), 383–390.

    Article  PubMed  Google Scholar 

  • Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews. Neurology, 6(1), 15–28.

    Article  PubMed  Google Scholar 

  • Zhang, D., Johnston, J. M., Fox, M. D., Leuthardt, E. C., Grubb, R. L., Chicoine, M. R., et al. (2009). Preoperative sensorimotor mapping in brain tumor patients using spontaneous fluctuations in neuronal activity imaged with fMRI: initial experience. Neurosurgery, 65(6 Suppl), 226.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Zuo, X. N., Ma, S. Y., Zang, Y. F., Milham, M. P., & Zhu, C. Z. (2010). Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis. NeuroImage, 51(4), 1414–1424. doi:10.1016/j.neuroimage.2010.03.039.

    Article  PubMed  Google Scholar 

  • Zhang, H., Jia, W., Liao, W., & Zang, Y. (2013). Automatic component identification method based on normalized sensitivity/specificity measurement. In Paper presented at the Oraganization of human brain mapping (OHBM). Seattle: USA.

    Google Scholar 

  • Zhang, H., Lu, J., Mao, Y., Jia, W., Wu, J., & Zhou, L. (2014). Mapping language network pre- and intra-operatively using fMRI and electrophysiology: new method. In Paper presented at the Organization of Human Brain Mapping (OHBM). Germany: Berlin.

    Google Scholar 

  • Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al. (2010). The oscillating brain: complex and reliable. NeuroImage, 49(2), 1432–1445.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the neurosurgeons, neuroeletrophysiologists, and neuroradiologists for their cooperation and contribution, and the following open-source toolbox contributors: Chaogan Yan (DPARSF), Xiaowei Song (REST) and the SPM team. This work was partially supported by the National Natural Science Foundation of China (Nos. 81201156, 81271517), the National Key Technology R&D Program of China (No. 2014BAI04B05), the Zhejiang Provincial Natural Science Foundation of China (No. LY13H180016, LY16H180007), the Science Foundation for Post Doctorate Research of China (No. 2013 M540501), the Science Foundation from Health Commission of Zhejiang Province (No. 201342245, 2013RCA001), the General Research Project of Medicine and Health of Zhejiang Province (No. 2013KYB211) and the open grant from Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment (No. PD11001005002014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Ding, Z., Mao, D. et al. PreSurgMapp: a MATLAB Toolbox for Presurgical Mapping of Eloquent Functional Areas Based on Task-Related and Resting-State Functional MRI. Neuroinform 14, 421–438 (2016). https://doi.org/10.1007/s12021-016-9304-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-016-9304-y

Keywords

Navigation