Skip to main content

Advertisement

Log in

A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bagarinao, E., Matsuo, K., & Nakai, T. (2003). Real-time functional MRI using a PC cluster. Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 19B, 14–25.

    Article  Google Scholar 

  • Caria, A., Sitaram, R., Veit, R., Begliomini, C., & Birbaumer, N. (2010). Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biological Psychiatry, 68, 425–432.

    Article  PubMed  Google Scholar 

  • Caria, A., Sitaram, R., & Birbaumer, N. (2012). Real-Time fMRI: A tool for local brain regulation. Neuroscientist, 18, 487–501.

  • Christopher deCharms, R. (2008). Applications of real-time fMRI. Nature Reviews Neuroscience, 9, 720–729.

    Article  PubMed  Google Scholar 

  • Cox, R. W., & Jesmanowicz, A. (1999). Real-time 3D image registration for functional MRI. Magnetic Resonance in Medicine, 42, 1014–1018.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. W., Jesmanowicz, A., & Hyde, J. S. (1995). Real-time functional magnetic resonance imaging. Magnetic Resonance in Medicine, 33, 230–236.

    Article  PubMed  CAS  Google Scholar 

  • Cusack, R., Veldsman, M., Naci, L., Mitchell, D. J., & Linke, A. C. (2011). Seeing different objects in different ways: Measuring ventral visual tuning to sensory and semantic features with dynamically adaptive imaging. Human Brain Mapping, 33(2):387–397.

    Google Scholar 

  • deCharms, R. C. (2007). Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends in Cognitive Sciences, 11, 473–481.

    Article  PubMed  Google Scholar 

  • deCharms, R. C., Christoff, K., Glover, G. H., Pauly, J. M., Whitfield, S., & Gabrieli, J. D. E. (2004). Learned regulation of spatially localized brain activation using real-time fMRI. NeuroImage, 21, 436–443.

    Article  PubMed  Google Scholar 

  • deCharms, R. C., Maeda, F., Glover, G. H., Ludlow, D., Pauly, J. M., & Soneji, D. (2005). Control over brain activation and pain learned by using real-time functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 102, 18626–18631.

    Article  PubMed  CAS  Google Scholar 

  • Eklund, A., Ohlsson, H., Andersson, M., Rydell, J., Ynnerman, A., & Knutsson, H. (2009). Using Real-Time fMRI to Control a Dynamical System by Brain Activity Classification. Medical Image Computing and Computer-Assisted Intervention – MICCAI, 5761, 1000–1008.

    Google Scholar 

  • Esposito, F., Seifritz, E., Formisano, E., Morrone, R., Scarabino, T., Tedeschi, G., et al. (2003). Real-time independent component analysis of fMRI time-series. NeuroImage, 20, 2209–2224.

    Article  PubMed  Google Scholar 

  • Gembris, D., Taylor, J. G., Schor, S., Frings, W., Suter, D., & Posse, S. (2000). Functional magnetic resonance imaging in real time (FIRE): sliding-window correlation analysis and reference-vector optimization. Magnetic Resonance in Medicine, 43, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Goebel, R., Zilverstand, A., & Sorger, B. (2011). Real-time fMRI-based brain computer interfacing for neurofeedback therapy and compensation of lost motor functions. Imaging in Medicine, 2, 407–415.

    Article  Google Scholar 

  • Hamilton, J. P., Glover, G. H., Hsu, J.-J., Johnson, R. F., & Gotlib, I. H. (2011). Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Human Brain Mapping, 32, 22–31.

    Article  PubMed  Google Scholar 

  • Hampson, M., Scheinost, D., Qiu, M., Bhawnani, J., Lacadie, C. M., Leckman, J. F., et al. (2011a). Biofeedback of real-time functional magnetic resonance imaging data from the supplementary motor area reduces functional connectivity to subcortical regions. Brain Connectivity, 1, 91–98.

    Article  PubMed  Google Scholar 

  • Hampson, M., Stoica, T., Saksa, J., Scheinost, D., Qiu, M., Bhawnani, J., Pittenger, C., Papademetris, X., Constable T. (2012). Real-time fMRI biofeedback targeting the orbi to frontal cortex for contamination anxiety. Journal of Visual Experiments, (59):e3535.

  • Hinds, O., Ghosh, S., Thompson, T. W., Yoo, J. J., Whitfield-Gabrieli, S., Triantafyllou, C., et al. (2011). Computing moment-to-moment BOLD activation for real-time neurofeedback. NeuroImage, 54, 361–368.

    Article  PubMed  Google Scholar 

  • Joshi, A., Scheinost, D., Okuda, H., Belhachemi, D., Murphy, I., Staib, L., et al. (2011). Unified framework for development, deployment and robust testing of neuroimaging algorithms. Neuroinformatics, 9, 69–84.

    Article  PubMed  Google Scholar 

  • LaConte, S. M. (2011). Decoding fMRI brain states in real-time. NeuroImage, 56, 440–454.

    Article  PubMed  Google Scholar 

  • LaConte, S. M., Peltier, S. J., & Hu, X. P. (2007). Real-time fMRI using brain-state classification. Human Brain Mapping, 28, 1033–1044.

    Article  PubMed  Google Scholar 

  • Lee, S., Ruiz, S., Caria, A., Veit, R., Birbaumer, N., & Sitaram, R. (2011). Detection of cerebral reorganization induced by real-time fMRI feedback training of insula activation. Neurorehabilitation and Neural Repair, 25, 259–267.

    Article  PubMed  Google Scholar 

  • Mathiak, K., & Posse, S. (2001). Evaluation of motion and realignment for functional magnetic resonance imaging in real time. Magnetic Resonance in Medicine, 45, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • McCaig, R. G., Dixon, M., Keramatian, K., Liu, I., & Christoff, K. (2011). Improved modulation of rostrolateral prefrontal cortex using real-time fMRI training and meta-cognitive awareness. NeuroImage, 55, 1298–1305.

    Article  PubMed  Google Scholar 

  • Nakai, T., Bagarinao, E., Matsuo, K., Ohgami, Y., & Kato, C. (2006). Dynamic monitoring of brain activation under visual stimulation using fMRI–The advantage of real-time fMRI with sliding window GLM analysis. Journal of Neuroscience Methods, 157, 158–167.

    Article  PubMed  Google Scholar 

  • Papademetris, X., Vives, K. P., DiStasio, M., Staib, L. H., Neff, M., Flossman, S. et al. (2006). Development of a research interface for image guided intervention: initial application to epilepsy neurosurgery. Biomedical Imaging: Nano to Macro, 2006. 3rd IEEE International Symposium on, pp. 490–493.

  • Phan, K. L., Fitzgerald, D. A., Gao, K., Moore, G. J., Tancer, M. E., & Posse, S. (2004). Real-time fMRI of cortico-limbic brain activity during emotional processing. NeuroReport, 15, 527–532.

  • Posse, S., Binkofski, F., Schneider, F., Gembris, D., Frings, W., Habel, U., et al. (2001). A new approach to measure single-event related brain activity using real-time fMRI: feasibility of sensory, motor, and higher cognitive tasks. Human Brain Mapping, 12, 25–41.

    Article  PubMed  CAS  Google Scholar 

  • Rota, G., Sitaram, R., Veit, R., Erb, M., Weiskopf, N., Dogil, G., et al. (2009). Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Human Brain Mapping, 30, 1605–1614.

    Article  PubMed  Google Scholar 

  • Rota, G., Handjaras, G., Sitaram, R., Birbaumer, N., & Dogil, G. (2011). Reorganization of functional and effective connectivity during real-time fMRI-BCI modulation of prosody processing. Brain and Language, 117, 123–132.

    Article  PubMed  Google Scholar 

  • Sander, J., & Kandrot, E. (2010). CUDA by Example: An Introduction to General-Purpose GPU Programming. Addison-Wesley Professional.

  • Shibata, K., Watanabe, T., Sasaki, Y., & Kawato, M. (2011). Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science, 334, 1413–1415.

    Article  PubMed  CAS  Google Scholar 

  • Sitaram, R., Lee, S., Ruiz, S., Rana, M., Veit, R., & Birbaumer, N. (2010). Real-time support vector classification and feedback of multiple emotional brain states. NeuroImage, 56, 753–765.

    Article  PubMed  Google Scholar 

  • Studholme, C., Hill, D. L., & Hawkes, D. J. (1996). Automated 3-D registration of MR and CT images of the head. Medical Image Analysis, 1, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Thesen, S., Heid, O., Mueller, E., & Schad, L. R. (2000). Prospective acquisition correction for head motion with image-based tracking for real-time fMRI. Magnetic Resonance in Medicine, 44, 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Tokuda, J., Fischer, G. S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., et al. (2009). OpenIGTLink: an open network protocol for image-guided therapy environment. The International Journal of Medical Robotics and Computer Assisted Surgery, 5, 423–434.

    Article  Google Scholar 

  • Voyvodic, J. T. (1999). Real-time fMRI paradigm control, physiology, and behavior combined with near real-time statistical analysis. NeuroImage, 10, 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., et al. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). Biomedical Engineering, IEEE Transactions on, 51, 966–970.

    Article  Google Scholar 

  • Weiskopf, N., Sitaram, R., Josephs, O., Veit, R., Scharnowski, F., Goebel, R., et al. (2007). Real-time functional magnetic resonance imaging: methods and applications. Magnetic Resonance Imaging, 25, 989–1003.

    Article  PubMed  Google Scholar 

  • Yoo, S.-S., & Jolesz, F. A. (2002). Functional MRI for neurofeedback: feasibility studyon a hand motor task. NeuroReport, 13, 1377–1381.

    Article  PubMed  Google Scholar 

  • Yoo, S.-S., Fairneny, T., Chen, N.-K., Choo, S.-E., Panych, L. P., Park, H., et al. (2004). Brain-computer interface using fMRI: spatial navigation by thoughts. NeuroReport, 15, 1591–1595.

    Article  PubMed  Google Scholar 

  • Yoo, S.-S., O’Leary, H. M., Fairneny, T., Chen, N.-K., Panych, L. P., Park, H., et al. (2006). Increasing cortical activity in auditory areas through neurofeedback functional magnetic resonance imaging. NeuroReport, 17, 1273–1278.

    Article  PubMed  Google Scholar 

  • Zotev, V., Krueger, F., Phillips, R., Alvarez, R. P., Simmons, W. K., Bellgowan, P., et al. (2011). Self-regulation of amygdala activation using real-time fMRI neurofeedback. PLoS One, 6, e24522.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Brewer and P. Worhnsky for the development of the front-end used for the current meditation study and for the example feedback shown in Fig. 3a. We also thank E. Finn for her helpful comments on the manuscript. This study was funded by the Dana foundation (M. Hampson) and NIH (R01 EB006494, R03 EB012969, RO1 EB009666, R01 NS051622, R21 MH090384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Scheinost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheinost, D., Hampson, M., Qiu, M. et al. A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI. Neuroinform 11, 291–300 (2013). https://doi.org/10.1007/s12021-013-9176-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9176-3

Keywords

Navigation