Skip to main content

Advertisement

Log in

Hypoxia and extra-cellular matrix gene expression in adipose tissue associates with reduced insulin sensitivity in black South African women

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Black South African women are more insulin resistant and have increased gluteal subcutaneous adipose tissue hypertrophy than white South African women. We tested the hypothesis that adipose tissue hypoxia and extracellular matrix gene expression in gluteal and abdominal subcutaneous adipose tissue is higher in black than white women, and associates with reduced insulin sensitivity in black women. Insulin sensitivity (frequently sampled intravenous glucose tolerance test), gluteal and abdominal subcutaneous adipose tissue mRNA levels of hypoxia- and extracellular matrix-related genes were measured in normal-weight and obese premenopausal black (n = 30) and white (n = 26) South African women at baseline, and in black women, at 5-year follow-up (n = 10). Compared to obese white women, obese black women had higher expression of hypoxia inducible factor 1, collagen Vα1 and collagen VIα1 and reduced vascular endothelial growth factor-α expression in gluteal (p < 0.05) but not abdominal subcutaneous adipose tissue depots. Independent of age and body fatness, gluteal expression of hypoxia inducible factor 1 (r = −0.55; p = 0.01), collagen Vα1 (r = −0.41; p = 0.05) and collagen VIα1 (r = −0.47; p = 0.03) correlated with reduced insulin sensitivity in black women only. Over a 5-year follow-up, changes in gluteal hypoxia inducible factor 1 (r = 0.77; p = 0.01) collagen Vα1 (r = 0.71; p = 0.02) and collagen VIα1 (r = 0.81; p < 0.01) expression correlated positively with the change in fasting insulin concentrations in black women. Compared to their white counterparts, black women expressed higher levels of genes associated with hypoxia and collagen deposition, and the associations between these genes and insulin sensitivity differed by ethnicity. We thus propose that insulin resistance in black women may be related to higher extracellular matrix and hypoxia gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  1. J.-P. Després, I. Lemieux, Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006). doi:10.1038/nature05488

    Article  PubMed  Google Scholar 

  2. K.N. Manolopoulos, F. Karpe, K.N. Frayn; Gluteofemoral body fat as a determinant of metabolic health., EBSCOhost. Int. J. Obes. (Lond) 34, 949–959 (2010). doi:10.1038/ijo.2009.286

    Article  CAS  Google Scholar 

  3. J.C. Lovejoy, J.A. de la Bretonne, M. Klemperer, R. Tulley, Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism 45, 1119–1124 (1996). doi:10.1016/S0026-0495(96)90011-6

    Article  CAS  PubMed  Google Scholar 

  4. J.H. Goedecke, N.S. Levitt, E.V. Lambert, K.M. Utzschneider, M.V. Faulenbach, J.A. Dave et al., Differential effects of abdominal adipose tissue distribution on insulin sensitivity in black and white South African women. Obesity (Silver Spring) 17, 1506–1512 (2009). doi:10.1038/oby.2009.73

    Article  Google Scholar 

  5. J.H. Goedecke, J. Evans, D. Keswell, R.H. Stimson, D.E.W. Livingstone, P. Hayes et al., Reduced gluteal expression of adipogenic and lipogenic genes in Black South African women is associated with obesity-related insulin resistance. J. Clin. Endocrinol. Metab. 96, E2029–E2033 (2011). doi:10.1210/jc.2011-1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J.H. Goedecke, E. Chorell, D.E.W. Livingstone, R.H. Stimson, P. Hayes, K. Adams, et al., Glucocorticoid receptor gene expression in adipose tissue and associated metabolic risk in black and white South African women. Int. J. Obes. (Lond) 1–9 (2014). doi: 10.1038/ijo.2014.94

  7. P. Trayhurn, B. Wang, I.S. Wood, Hypoxia and the endocrine and signalling role of white adipose tissue. Arch. Physiol. Biochem. 114, 267–276 (2008). doi:10.1080/13813450802306602

    Article  CAS  PubMed  Google Scholar 

  8. P. Trayhurn, Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr. 34, 207–236 (2014). doi:10.1146/annurev-nutr-071812-161156

    Article  CAS  PubMed  Google Scholar 

  9. J. Ye, Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. (Lond) 33, 54–66 (2009). doi:10.1038/ijo.2008.229

    Article  CAS  Google Scholar 

  10. M.J. Cross, L. Claesson-Welsh, FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201–207 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. N. Halberg, T. Khan, M.E. Trujillo, I. Wernstedt-Asterholm, A.D. Attie, S. Sherwani et al., Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell Biol. 29, 4467–4483 (2009). doi:10.1128/MCB.00192-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Ye, Z. Gao, J. Yin, Q. He, Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am. J. Physiol. Endocrinol. Metab. 293, E1118–E1128 (2007). doi:10.1152/ajpendo.00435.2007

    Article  CAS  PubMed  Google Scholar 

  13. M. Spencer, R. Unal, B. Zhu, N. Rasouli, R.E. McGehee, C.A. Peterson et al., Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J. Clin. Endocrinol. Metab. 96, E1990–E1998 (2011). doi:10.1210/jc.2011-1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Pasarica, B. Gowronska-Kozak, D. Burk, I. Remedios, D. Hymel, J. Gimble et al., Adipose tissue collagen VI in obesity. J. Clin. Endocrinol. Metab. 94, 5155–5162 (2009). doi:10.1210/jc.2009-0947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Divoux, J. Tordjman, N. Veyrie, D. Hugol, C. Poitou, A. Aissat et al., Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010). doi:10.2337/db10-0585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. T. Khan, E.S. Muise, P. Iyengar, Z.V. Wang, M. Chandalia, N. Abate et al., Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell Biol. 29, 1575–1591 (2009). doi:10.1128/MCB.01300-08

    Article  CAS  PubMed  Google Scholar 

  17. Y. Liu, J. Aron-Wisnewsky, G. Marcelin, L Genser, G. Le Naour, A. Torcivia, et al., Accumulation and changes in composition of collagens in subcutaneous adipose tissue following bariatric surgery. J. Clin. Endocrinol. Metab. jc20153348 (2015). doi:10.1210/jc.2015-3348.

  18. H.M. Kagan, W. Li, Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J. Cell Biochem. 88, 660–672 (2003). doi:10.1002/jcb.10413

    Article  CAS  PubMed  Google Scholar 

  19. J.W. Jonker, J.M. Suh, A.R. Atkins, M. Ahmadian, P. Li, J. Whyte et al., A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485, 391–394 (2012). doi:10.1038/nature10998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. J. Evans, J.H. Goedecke, I. Söderström, J. Burén, M. Alvehus, C. Blomquist et al., Depot- and ethnic-specific differences in the relationship between adipose tissue inflammation and insulin sensitivity. Clin. Endocrinol. (Oxf) 74, 51–59 (2011). doi:10.1111/j.1365-2265.2010.03883.x

    Article  CAS  Google Scholar 

  21. J.H. Goedecke, J.A. Dave, M.V. Faulenbach, K.M. Utzschneider, E.V. Lambert, S. West et al., Insulin response in relation to insulin sensitivity: an appropriate beta-cell response in black South African women. Diabetes Care 32, 860–865 (2009). doi:10.2337/dc08-2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. R.N. Bergman, Y.Z. Ider, C.R. Bowden, C. Cobelli, Quantitative estimation of insulin sensitivity. Am. J. Physiol. Endocrinol. Metab. 236, E667 (1979)

    CAS  Google Scholar 

  23. J.M. Suh, J.W. Jonker, M. Ahmadian, R. Goetz, D. Lackey, O. Osborn et al., Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513, 436–439 (2014). doi:10.1038/nature13540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. C.M. Wiener, G. Booth, G.L. Semenza, In vivo expression of mRNAs encoding hypoxia-inducible factor 1. Biochem. Biophys. Res. Commun. 225, 485–488 (1996). doi:10.1006/bbrc.1996.1199

    Article  CAS  PubMed  Google Scholar 

  25. U.R. Jewell, I. Kvietikova, A. Scheid, C. Bauer, R.H. Wenger, M. Gassmann, Induction of HIF-1alpha in response to hypoxia is instantaneous. FASEB J. 15, 1312–1314 (2001)

    CAS  PubMed  Google Scholar 

  26. M. Pasarica, O.R. Sereda, L.M. Redman, D.C. Albarado, D.T. Hymel, L.E. Roan, et al., Reduced adipose tissue oxygenation in human obesity 58 (2009). doi: 10.2337/db08-1098

  27. G.H. Goossens, A. Bizzarri, N. Venteclef, Y. Essers, J.P. Cleutjens, E. Konings et al., Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 124, 67–76 (2011). doi:10.1161/CIRCULATIONAHA.111.027813

    Article  CAS  PubMed  Google Scholar 

  28. M.E. Rausch, S. Weisberg, P. Vardhana, D.V. Tortoriello, Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int. J. Obes. (Lond) 32, 451–463 (2008). doi:10.1038/sj.ijo.0803744

    Article  CAS  Google Scholar 

  29. C. Regazzetti, P. Peraldi, T. Grémeaux, R. Najem-Lendom, I. Ben-Sahra, M. Cormont et al., Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58, 95–103 (2009). doi:10.2337/db08-0457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Yin, Z. Gao, Q. He, D. Zhou, Z. Guo, J. Ye, Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 296, E333–E342 (2009). doi:10.1152/ajpendo.90760.2008

    Article  CAS  PubMed  Google Scholar 

  31. M. Spencer, A. Yao-Borengasser, R. Unal, N. Rasouli, C.M. Gurley, B. Zhu et al., Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab. 299, E1016–E1027 (2010). doi:10.1152/ajpendo.00329.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. Fichard, J.P. Kleman, F. Ruggiero, Another look at collagen V and XI molecules. Matrix Biol. 14, 515–531 (1995)

    Article  CAS  PubMed  Google Scholar 

  33. P. Wang, J. Keijer, A. Bunschoten, F. Bouwman, J. Renes, E. Mariman, Insulin modulates the secretion of proteins from mature 3T3-L1 adipocytes: a role for transcriptional regulation of processing. Diabetologia 49, 2453–2462 (2006). doi:10.1007/s00125-006-0321-5

    Article  CAS  PubMed  Google Scholar 

  34. V. Pellegrinelli, J. Heuvingh, O. du Roure, C. Rouault, A. Devulder, C. Klein et al., Human adipocyte function is impacted by mechanical cues. J. Pathol. 233, 183–195 (2014). doi:10.1002/path.4347

    Article  CAS  PubMed  Google Scholar 

  35. C. Rodríguez, J.F. Alcudia, J. Martínez-González, B. Raposo, M.A. Navarro, L. Badimon, Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 196, 558–564 (2008). doi:10.1016/j.atherosclerosis.2007.06.002

    Article  PubMed  Google Scholar 

  36. S. Srinivasan, J.F. Dunn, Stabilization of hypoxia-inducible factor-1α in buffer containing cobalt chloride for Western blot analysis. Anal. Biochem. 416, 120–122 (2011). doi:10.1016/j.ab.2011.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Foundation of South Africa (Grant No: 78824), the South African Medical Research Council and the University of Cape Town. The authors would like to acknowledge excellent clinical and technical assistance from Joel Dave, Phillip Hayes, Hendriena Victor, and Nandipha Sinyanya for subject recruitment and translation.

Authors’ contribution

Liske Kotzé-Hörstmann (Conceptual design, data acquisition, statistical analysis and manuscript preparation); Dheshnie Keswell (Conceptual design, data acquisition and critical manuscript revision) Kevin Adams (data acquisition); Thandi Dlamini (data acquisition); Julia Goedecke (Conceptual design, data acquisition, statistical analysis and critical manuscript revision). All authors reviewed and approved the final version of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia H. Goedecke.

Ethics declarations

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotzé-Hörstmann, L.M., Keswell, D., Adams, K. et al. Hypoxia and extra-cellular matrix gene expression in adipose tissue associates with reduced insulin sensitivity in black South African women. Endocrine 55, 144–152 (2017). https://doi.org/10.1007/s12020-016-1089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1089-0

Keywords

Navigation