Skip to main content

Advertisement

Log in

In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

We investigated whether 1,25-dihydroxy-vitamin D3 (1,25(OH)2D3) could improve early diabetic nephropathy through the DNA-damage-inducible transcript 4/tuberous sclerosis 2/mammalian target of rapamycin pathway. Rat mesangial cells were cultured in media containing normal glucose or high glucose and were treated with or without 1,25(OH)2D3. Mesangial cells proliferation was measured. Streptozotocin-induced diabetic rats were injected intravenously with a recombinant lentivirus against the rat vitamin D receptor gene. Urinary and serum albumin, fasting plasma glucose, serum triglyceride, total cholesterol, calcium, parathyroid hormone and serum 25-dihydroxy-vitamin D (25(OH)D) levels, mean glomerular volume, glomerular basement membrane thickness and total kidney volume were determined. The expressions of vitamin D receptor, DNA-damage-inducible transcript 4, and mammalian target of rapamycin were measured. 1,25(OH)2D3 inhibited the proliferation of mesangial cells induced by hyperglycemia. 1,25(OH)2D3 also significantly reduced albumin excretion, mean glomerular volume, glomerular basement membrane, and total kidney volume in rats with diabetic nephropathy. The expression of DNA-damage-inducible transcript 4 was elevated by 1,25(OH)2D3 treatment. The phosphorylation of mammalian target of rapamycin was reduced by 1,25(OH)2D3 treatment. Vitamin D receptor gene silencing blocked all of the above results. The current study demonstrates that 1,25(OH)2D3 can effectively inhibit mesangial cells proliferation induced by hyperglycemia, thus suppressing the development of diabetic nephropathy. This study also shows that the nephron-protective effect of 1,25(OH)2D3 occurs partly through the DDIT4/TSC2/mTOR pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Krairittichai, S. Potisat, A. Jongsareejit, C. Sattaputh, Prevalence and risk factors of diabetic nephropathy among Thai patients with type 2 diabetes mellitus. J. Med. Assoc. Thai. 94 (2011)

  2. F.P. Schena, L. Gesualdo, Pathogenetic mechanisms of diabetic nephropathy. J. Am. Soc. Nephrol. 16 (2005)

  3. M.W. Steffes, R. Østerby, B. Chavers, S.M. Mauer, Mesangial expansion as a central mechanism for loss of kidney function in diabetic patients. Diabetes 38, 1077–1081 (1989)

    Article  CAS  PubMed  Google Scholar 

  4. S.Y. Goh, M.E. Cooper, Clinical review: The role of advanced glycation end products in progression and complications of diabetes. J. Clin. Endocrinol. Metab. 93(4), 1143 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. K. Fukami, S. Ueda, S. Yamagishi, S. Kato, Y. Inagaki, M. Takeuchi, Y. Motomiya, R. Bucala, S. Iida, K. Tamaki, T. Imaizumi, M.E. Cooper, S. Okuda, AGEs activate mesangial TGF-beta-Smad signaling via an angiotensin II type I receptor interaction. Kidney Int. 66(6), 2137–2147 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. R. Yacoub, K.N. Campbell, Inhibition of RAS in diabetic nephropathy. Int. J. Nephrol. Renovasc. Dis. 8, 29–40 (2015)

    CAS  Google Scholar 

  7. B. Fernandez-Fernandez, A. Ortiz, C. Gomez-Guerrero, J. Egido, Therapeutic approaches to diabetic nephropathy–beyond the RAS. Nat. Rev. Nephrol. 10(6), 325–346 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. K. Inoki, M. Haneda, S. Maeda, D. Koya, R. Kikkawa, TGF-β1 stimulates glucose uptake by enhancing GLUT1 expression in mesangial cells. Kidney Int. 55(5), 1704–1712 (1999)

    Article  CAS  PubMed  Google Scholar 

  9. S. Di Paolo, L. Gesualdo, E. Ranieri, G. Grandaliano, F.P. Schena, High glucose concentration induces the overexpression of transforming growth factor-beta through the activation of a platelet-derived growth factor loop in human mesangial cells. Am. J. Pathol. 149(6), 2095–2106 (1996)

    PubMed  PubMed Central  Google Scholar 

  10. S.B. Connolly, D. Sadlier, N.E. Kieran, P. Doran, H.R. Brady, Transcriptome profiling and the pathogenesis of diabetic complications. J. Am. Soc. Nephrol. 14, S279–S283 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. J.M. Forbes, M.T. Coughlan, M.E. Cooper, Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57(6), 1446–1454 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Z. Wang, T. Jiang, J. Li, G. Proctor, J.L. McManaman, S. Lucia, S. Chua, M. Levi, Regulation of renal lipid metabolism, lipid accumulation, and glomerulosclerosis in FVBdb/db mice with type 2 diabetes. Diabetes 54(8), 2328–2335 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. D. Dubois, P. Chanson, J. Timsit, D. Chauveau, D. Nochy, P.J. Guillausseau, J. Lubetzki, Remission of proteinuria following correction of hyperlipidemia in NIDDM patients with nondiabetic glomerulopathy. Diabetes Care 17(8), 906–908 (1994)

    Article  CAS  PubMed  Google Scholar 

  14. M.K. Lu, X.G. Gong, K.L. Guan, mTOR in podocyte function: is rapamycin good for diabetic nephropathy?. Cell Cycle 10(20), 3415–3416 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Nagai, T. Matsubara, A. Mima, E. Sumi, H. Kanamori, N. Iehara, A. Fukatsu, M. Yanagita, T. Nakano, Y. Ishimoto, T. Kita, T. Doi, H. Arai, Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int. 68(2), 552–561 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. R. Zoncu, A. Efeyan, D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21–35 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. H. Mori, K. Inoki, K. Masutani, Y. Wakabayashi, K. Komai, R. Nakagawa, K.L. Guan, A. Yoshimura, The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem. Biophys. Res. Commun. 384(4), 471–475 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. A. Eisenreich, U. Rauch, PI3K inhibitors in cardiovascular disease. Cardiovasc. Ther. 29(1), 29–36 (2011)

    Article  CAS  PubMed  Google Scholar 

  19. W. Lieberthal, J.S. Levine, The role of the mammalian target of rapamycin (mTOR) in renal disease. J. Am. Soc. Nephrol. 20(12), 2493–2502 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Yang, J. Wang, L. Qin, Z. Shou, J. Zhao, H. Wang, Y. Chen, J. Chen, Rapamycin prevents early steps of the development of diabetic nephropathy in rats. Am. J. Nephrol. 27(5), 495–502 (2007)

    Article  PubMed  Google Scholar 

  21. S. Langer, R. Kreutz, A. Eisenreich, Metformin modulates apoptosis and cell signaling of human podocytes under high glucose conditions. J. Nephrol. (2016) [Epub ahead of print 5 Jan]

  22. M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, O. Pappo, M. Karaca, J. Castel, M.F. Berthault, C. Magnan, E. Cerasi, N. Kaiser, G. Leibowitz, mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolicstate in type 2 diabetes. Diabetes 57(4), 945–957 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. M.C. Borges, L.A. Martini, M.M. Rogero, Current perspectives on vitamin D, immune system, and chronic diseases. Nutrition 27(4), 399–404 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. T.S. Lisse, T. Liu, M. Irmler, J. Beckers, H. Chen, J.S. Adams, M. Hewison, Gene targeting by the vitamin D response element binding protein reveals a role for vitamin D in osteoblast mTORsignaling. FASEB J. 25(3), 937–947 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T.S. Lisse, M. Hewison, Vitamin D: a new player in the world of mTOR signaling. Cell Cycle 10(12), 1888–1889 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. V.A. Diaz, A.G. Mainous 3rd, P.J. Carek, A.M. Wessell, C.J. Everett, The association of vitamin D deficiency and insufficiency with diabetic nephropathy: implications for healthdisparities. J. Am. Board Fam. Med. 22(5), 521–527 (2009)

    Article  PubMed  Google Scholar 

  27. A. Levin, M. Le Barbier, L. Er, D. Andress, M.K. Sigrist, O. Djurdjev, Incident isolated 1,25(OH)(2)D(3) deficiency is more common than 25(OH)D deficiency in CKD. J. Nephrol. 25(2), 204–210 (2012)

    Article  CAS  PubMed  Google Scholar 

  28. Nirmalya Dey, Nandini Ghosh-Choudhury, Falguni Das, Xiaonan Li, Balachandar Venkatesan, Jeffrey L. Barnes, Balakuntalam S. Kasinath, Goutam Ghosh Choudhury, PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy. J. Cell Physiol. 225(1), 27–41 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S.I. Jeong, D.H. Kwak, S. Lee, Y.K. Choo, W.H. Woo, K.S. Keum, B.K. Choi, K.Y. Jung, Inhibitory effects of Cnidium officinale Makino and Tabanus fulvus Meigan on the high glucose-induced proliferation of glomerular mesangial cells. Phytomedicine 12(9), 648–655 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Kojiro Nagai, Takeshi Matsubara, Akira Mima, Eriko Sumi, Hiroshi Kanamori et al. Gas6 induces Akt/mTOR-mediated mesangial hypertrophy in diabetic nephropathy. Kidney Int 68(2), 552–561 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. T.W. Lee, Y.H. Kao, T.I. Lee, C.J. Chang, G.S. Lien, Y.J. Chen, Calcitriol modulates receptor for advanced glycation end products (RAGE) in diabetic hearts. Int. J. Cardiol. 173(2), 236–241 (2014)

    Article  PubMed  Google Scholar 

  32. G.Y. Oudit, G.C. Liu, J. Zhong, R. Basu, F.L. Chow, J. Zhou, H. Loibner, E. Janzek, M. Schuster, J.M. Penninger, A.M. Herzenberg, Z. Kassiri, J.W. Scholey, Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes 59(2), 529–538 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. S. Okada, S. Inaga, Y. Kawaba, T. Hanada, A. Hayashi, H. Nakane, T. Naguro, T. Kaidoh, S. Kanzaki, A novel approach to the histological diagnosis of pediatric nephrotic syndrome by low vacuum scanning electronmicroscopy. Biomed. Res. 35(4), 227–236 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. D. Sankaran, N. Bankovic-Calic, C.Y. Peng, M.R. Ogborn, H.M. Aukema, Dietary flax oil during pregnancy and lactation retards disease progression in rat offspring with inherited kidneydisease. Pediatr. Res. 60(6), 729–733 (2006)

    Article  CAS  PubMed  Google Scholar 

  35. R.R. Singh, L.A. Cullen-McEwen, M.M. Kett, W.M. Boon, J. Dowling, J.F. Bertram, K.M. Moritz, Prenatal corticosterone exposure results in altered AT1/AT2, nephron deficit and hypertension in the rat offspring. J. Physiol. 579, 503–513 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Yang, F. Liu, H. Qu, H. Wang, X. Xiao, H. Deng, 1, 25(OH)2D3 protects β cell against high glucose-induced apoptosis through mTOR suppressing. Mol. Cell Endocrinol. 414, 111–119 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. H. Derakhshanian, S. Shab-Bidar, J.R. Speakman, H. Nadimi, K. Djafarian, Vitamin D and diabetic nephropathy: A systematic review and meta-analysis. Nutrition 31(10), 1189–1194 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. D.K. Deb, Y. Chen, Z. Zhang, Y. Zhang, F.L. Szeto, K.E. Wong, J. Kong, Y.C. Li, 1,25-Dihydroxyvitamin D3 suppresses high glucose-induced angiotensinogen expression in kidney cells byblocking the NF-{kappa}B pathway. Am. J. Physiol. Renal. Physiol. 296(5), F1212–F1218 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Z. Zhang, W. Yuan, L. Sun, F.L. Szeto, K.E. Wong, X. Li, J. Kong, Y.C. Li, 1,25-Dihydroxyvitamin D3 targeting of NF-kappaB suppresses high glucose-induced MCP-1 expression in mesangial cells. Kidney Int. 72(2), 193–201 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. A.K. Bhalla, E.P. Amento, B. Serog, L.H. Glimcher, 1,25-Dihydroxyvitamin D3 inhibits antigen-induced T cell activation. J. Immunol. 133(4), 1748–1754 (1984)

    CAS  PubMed  Google Scholar 

  41. M. Kajikawa, H. Ishida, S. Fujimoto, E. Mukai, M. Nishimura, J. Fujita, Y. Tsuura, Y. Okamoto, A.W. Norman, Y. Seino, An insulinotropic effect of vitamin D analog with increasing intracellular Ca2+ concentration in pancreatic beta-cells through nongenomic signal transduction. Endocrinology 140(10), 4706–4712 (1999)

    CAS  PubMed  Google Scholar 

  42. A. Cardus, S. Panizo, M. Encinas, X. Dolcet, C. Gallego, M. Aldea, E. Fernandez, J.M. Valdivielso, 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGFpromoter. Atherosclerosis 204(1), 85–89 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. M. Garsen, R. Sonneveld, A.L. Rops, S. Huntink, T.H. van Kuppevelt, T.J. Rabelink, J.G. Hoenderop, J.H. Berden, T. Nijenhuis, J. van der Vlag, Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J. Pathol 237(4), 472–481 (2015)

    Article  CAS  PubMed  Google Scholar 

  44. X.X. Wang, T. Jiang, Y. Shen, H. Santamaria, N. Solis, C. Arbeeny, M. Levi, Vitamin D receptor agonist doxercalciferol modulates dietary fat-induced renal disease and renal lipid metabolism. Am. J. Physiol. Renal Physiol. 300(3), F801–F810 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Kuhlmann, C.S. Haas, M.L. Gross, U. Reulbach, M. Holzinger, U. Schwarz, E. Ritz, K. Amann, 1,25-Dihydroxyvitamin D3 decreases podocyte loss and podocyte hypertrophy in the subtotally nephrectomizedrat. Am. J. Physiol. Renal Physiol. 286(3), F526–F533 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. F. Marampon, G.L. Gravina, C. Festuccia, V.M. Popov, E.A. Colapietro, P. Sanità, D. Musio, F. De Felice, A. Lenzi, E.A. Jannini, E. Di Cesare, V. Tombolini, Vitamin D protects endothelial cells from irradiation-induced senescence and apoptosis by modulating MAPK/SirT1 axis. J. Endocrinol Invest 39(4), 411–422 (2015)

    Article  PubMed  Google Scholar 

  47. Y. Zhang, D.K. Deb, J. Kong, G. Ning, Y. Wang, G. Li, Y. Chen, Z. Zhang, S. Strugnell, Y. Sabbagh, C. Arbeeny, Y.C. Li, Long-term therapeutic effect of vitamin D analog doxercalciferol on diabetic nephropathy: strong synergism with AT1 receptor antagonist. Am. J. Physiol. Renal Physiol. 297(3), F791–F801 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. M. Fraenkel, M. Ketzinel-Gilad, Y. Ariav, O. Pappo, M. Karaca, J. Castel, M.F. Berthault, C. Magnan, E. Cerasi, N. Kaiser, G. Leibowitz, mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57(4), 945–957 (2008)

    Article  CAS  PubMed  Google Scholar 

  49. O.A. Adegoke, H.E. Bates, M.A. Kiraly, M. Vranic, M.C. Riddell, E.B. Marliss, Exercise in ZDF rats does not attenuate weight gain, but prevents hyperglycemia concurrent with modulation of amino acid metabolism and AKT/mTOR activation in skeletal muscle. Eur. J. Nutr. 54(5), 751–759 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. B.A. Heller, M. Ghidinelli, J. Voelkl, S. Einheber, R. Smith, E. Grund, G. Morahan, D. Chandler, L. Kalaydjieva, F. Giancotti, R.H. King, A.N. Fejes-Toth, G. Fejes-Toth, M.L. Feltri, F. Lang, J.L. Salzer, Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J. Cell Biol 204(7), 1219–1236 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Y. Weisman, A. Harell, S. Edelstein, M. David, Z. Spirer, A. Golander, 1 alpha, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua andplacenta. Nature 281(5729), 317–319 (1979)

    Article  CAS  PubMed  Google Scholar 

  52. J.L. Omdahl, H.A. Morris, B.K. May, Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu. Rev. Nutr. 22, 139–166 (2002)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from the National Nature Science Foundation of China (81070639, 81270911, 30771038, and 30570744) and National Key Clinical Specialties Construction Program of China. We specially thank the technical support from Laboratory of Lipid and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huacong Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, J., Qu, H. et al. In vitro and in vivo inhibition of mTOR by 1,25-dihydroxyvitamin D3 to improve early diabetic nephropathy via the DDIT4/TSC2/mTOR pathway. Endocrine 54, 348–359 (2016). https://doi.org/10.1007/s12020-016-0999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0999-1

Keywords

Navigation