Skip to main content

Advertisement

Log in

Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer’s disease in T2DM patients

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Epidemiological studies indicate that patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing dementia/Alzheimer’s disease (AD). This review, which is based on recent studies, presents a molecular framework that links the two diseases and explains how physical training could help counteract neurodegeneration in T2DM patients. Inflammatory, oxidative, and metabolic changes in T2DM patients cause cerebrovascular complications and can lead to blood–brain-barrier (BBB) breakdown. Peripherally increased pro-inflammatory molecules can then pass the BBB more easily and activate stress-activated pathways, thereby promoting key pathological features of dementia/AD such as brain insulin resistance, mitochondrial dysfunction, and accumulation of neurotoxic beta-amyloid (Aβ) oligomers, leading to synaptic loss, neuronal dysfunction, and cell death. Ceramides can also pass the BBB, induce pro-inflammatory reactions, and disturb brain insulin signaling. In a vicious circle, oxidative stress and the pro-inflammatory environment intensify, leading to further cognitive decline. Low testosterone levels might be a common risk factor in T2DM and AD. Regular physical exercise reinforces antioxidative capacity, reduces oxidative stress, and has anti-inflammatory effects. It improves endothelial function and might increase brain capillarization. Physical training can further counteract dyslipidemia and reduce increased ceramide levels. It might also improve Aβ clearance by up-regulating Aβ transporters and, in some cases, increase basal testosterone levels. In addition, regular physical activity can induce neurogenesis. Physical training should therefore be emphasized as a part of prevention programs developed for diabetic patients to minimize the risk of the onset of neurodegenerative diseases among this specific patient group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. J. Li, Y.H. Shao, Y.P. Gong, Y.H. Lu, Y. Liu, C.L. Li, Diabetes mellitus and dementia—a systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 18, 1778–1789 (2014)

    CAS  PubMed  Google Scholar 

  2. M. Baumgart, H.M. Snyder, M.C. Carrillo, S. Fazio, H. Kim, H. Johns, Summary of the evidence on modifiable risk factors for cognitive decline and dementia: a population-based perspective. Alzheimers Dement. 11, 718–726 (2015)

    Article  PubMed  Google Scholar 

  3. P. Palta, A.L. Schneider, G.J. Biessels, P. Touradji, F. Hill-Briggs, Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J. Int. Neuropsychol. Soc. 20, 278–291 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  4. S. Sadanand, R. Balachandar, S. Bharath, Memory and executive functions in persons with type 2 diabetes: a meta-analysis. Diabetes Metab. Res. Rev. 32, 132–142 (2016)

    Article  PubMed  Google Scholar 

  5. C. Vincent, P.A. Hall, Executive function in adults with type 2 diabetes: a meta-analytic review. Psychosom. Med. 77, 631–642 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. C. Moran, T.G. Phan, J. Chen, L. Blizzard, R. Beare, A. Venn, G. Münch, A.G. Wood, J. Forbes, T.M. Greenaway, S. Pearson, V. Srikanth, Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36, 4036–4042 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. C. Cooper, A. Sommerlad, C.G. Lyketsos, G. Livingston, Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am. J. Psychiatry 172, 323–334 (2015)

    Article  PubMed  Google Scholar 

  8. R.O. Roberts, D.S. Knopman, Y.E. Geda, R.H. Cha, V.S. Pankratz, L. Baertlein, B.F. Boeve, E.G. Tangalos, R.J. Ivnik, M.M. Mielke, R.C. Petersen, Association of diabetes with amnestic and nonamnestic mild cognitive impairment. Alzheimers Dement. 10, 18–26 (2014)

    Article  PubMed  Google Scholar 

  9. X.F. Meng, J.T. Yu, H.F. Wang, M.S. Tan, C. Wang, C.C. Tan, L. Tan, Midlife vascular risk factors and the risk of Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 42, 1295–1310 (2014)

    PubMed  Google Scholar 

  10. J.Q. Li, L. Tan, H.F. Wang, M.S. Tan, L. Tan, W. Xu, Q.F. Zhao, J. Wang, T. Jiang, J.T. Yu, Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry. 87, 476–484 (2015)

    Article  PubMed  Google Scholar 

  11. K. Gudala, D. Bansal, F. Schifano, A. Bhansali, Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J. Diabetes Investig. 4, 640–650 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. Norton, F.E. Matthews, D.E. Barnes, K. Yaffe, C. Brayne, Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13, 788–794 (2014)

    Article  PubMed  Google Scholar 

  13. J.T. O’Brien, A. Thomas, Vascular dementia. Lancet 386, 1698–1706 (2015)

    Article  PubMed  Google Scholar 

  14. C. Zhiyou, W. Chuanling, H. Wenbo, T. Hanjun, T. Zhengang, X. Ming, Y. Liang-Jun, Cerebral small vessel disease and Alzheimer’s disease. Clin. Interv. Aging 10, 1695–1704 (2015)

    Google Scholar 

  15. P. Rajendran, T. Rengarajan, J. Thangavel, Y. Nishigaki, D. Sakthisekaran, G. Sethi, I. Nishigaki, The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. X.-L. Tan, Y.-Q. Xue, T. Ma, X. Wang, J.J. Li, L. Lan, K.U. Malik, M.P. McDonald, A.M. Dopico, F.-F. Liao, Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol. Neurodegener. 7, 273 (2015)

    Google Scholar 

  17. R.H. Swerdlow, Is aging part of Alzheimer’s disease, or is Alzheimer’s disease part of aging? Neurobiol. Aging 28, 1465–1480 (2007)

    Article  PubMed  Google Scholar 

  18. S.M. de la Monte, J.R. Wands, Alzheimer’s disease is type 3 diabetes—evidence reviewed. J. Diabetes Sci. Technol. 2, 1101–1113 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  19. J. Attems, K.A. Jellinger, The overlap between vascular disease and Alzheimer’s disease—lessons from pathology. BMC Med. 11, 206 (2014)

    Article  Google Scholar 

  20. F. Paneni, J.A. Beckman, M.A. Creager, F. Cosentino, Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I. Eur. Heart J. 34, 2436–2443 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M.A. Creager, T.F. Luscher, F. Cosentino, J.A. Beckman, Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: Part I. Circulation 108, 1527–1532 (2003)

    Article  PubMed  Google Scholar 

  22. P. Geraldes, G.L. King, Activation of protein kinase C isoforms and its impact on diabetic complications. Circ. Res. 106, 1319–1331 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.L. Vinik, T. Erbas, T.S. Park, R. Nolan, G.L. Pittenger, Platelet dysfunction in type 2 diabetes. Diabetes Care 24, 1476–1485 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. M. Lee, J.L. Saver, A. Towfighi, J. Chow, B. Ovbiagele, Efficacy of fibrates for cardiovascular risk reduction in persons with atherogenic dyslipidemia: a meta-analysis. Atherosclerosis 217, 492–498 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. Z.Y. Li, P. Wang, C.Y. Miao, Adipokines in inflammation, insulin resistance and cardiovascular disease. Clin. Exp. Pharmacol. Physiol. 38, 888–896 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. A.C. Montezano, M. Dulak-Lis, S. Tsiropoulou, A. Harvey, A.M. Briones, R.M. Touyz, Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can. J. Cardiol. 31, 631–641 (2015)

    Article  PubMed  Google Scholar 

  27. L.P. van der Heide, G.M. Ramakers, M.P. Schmidt, Insulin signaling in the central nervous system: learning to survive. Prog. Neurobiol. 79, 2005–2021 (2006)

    Google Scholar 

  28. F.T. Boyd, D.W. Clarke, T.F. Muther, M.K. Raizada, Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J. Biol. Chem. 260, 15880–15884 (1985)

    CAS  PubMed  Google Scholar 

  29. E.D. Martín, A. Sánchez-Perez, J.L. Trejo, J.A. Martin-Aldana, M. Cano-Jaimez, S. Pons, C. Acosta Umanzor, L. Menes, M.F. White, D.J. Burks, IRS-2 deficiency impairs NMDA receptor-dependent long-term potentiation. Cereb. Cortex 22, 1717–1727 (2012)

    Article  PubMed  Google Scholar 

  30. D.A. Costello, M. Claret, H. Al-Qassab, F. Plattner, E.E. Irvine, A.l. Choudhury, K.P. Giese, D.J. Withers, P. Pedarzani, Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One 7, e31124 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E.M. Bingham, D. Hopkins, D. Smith, A. Pernet, W. Hallett, L. Reed, P.K. Marsden, S.A. Amiel, The role of insulin in human brain glucose metabolism: an 18-fluoro-deoxyglucose positron emission tomography study. Diabetes 51, 3384–3390 (2002)

    Article  CAS  PubMed  Google Scholar 

  32. B. Cholerton, L.D. Baker, S. Craft, Insulin, cognition and dementia. Eur. J. Pharmacol. 719, 170–179 (2013)

    Article  CAS  PubMed  Google Scholar 

  33. G. Bedse, F. Di Domenico, G. Serviddio, T. Cassano, Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front. Neurosci. 16, 204 (2015)

    Google Scholar 

  34. J.M. Duarte, Metabolic alterations associated to brain dysfunction in diabetes. Aging Dis. 6, 304–321 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  35. R. Sandhir, S. Gupta, Molecular and biochemical trajectories from diabetes to Alzheimer’s disease: a critical appraisal. World J. Diabetes 6, 1223–1242 (2015)

    PubMed  PubMed Central  Google Scholar 

  36. K. Talbot, H. Wang, H. Kazi, L. Han, K.P. Bakshi, A. Stucky, R.L. Fuino, K.R. Kawaguchi, A.J. Samoyedny, R.S. Wilson, Z. Arvanitakis, J.A. Schneider, B.A. Wolf, D.A. Bennett, J.Q. Trojanowski, S.E. Arnold, Demonstrated brain insulin resistance in AD patients is associated with IGF-1 resistance, IRS-1 dysregulation and cognitive decline. J. Clin. Investig. 122, 1316–1338 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. K.D. Copps, M.F. White, Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565–2582 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. Mosconi, Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin. Transl. Imaging 1, 217–233 (2013)

    Article  Google Scholar 

  39. T.R. Bomfim, L. Forny-Germano, L.B. Sathler, J. Brito-Moreira, J.C. Houzel, H. Decker, M.A. Silverman, H. Kazi, H.M. Melo, P.L. McClean, C. Holscher, S.E. Arnold, K. Talbot, W.L. Klein, D.P. Munoz, S.T. Ferreira, F.G. De Felice, An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Aβ oligomers. J. Clin. Investig. 122, 1339–1353 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Freiherr, M. Hallschmid, W.H. Frey II, Y.F. Brünner, C.D. Chapman, C. Hölscher, S. Craft, F.G. De Felice, C. Benedict, Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27, 505–514 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.R. Weston, R.J. Davis, The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142–149 (2007)

    Article  CAS  PubMed  Google Scholar 

  42. S. Chakrabarti, V.K. Khemka, A. Banerjee, G. Chatterjee, A. Ganguly, A. Biswas, Metabolic risk factors of sporadic Alzheimer’s disease: implications in the pathology, pathogenesis, and treatment. Aging Dis. 6, 282–299 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  43. G. Pandini, V. Pace, A. Copani, S. Squatrito, D. Milardi, R. Vigneri, Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology 154, 375–387 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. H.W. Querfurth, F.M. LaFarla, Alzheimer’s disease. NEJM 362, 329–344 (2010)

    Article  CAS  PubMed  Google Scholar 

  45. A. Serrano-Pozo, M.P. Frosch, E. Masliah, B.T. Hyman, Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1(1), a006189 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. M. Perluigi, G. Pupo, A. Tramutola, C. Cini, R. Coccia, E. Barone, E. Head, D.A. Butterfield, F. Di Domenico, Neuropathological role of PI3K/Akt/mTOR axis in Down syndrome brain. Biochim. Biophys. Acta 1842, 1144–1153 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. W.Q. Zhao, P.N. Lacor, H. Chen, M.P. Lambert, M.J. Quon, G.A. Krafft, W.L. Klein, Insulin receptor dysfunction impairs cellular clearance of neurotoxic oligomeric a{beta}. J. Biol. Chem. 284, 18742–18753 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Perez, L. Morelli, J.C. Cresto, E.M. Castano, Degradation of soluble amyloid β-peptides 1-40, 1-42, and the Dutch variant 1-40q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem. Res. 25, 247–255 (2000)

    Article  CAS  PubMed  Google Scholar 

  49. A. Jayaraman, C.J. Pike, Alzheimer’s disease and type 2 diabetes: multiple mechanisms contribute to interactions. Curr. Diabetes Rep. 14, 476 (2014)

    Article  CAS  Google Scholar 

  50. N.M. Ashpole, J.E. Sanders, E.L. Hodges, H. Yan, W.E. Sonntag, Growth hormone, insulin-like growth factor-1 and the aging brain. Exp. Gerontol. 68, 76–81 (2015)

    Article  CAS  PubMed  Google Scholar 

  51. P.N. Lacor, M.C. Buniel, P.W. Furlow, A.S. Clemente, P.T. Velasco, M. Wood, K.L. Viola, W.L. Klein, Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 27, 796–807 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. F.G. De Felice, Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J. Clin. Investig. 123, 531–539 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. N. Rajkovic, M. Zamaklar, K. Lalic, A. Jotic, L. Lukic, T. Milicic, S. Singh, L. Stosic, N.M. Lalic, Relationship between obesity, adipocytokines and inflammatory markers in type 2 diabetes: relevance for cardiovascular risk prevention. Int. J. Environ. Res. Public Health 11, 4049–4065 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. T. Reinehr, B. Karges, T. Meissner, S. Wiegand, B. Stoffel-Wagner, R.W. Holl, J. Woelfle, Inflammatory markers in obese adolescents with type 2 diabetes and their relationship to hepatokines and adipokines. J. Pediatr. (2016). doi:10.1016/j.jpeds.2016.02.055

    PubMed  Google Scholar 

  55. J. Spranger, A. Kroke, M. Möhlig, K. Hoffmann, M.M. Bergmann, M. Ristow, H. Boeing, A.F. Pfeiffer, Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC) Potsdam Study. Diabetes 52, 812–817 (2003)

    Article  CAS  PubMed  Google Scholar 

  56. R. Cacabelos, M. Barguero, P. Garcia, X.A. Alvarez, E. Varela de Seijas, Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer’s disease and neurological disorders. Methods Find. Exp. Clin. Pharmacol. 13, 455–458 (1991)

    CAS  PubMed  Google Scholar 

  57. O.V. Forlenza, B.S. Diniz, L.L. Talib, V.A. Mendonca, E.B. Ojopi, W.F. Gattaz, A.L. Teixeira, Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 28, 507–512 (2009)

    Article  CAS  PubMed  Google Scholar 

  58. J.P. Jia, R. Meng, Y.X. Sun, W.J. Sun, X.M. Ji, L.F. Jia, Cerebrospinal fluid tau, abeta1-42 and inflammatory cytokines in patients with Alzheimer’s disease and vascular dementia. Neurosci. Lett. 383, 12–16 (2005)

    Article  CAS  PubMed  Google Scholar 

  59. K. Wada-Isoe, Y. Wakutani, K. Urakami, K. Nakashima, Elevated interleukin-6 levels in cerebrospinal fluid of vascular dementia patients. Acta Neurol. Scand. 110, 124–127 (2004)

    Article  CAS  PubMed  Google Scholar 

  60. M.C. Arkan, A.L. Hevener, F.R. Greten, S. Maeda, Z.W. Li, J.M. Long, A. Wynshaw-Boris, G. Poli, J. Olefsky, M. Karin, IKK-beta links inflammation to obesity induced-insulin-resistance. Nat. Med. 11, 191–198 (2005)

    Article  CAS  PubMed  Google Scholar 

  61. B. de Roos, V. Rungapamestry, K. Ross, G. Rucklidge, M. Reid, G. Duncan, G. Horgan, S. Toomey, J. Browne, C.E. Loscher, K.H. Mills, H.M. Roche, Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high fat diet. Proteomics 9, 3244–3256 (2009)

    Article  PubMed  CAS  Google Scholar 

  62. Q.L. Ma, F. Yang, E.R. Rosario, O.J. Ubeda, W. Beech, D.J. Gant, P.P. Chen, B. Hudspeth, C. Chen, X. Zhao, H.V. Vinters, S.A. Frautschy, G.M. Cole, Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun-N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. N.K. Acharya, E.C. Levin, P.M. Clifford, M. Han, R. Tourtellotte, D. Chamberlain, M. Pollaro, N.J. Coretti, M.C. Kosciuk, E.P. Nagele, C. Demarshall, T. Freeman, Y. Shi, C. Guan, C.H. Macphee, R.L. Wilensky, R.G. Nagele, Diabetes and hypercholesterolemia increase blood–brain barrier permeability and brain amyloid deposition: beneficial effects of the LpPLA2 inhibitor darapladib. J. Alzheimers Dis. 35, 179–198 (2013)

    CAS  PubMed  Google Scholar 

  64. S. Takeda, N. Sato, R. Morishita, Systemic inflammation, blood–brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer’s disease: relevance to pathogenesis and therapy. Front. Aging Neurosci. 6, 171 (2014)

    PubMed  PubMed Central  Google Scholar 

  65. S. Takeda, N. Sato, K. Ikimura, H. Nishino, H. Rakugi, R. Morishita, Increased blood–brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol. Aging 34, 2064–2070 (2014)

    Article  CAS  Google Scholar 

  66. J.A. Sonnen, E.B. Larson, K. Brickell, P.K. Crane, R. Woltjer, T.J. Montine, S. Craft, Different patterns of cerebral injury in dementia with or without diabetes. Arch. Neurol. 66, 315–322 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  67. I.A.C. Arnoldussen, A.J. Kiliaan, D.R. Gustafson, Obesity and dementia. Eur. Neuropsychopharmacol. 23, 1982–1999 (2014)

    Article  CAS  Google Scholar 

  68. E.M.A. Vasconcelos, G.R. Degasperi, H.C.F. de Oliveira, A.E. Vercesi, E.C. de Faria, L.N. Castilho, Reactive oxygen species generation in peripheral blood monocytes and oxidized LDL are increased in hyperlipidemic patients. Clin. Biochem. 42, 1222–1227 (2009)

    Article  CAS  PubMed  Google Scholar 

  69. S.P. Wolff, R.T. Dean, Glucose autoxidation and protein modification. Biochem. J. 245, 243–250 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. X. Du, T. Matsumura, D. Edelstein, L. Rosetti, Z. Zsengeller, C. Szabo, M. Brownlee, Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Investig. 112, 1049–1057 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. F. Di Domenico, G. Pupo, E. Giraldo, M.C. Badia, P. Monllor, A. Lloret, M. Eugenia Schinina, A. Giorgi, C. Cini, A. Tramutola, D.A. Butterfield, J. Vina, M. Perluigi, Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radic. Biol. Med. 91, 1–9 (2016)

    Article  PubMed  CAS  Google Scholar 

  72. M.A. Pappolla, R.A. Omar, K.S. Kim, N.K. Robakis, Immunohistochemical evidence of oxidative stress in Alzheimer’s disease. Am. J. Pathol. 140, 621–628 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. F.G. De Felice, M.N.N. Viera, T.R. Bomfirm, H. Decker, P.T. Velasco, M.P. Lambert, K.L. Viola, W. Zhao, S.T. Ferreira, W.L. Klein, protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc. Natl Acad. Sci. USA 106, 1971–1976 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  74. J.V. Cross, D.J. Templeton, Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem. J. 381, 675–683 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. V. Aguirre, T. Uchida, L. Yenush, R. Davis, M.F. White, The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser-307. J. Biol. Chem. 275, 9047–9054 (2000)

    Article  CAS  PubMed  Google Scholar 

  76. C. Bonnard, A. Durand, S. Peyrol, E. Chanseaume, M. Chauvin, B. Morio, H. Vidal, J. Rueusset, Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J. Clin. Investig. 118, 789–800 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. F.G. De Felice, S.T. Ferreira, Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63, 2262–2272 (2014)

    Article  PubMed  Google Scholar 

  78. A. Grimm, K. Friedland, A. Eckert, Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer’s disease. Biogerontology 17, 281–296 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. G. Schreibelt, G. Kooij, A. Reijerkek, R. van Doorn, S.I. Gringhuis, S. van der Pol, B.B. Weksler, I.A. Romero, P. Couraud, J. Piontek, I.E. Blasig, C.D. Dijkstra, E. Ronken, H.E. de Vries, Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J. 21, 3666–3676 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. A. Goldin, J.A. Beckman, A.M. Schmidt, M.A. Creager, Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597–605 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. M. Pansuria, H. Xi, L. Li, X.F. Yang, H. Wang, Insulin resistance, metabolic stress, and atherosclerosis. Front. Biosci. (Sch. Ed.) 4, 916–931 (2012)

    Google Scholar 

  82. R. Deane, S. Du Yan, R.K. Submamaryan, B. LaRue, S. Jovanovic, E. Hogg, D. Welch, L. Manness, C. Lin, J. Yu, H. Zhu, J. Ghiso, B. Frangione, A. Stern, A.M. Schmidt, D.L. Armstrong, B. Arnold, B. Liliensiek, P. Nawroth, F. Hofman, M. Kindy, D. Stern, B. Zlokovic, RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913 (2003)

    Article  CAS  PubMed  Google Scholar 

  83. S.D. Yan, X. Chen, J. Fu, M. Chen, H. Zhu, A. Roher, T. Slattery, L. Zhao, M. Nagashima, J. Morser, A. Migheli, P. Nawroth, D. Stern, A.M. Schmidt, RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature 382, 685–691 (1996)

    Article  CAS  PubMed  Google Scholar 

  84. P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schlossmacher, J. Whaley, C. Swindlehurst, R. McCormack, R. Wolfert, D. Selkoe, I. Lieberburg, D. Schenk, Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359, 325–327 (1992)

    Article  CAS  PubMed  Google Scholar 

  85. M.A. Erickson, W.A. Banks, Blood–brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow Metab. 33, 1500–1513 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. L.F. Lue, D.G. Walker, L. Brachova, T.G. Beach, J. Rogers, A.M. Schmidt, D.M. Stern, S.D. Yan, Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Exp. Neurol. 171, 29–45 (2001)

    Article  CAS  PubMed  Google Scholar 

  87. E.E. Jones, S. Dworski, D. Canals, J. Casas, G. Fabrias, D. Schoenling, T. Levade, C. Denlinger, Y.A. Hannun, J.A. Medin, R.R. Drake, On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal. Chem. 86, 8303–8311 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. W.L. Holland, B.T. Bikman, L.P. Wang, G. Yuguang, K.M. Sargent, S. Bulchand, T.A. Knotts, G. Shui, D.J. Clegg, M.R. Wenk, M.J. Pagliassotti, P.E. Scherer, S.A. Summers, Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J. Clin. Investig. 121, 1858–1870 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. W.L. Holland, T.A. Knotts, J.A. Chavez, L.P. Wang, K.L. Hoehn, S.A. Summers, Lipid mediators of insulin clearance. Nutr. Rev. 65, 39–46 (2007)

    Article  Google Scholar 

  90. S.M. de la Monte, Triangulated mal-signaling in Alzheimer’s disease: roles of neurotoxic ceramides, ER stress, and insulin resistance reviewed. J. Alzheimers Dis. 30, 231–249 (2012)

    Google Scholar 

  91. L.E. Lynn-Cook, M. Lawton, M. Tong, E. Silbermann, L. Longato, P. Jiao, P. Mark, J.R. Wands, H. Xu, S.M. de la Monte, Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis. J. Alzheimers Dis. 16, 715–729 (2009)

    Google Scholar 

  92. S.M. de la Monte, M. Tong, V. Nguyen, M. Setshedi, L. Longato, J.R. Wands, Ceramide-mediated insulin resistance and impairment of cognitive-motor functions. J. Alzheimers Dis. 21, 967–984 (2010)

    PubMed  PubMed Central  Google Scholar 

  93. J. Ghiso, M. Shayo, M. Calero, D. Ng, Y. Tomidokoro, S. Gandy, A. Rostagno, B. Frangione, Systemic catabolism of Alzheimer’s Abeta40 and Abeta42. J. Biol. Chem. 279, 45897–45908 (2004)

    Article  CAS  PubMed  Google Scholar 

  94. S. Ito, S. Ohtsuki, J. Kamiie, Y. Nezu, T. Terasaki, Cerebral clearance of human amyloid-beta peptide (1-40) across the blood–brain barrier is reduced by self-aggregation and formation of low-density lipoprotein receptor-related protein-1 ligand complexes. J. Neurochem. 103, 2482–2490 (2007)

    Article  CAS  PubMed  Google Scholar 

  95. C. Tamaki, S. Ohtsuki, T. Terasaki, Insulin facilitates the hepatic clearance of plasma amyloid beta-peptide (1-40) by intracellular translocation of low-density lipoprotein receptor-related protein 1 (LRP-1) to the plasma membrane in hepatocytes. Mol. Pharmacol. 72, 850–855 (2007)

    Article  CAS  PubMed  Google Scholar 

  96. M. Grossmann, M.C. Thomas, S. Panagiotopoulos, K. Sharpe, R.J. Macisaac, S. Clarke, J.D. Zajac, G. Jerums, Low testosterone levels are common and associated with insulin resistance in men with diabetes. J. Clin. Endocrinol. Metab. 93, 1834–1840 (2008)

    Article  CAS  PubMed  Google Scholar 

  97. D. Kapoor, E. Goodwin, K.S. Channer, T.H. Jones, Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 154, 899–906 (2006)

    Article  CAS  PubMed  Google Scholar 

  98. M. Grossmann, R. Hoermann, G. Wittert, B.B. Yeap, Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: a systematic review and meta-analysis of randomized controlled clinical trials. Clin. Endocrinol. (Oxf.) 83, 344–351 (2015)

    Article  CAS  Google Scholar 

  99. E. Hogervorst, J. Williams, M. Budge, L. Barnetson, M. Combrinck, A.D. Smith, Serum total testosterone is lower in men with Alzheimer’s disease. Neuroendocrinol. Lett. 22, 163–168 (2001)

    CAS  PubMed  Google Scholar 

  100. E.R. Rosario, L. Chang, F.Z. Stanczyk, C.J. Pike, Age-related testosterone depletion and the development of Alzheimer disease. JAMA 292, 1431–1432 (2004)

    Article  CAS  PubMed  Google Scholar 

  101. R.S. Tan, Testosterone effect on brain metabolism in elderly patients with Alzheimer’s disease: comparing two cases at different disease stages. Aging Clin. Exp. Res. 25, 343–347 (2013)

    Article  CAS  PubMed  Google Scholar 

  102. E. Teixeira-Lemos, S. Nunes, F. Teixeira, F. Reis, Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc. Diabetol. 28(10), 12 (2011)

    Article  Google Scholar 

  103. N.G. Boulè, E. Haddad, G.P. Kenny, G.A. Wells, R.J. Sigal, Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a metaanalysis of controlled clinical trials. JAMA 286, 1218–1227 (2001)

    Article  PubMed  Google Scholar 

  104. N.G. Boulè, G.P. Kenny, E. Hadda, G.A. Wells, R.J. Sigal, Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in Type 2 diabetes mellitus. Diabetologia 46, 1071–1081 (2003)

    Article  PubMed  Google Scholar 

  105. I.M. Stratton, A.I. Adler, H.A. Neil, D.R. Matthews, S.E. Manley, C.A. Cull, D. Hadden, R.C. Turner, R.R. Holman, Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35) prospective observational study. BMJ 321, 405–412 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. R. Rubinshtein, J.T. Kuvin, M. Soffler, R.J. Lennon, S. Lavi, R.E. Nelson, G.M. Pumper, L.O. Lerman, A. Lerman, Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur. Heart J. 31, 1142–1148 (2010)

    Article  PubMed  Google Scholar 

  107. J. Yeboah, A.R. Folsom, G.L. Burke, C. Johnson, J.F. Polak, W. Post, J.A. Lima, J.R. Crouse, D.M. Herrington, Perdictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: the multi-ethnic study of atherosclerosis. Circulation 120, 502–509 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  108. B.C.S. Boa, M.C. Souza, R.D. Leite, S.V. da Silva, T.C. Barja-Fidalgo, L.G. Kraemer-Aguiar, E. Bouskela, Chronic aerobic exercise associated to dietary modification improve endothelial function and eNOS expression in high fat fed hamsters. PLoS One 18, e102554 (2014)

    Article  CAS  Google Scholar 

  109. A. Maiorana, G. O’Driscoll, C. Cheetham, L. Dembo, K. Stanton, C. Goodman, R. Taylor, D. Green, The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J. Am. Coll. Cardiol. 38, 850–856 (2001)

    Article  Google Scholar 

  110. S. Okada, A. Hiuge, H. Makino, A. Nagumo, H. Takaki, H. Konishi, Y. Goto, Y. Yoshimasa, Y. Myamoto, Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J. Atheroscler. Thromb. 17, 828–833 (2010)

    Article  CAS  PubMed  Google Scholar 

  111. N.D. Cohen, D.W. Dunstan, C. Robinson, E. Vulikh, P.Z. Zimmet, J.E. Shaw, Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res. Clin. Pract. 79, 405–411 (2008)

    Article  CAS  PubMed  Google Scholar 

  112. V.A. Cornelissen, R.H. Fagard, Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension 46, 667–675 (2005)

    Article  CAS  PubMed  Google Scholar 

  113. Y. Hayashino, J.L. Jackson, N. Fukumori, F. Nakamura, S. Fukuhara, Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 98, 349–360 (2012)

    Article  CAS  PubMed  Google Scholar 

  114. R.A. Swain, A.B. Harris, E.C. Wiener, M.V. Dutka, H.D. Morris, B.E. Theien, S. Konda, K. Engberg, P.C. Lauterbur, W.T. Greenough, Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117, 1037–1046 (2003)

    Article  CAS  PubMed  Google Scholar 

  115. S. Wang, L. Chen, L. Zhang, C. Huang, Y. Xiu, F. Wang, C. Zhou, Y. Luo, Q. Xiao, Y. Tang, Effects of long-term exercise on spatial learning, memory ability, and cortical capillaries in aged rats. Med. Sci. Monit. 21, 945–954 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Y. Ding, J. Li, Y.H. Ding, Q. Lai, J.A. Rafols, J.W. Phillis, J.C. Clark, F.G. Diaz, Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience 124, 538–591 (2004)

    Article  CAS  Google Scholar 

  117. D. Aarsland, F.S. Sardahaee, S. Anderssen, C. Ballard, Alzheimer’s Society Systematic Review Group: Is physical activity a potential preventive factor for vascular dementia? A systematic review. Aging Ment. Health 14, 386–395 (2010)

    Article  PubMed  Google Scholar 

  118. J. Andersson, J.H. Jansson, G. Hellsten, T.K. Nilsson, G. Hallmans, K. Boman, Effects of heavy endurance physical exercise on inflammation markers in non-athletes. Atherosclerosis 209, 601–605 (2010)

    Article  CAS  PubMed  Google Scholar 

  119. C. Kasapis, P.D. Thompson, The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. J. Am. Coll. Cardiol. 45, 1563–1569 (2005)

    Article  CAS  PubMed  Google Scholar 

  120. C.B. Papini, P.M. Nakamura, L.P. Zorzetto, J.L. Thompson, A.C. Phillips, E. Kokubun, The effect of a community-based, primary health care exercise program on inflammatory biomarkers and hormone levels. Mediat. Inflamm 2014, 185707 (2014)

    Article  Google Scholar 

  121. A.C. McKee, D.H. Daneshvar, V.E. Alvarez, T.D. Stein, The neuropathology of sport. Acta Neuropathol. 127, 29–51 (2014)

    Article  CAS  PubMed  Google Scholar 

  122. S.M. Abd El-Kader, Aerobic versus resistance exercise training in modulation of insulin resistance, adipocytokines and inflammatory cytokine levels in obese type 2 diabetic patients. J. Adv. Res. 2, 179–183 (2011)

    Article  Google Scholar 

  123. S. Balducci, S. Zanuso, A. Nicolucci, F. Fernando, S. Cavallo, P. Cardelli, S. Fallucca, E. Alessi, C. Letizia, A. Jimenez, F. Fallucca, G. Pugliese, Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr. Metab. Cardiovasc. Dis. 20, 608–617 (2010)

    Article  CAS  PubMed  Google Scholar 

  124. M. Straczkowski, I. Kowalska, S. Dzienis-Straczkowska, A. Stepién, E. Skibinska, M. Szelachowska, I. Kinalska, Changes in tumor necrosis factor-alpha system and insulin sensitivity during an exercise training program in obese women with normal and impaired glucose tolerance. Eur. J. Endocrinol. 145, 273–280 (2001)

    Article  CAS  PubMed  Google Scholar 

  125. I. Giannopoulou, B. Fernhall, R. Carhart, R.S. Weinstock, T. Baynard, A. Figueroa, J.A. Kanaley, Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism 54, 866–875 (2005)

    Article  CAS  PubMed  Google Scholar 

  126. N.P. Kadoglou, F. Iliadis, N. Angelopoulou, D. Perrea, G. Ampaatzidis, C.D. Liapis, M. Alevizos, The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur. J. Cardiovasc. Prev. Rehabil. 14, 837–843 (2007)

    Article  PubMed  Google Scholar 

  127. A. Nguyen, N. Duquette, M. Mamarbachi, E. Thorin, Epigenetic regulatory effect of exercise on glutathione peroxidase 1 expression in the skeletal muscle of severely dyslipidemic mice. PLoS One 17(10), e0142287 (2016)

    Google Scholar 

  128. Z. Qi, J. He, Y. Zhang, Y. Shao, S. Ding, Exercise training attenuates oxidative stress and decreases p53 protein content in skeletal muscle of type 2 diabetic Goto–Kazaki rats. Free Radic. Biol. Med. 50, 794–800 (2011)

    Article  CAS  PubMed  Google Scholar 

  129. M.C. Gomez-Cabrera, E. Domenech, J. Vina, Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic. Biol. Med. 44, 126–131 (2008)

    Article  CAS  PubMed  Google Scholar 

  130. L.L. Ji, Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic. Biol. Med. 44, 142–152 (2008)

    Article  CAS  PubMed  Google Scholar 

  131. R.T. Iborra, I.C. Ribeiro, M.Q. Neves, A.M. Charf, S.A. Lottenberg, C.E. Negrao, E.R. Nakandakare, M. Passarelli, Aerobic exercise training improves the role of high-density lipoprotein antioxidant and reduces plasma lipid peroxidation in type 2 diabetes mellitus. Scand. J. Med. Sci. Sports 18, 742–750 (2008)

    Article  CAS  PubMed  Google Scholar 

  132. G. Lazarevic, S. Antic, T. Cvetkovic, V. Djordjevic, P. Vlahovic, V. Stefanovic, Effects of regular exercise on cardiovascular risk factors profile and oxidative stress in obese type 2 diabetic patients in regard to SCORE risk. Acta Cardiol. 63, 485–491 (2008)

    Article  PubMed  Google Scholar 

  133. C.K. Roberts, D. Won, S. Pruthi, S.S. Lin, R.J. Barnard, Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men. Diabetes Res. Clin. Pract. 73, 249–259 (2006)

    Article  CAS  PubMed  Google Scholar 

  134. T.P. Wycherley, G.D. Brinkworth, M. Noakes, J.D. Buckley, P.M. Clifton, Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes. Metab. 10, 1062–1073 (2008)

    Article  CAS  PubMed  Google Scholar 

  135. S. Kurban, I. Mehmetoglu, J.F. Yerlikaya, S. Gönen, S. Erdem, Effect of chronic regular exercise on serum ischemia-modified albumin levels and oxidative stress in type 2 diabetes mellitus. Endocr. Res. 36, 116–123 (2011)

    Article  CAS  PubMed  Google Scholar 

  136. Z. Radak, M. Sasvari, C. Nyakas, T. Kaneko, S. Tahara, H. Ohno, S. Goto, Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem. Int. 39, 33–38 (2001)

    Article  CAS  PubMed  Google Scholar 

  137. A.E. Speck, C.B. Tromm, B.G. Pozzi, C.S. Paganini, T. Tuon, P.C. Silveira, A.S. Aguiar Jr., R.A. Pinho, The dose-dependent antioxidant effects of physical exercise in the hippocampus of mice. Neurochem. Res. 39, 1496–1501 (2014)

    Article  CAS  PubMed  Google Scholar 

  138. S. Bayod, C. Guzmán-Brambila, S. Sanchez-Roige, J.F. Lalanza, P. Kaliman, D. Ortuno-Sahagun, R.M. Escorihuela, M. Pallàs, Voluntary exercise promotes beneficial anti-aging mechanisms in SAMP8 female brain. J. Mol. Neurosci. 55, 525–532 (2015)

    Article  CAS  PubMed  Google Scholar 

  139. J.J. Dubé, F. Amati, F.G.S. Toledo, M. Stefanovic-Racic, A. Rossi, P. Coen, B.H. Goodpaster, Effect of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 54, 1147–1156 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. T. Kasumov, T.P.J. Solomon, C. Hwang, H. Huang, J.M. Haus, R. Zhang, J.P. Kirwan, Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes. Obesity 23, 1414–1421 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. T.W. Lin, Y.H. Shih, S.J. Chen, C.H. Lien, C.Y. Chang, T.Y. Huang, S.H. Chen, C.J. Jen, Y.M. Kuo, Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer’s disease (APP/PS1) transgenic mice. Neurobiol. Learn. Mem. 118, 189–197 (2015)

    Article  CAS  PubMed  Google Scholar 

  142. L.A. Consitt, J.L. Copeland, M.S. Tremblay, Endogenous anabolic hormone responses to endurance versus resistance exercise and training in women. Sports Med. 32, 1–22 (2002)

    Article  PubMed  Google Scholar 

  143. R.M. Daly, D.W. Dunstan, N. Owen, D. Jolley, J.E. Shaw, P.Z. Zimmet, Does high-intensity resistance training maintain bone mass during moderate weight loss in older overweight adults with type 2 diabetes? Osteoporos. Int. 16, 1703–1712 (2005)

    Article  PubMed  Google Scholar 

  144. J. Ibanez, M. Izquierdo, I. Arguelles, L. Forga, J.L. Larrión, M. García-Unciti, F. Idoate, E.M. Gorostiaga, Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care 28, 662–667 (2005)

    Article  PubMed  Google Scholar 

  145. C.W. Cotman, N.C. Berchtold, L.A. Christie, Exercise builds brain health. Key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472 (2007)

    Article  CAS  PubMed  Google Scholar 

  146. C.H. Hillman, K.I. Erickson, A.F. Kramer, Be smart, exercise your heart. Exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65 (2008)

    Article  CAS  PubMed  Google Scholar 

  147. T. Huang, K.T. Larsen, M. Ried-Larsen, N.C. Møller, L.B. Andersen, The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans. A review. Scand. J Med. Sci. Sports 24, 1–10 (2014)

    Article  PubMed  Google Scholar 

  148. D.K. Binder, H.E. Scharfman, Brain-derived neurotrophic factor. Growth Factors 22, 123–131 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. K. Marosi, M.P. Mattson, BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol. Metab. 25, 89–98 (2014)

    Article  CAS  PubMed  Google Scholar 

  150. B.K. Pedersen, Muscles and their myokines. J. Exp. Biol. 214, 337–346 (2010)

    Article  CAS  Google Scholar 

  151. C. Zuccato, E. Cattaneo, Brain-derived neurotrophic factor in neurodegenerative diseases. Nat. Rev. Neurol. 5, 311–322 (2009)

    Article  CAS  PubMed  Google Scholar 

  152. K. Knaepen, M. Goekint, E.M. Heyman, R. Meeusen, Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 40, 765–801 (2010)

    Article  PubMed  Google Scholar 

  153. V.B. Matthews, M.-B. Åström, M.H.S. Chan, C.R. Bruce, K.S. Krabbe, O. Prelovsek, T. Åkerström, C. Yfanti, C. Broholm, O.H. Mortensen, M. Penkowa, P. Hojman, A. Zankari, M.J. Watt, H. Bruunsgaard, B.K. Pedersen, M.A. Febbraio, Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418 (2009)

    Article  CAS  PubMed  Google Scholar 

  154. P. Rasmussen, P. Brassard, H. Adser, M.V. Pedersen, L. Leick, E. Hart, N.H. Secher, B.K. Pedersen, H. Pilegaard, Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062–1069 (2009)

    Article  CAS  PubMed  Google Scholar 

  155. G.S. Griesbach, D.A. Hovda, F. Gomez-Pinilla, Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res. 1288, 105–115 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. S. Vayman, Z. Ying, F. Gomez-Pinilla, Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590 (2004)

    Article  Google Scholar 

  157. K.A. Intlekofer, C.W. Cotman, Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 57, 47–55 (2013)

    Article  CAS  PubMed  Google Scholar 

  158. K.I. Erickson, M.W. Voss, R.S. Prakash, C. Basak, A. Szabo, L. Chaddock, J.S. Kim, S. Heo, H. Alves, S.M. White, T.R. Wojcicki, E. Mailey, V.J. Vieira, S.A. Martin, B.D. Pence, J.A. Woods, E. McAuley, A.F. Kramer, Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA 108, 3017–3022 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. L.F. ten Brinke, N. Bolandzadeh, L.S. Nagamatsu, C.L. Hsu, J.C. Davis, K. Miran-Khan, T. Liu-Ambrose, Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br. J. Sports Med. 49, 248–254 (2015)

    Article  PubMed  Google Scholar 

  160. S.R. Colberg, A.L. Albright, B.J. Blissmer, B. Braun, L. Chasan-Taber, B. Fernhall, J.G. Regensteiner, R.R. Rubin, R.J. Sigal, American College of Sports Medicine; American Diabetes Association. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Med. Sci. Sports Exerc. 42, 2282–2303 (2010)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brinkmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertram, S., Brixius, K. & Brinkmann, C. Exercise for the diabetic brain: how physical training may help prevent dementia and Alzheimer’s disease in T2DM patients. Endocrine 53, 350–363 (2016). https://doi.org/10.1007/s12020-016-0976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0976-8

Keywords

Navigation