Skip to main content

Advertisement

Log in

Increase in endogenous estradiol in the progeny of obese rats is associated with precocious puberty and altered follicular development in adulthood

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Maternal obesity during pregnancy has been related with several pathological states in offspring. However, the impact of maternal obesity on reproductive system on the progeny is beginning to be elucidated. In this work, we characterize the effect of maternal obesity on puberty onset and follicular development in adult offspring in rats. We also propose that alterations in ovarian physiology observed in offspring of obese mothers are due to increased levels of estradiol during early development. Offspring of control dams and offspring of dams exposed to a high-fat diet (HF) were studied at postnatal days (PND) 1, 7, 14, 30, 60, and 120. Body weight and onset of puberty were measured. Counting of ovarian follicles was performed at PND 60 and 120. Serum estradiol, estriol, androstenedione, FSH, LH, and insulin levels were measured by ELISA. Hepatic CYP3A2 expression was determined by Western blot. HF rats had a higher weight than controls at all ages and they also had a precocious puberty. Estradiol levels were increased while CYP3A2 expression was reduced from PND 1 until PND 60 in HF rats compared to controls. Estriol was decreased at PND60 in HF rats. Ovaries from HF rats had a decrease in antral follicles at PND60 and PND120 and an increase in follicular cysts at PND60 and PND120. In this work, we demonstrated that maternal obesity in rats alters follicular development and induces follicular cysts generation in the adult offspring. We observed that maternal obesity produces an endocrine disruption through increasing endogenous estradiol in early life. A programmed failure in hepatic metabolism of estradiol is probably the cause of its increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.S. Jungheim, J.L. Travieso, K.R. Carson, K.H. Moley, Obesity and reproductive function. Obstet. Gynecol. Clin. North Am. 39(4), 479–493 (2012). doi:10.1016/j.ogc.2012.09.002

    Article  PubMed  PubMed Central  Google Scholar 

  2. C.J. Lavie, P.A. McAuley, T.S. Church, R.V. Milani, S.N. Blair, Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. Coll. Cardiol. 63(14), 1345–1354 (2014). doi:10.1016/j.jacc.2014.01.022

    Article  PubMed  Google Scholar 

  3. K. Ghoshal, M. Bhattacharyya, Adiponectin: probe of the molecular paradigm associating diabetes and obesity. World J Diabetes 6(1), 151–166 (2015). doi:10.4239/wjd.v6.i1.151

    Article  PubMed  PubMed Central  Google Scholar 

  4. C.P. Rodrigo, Current mapping of obesity. Nutr. Hosp. 28(Suppl 5), 21–31 (2013). doi:10.3305/nh.2013.28.sup5.6915

    Google Scholar 

  5. V.H. Roberts, A.E. Frias, K.L. Grove, Impact of maternal obesity on fetal programming of cardiovascular disease. Physiology 30(3), 224–231 (2015). doi:10.1152/physiol.00021.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. O. Paliy, C.J. Piyathilake, A. Kozyrskyj, G. Celep, F. Marotta, R. Rastmanesh, Excess body weight during pregnancy and offspring obesity: potential mechanisms. Nutrition 30(3), 245–251 (2014). doi:10.1016/j.nut.2013.05.011

    Article  PubMed  Google Scholar 

  7. C.E. McCurdy, J.M. Bishop, S.M. Williams, B.E. Grayson, M.S. Smith, J.E. Friedman, K.L. Grove, Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J. Clin. Investig. 119(2), 323–335 (2009). doi:10.1172/JCI32661

    CAS  PubMed  PubMed Central  Google Scholar 

  8. A. Mouralidarane, J. Soeda, C. Visconti-Pugmire, A.M. Samuelsson, J. Pombo, X. Maragkoudaki, A. Butt, R. Saraswati, M. Novelli, G. Fusai, L. Poston, P.D. Taylor, J.A. Oben, Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology 58(1), 128–138 (2013). doi:10.1002/hep.26248

    Article  CAS  PubMed  Google Scholar 

  9. T.J. Pereira, M.A. Fonseca, K.E. Campbell, B.L. Moyce, L.K. Cole, G.M. Hatch, C.A. Doucette, J. Klein, M. Aliani, V.W. Dolinsky, Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome. J Physiol (2015). doi:10.1113/JP270429

    Google Scholar 

  10. P. Catalano, S.H. deMouzon, Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes 39(4), 642–649 (2015). doi:10.1038/ijo.2015.15

    Article  CAS  Google Scholar 

  11. P.D. Taylor, A.M. Samuelsson, L. Poston, Maternal obesity and the developmental programming of hypertension: a role for leptin. Acta Physiol. 210(3), 508–523 (2014). doi:10.1111/apha.12223

    Article  CAS  Google Scholar 

  12. Y. Cheong, K.H. Sadek, K.D. Bruce, N. Macklon, F.R. Cagampang, Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring. Fertil. Steril. 102(3), 899–907 (2014). doi:10.1016/j.fertnstert.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  13. K.L. Connor, M.H. Vickers, J. Beltrand, M.J. Meaney, D.M. Sloboda, Nature, nurture or nutrition? Impact of maternal nutrition on maternal care, offspring development and reproductive function. J Physiol 590(Pt 9), 2167–2180 (2012). doi:10.1113/jphysiol.2011.223305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D.M. Sloboda, G.J. Howie, A. Pleasants, P.D. Gluckman, M.H. Vickers, Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One 4(8), e6744 (2009). doi:10.1371/journal.pone.0006744

    Article  PubMed  PubMed Central  Google Scholar 

  15. S.A. Keim, A.M. Branum, M.A. Klebanoff, B.S. Zemel, Maternal body mass index and daughters’ age at menarche. Epidemiology 20(5), 677–681 (2009). doi:10.1097/EDE.0b013e3181b093ce

    Article  PubMed  PubMed Central  Google Scholar 

  16. G.C. Windham, L. Zhang, M.P. Longnecker, M. Klebanoff, Maternal smoking, demographic and lifestyle factors in relation to daughter’s age at menarche. Paediatr. Perinat. Epidemiol. 22(6), 551–561 (2008). doi:10.1111/j.1365-3016.2008.00948.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. L. Hilakivi-Clarke, R. Clarke, I. Onojafe, M. Raygada, E. Cho, M. Lippman, A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc. Natl. Acad. Sci. USA 94(17), 9372–9377 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. G. Cruz, R. Barra, D. Gonzalez, R. Sotomayor-Zarate, H.E. Lara, Temporal window in which exposure to estradiol permanently modifies ovarian function causing polycystic ovary morphology in rats. Fertil. Steril. 98(5), 1283–1290 (2012). doi:10.1016/j.fertnstert.2012.07.1060

    Article  CAS  PubMed  Google Scholar 

  19. W.H. Nah, M.J. Park, M.C. Gye, Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med 38(2), 75–81 (2011). doi:10.5653/cerm.2011.38.2.75

    Article  PubMed  PubMed Central  Google Scholar 

  20. Y. Li, W. Zhang, J. Liu, W. Wang, H. Li, J. Zhu, S. Weng, S. Xiao, T. Wu, Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod. Toxicol. 44, 33–40 (2014). doi:10.1016/j.reprotox.2013.09.002

    Article  PubMed  Google Scholar 

  21. R. Sotomayor-Zarate, M. Tiszavari, G. Cruz, H.E. Lara, Neonatal exposure to single doses of estradiol or testosterone programs ovarian follicular development-modified hypothalamic neurotransmitters and causes polycystic ovary during adulthood in the rat. Fertil. Steril. 96(6), 1490–1496 (2011). doi:10.1016/j.fertnstert.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  22. S. de Assis, A. Warri, M.I. Cruz, O. Laja, Y. Tian, B. Zhang, Y. Wang, T.H. Huang, L. Hilakivi-Clarke, High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 3, 1053 (2012). doi:10.1038/ncomms2058

    Article  PubMed  PubMed Central  Google Scholar 

  23. J. Wojcikowski, A. Haduch, W.A. Daniel, Effect of classic and atypical neuroleptics on cytochrome P450 3A (CYP3A) in rat liver. Pharmacol Rep: PR 64(6), 1411–1418 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. H. Yamazaki, P.M. Shaw, F.P. Guengerich, T. Shimada, Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem. Res. Toxicol. 11(6), 659–665 (1998). doi:10.1021/tx970217f

    Article  CAS  PubMed  Google Scholar 

  25. M. Tajima, N. Ikarashi, Y. Imahori, T. Okaniwa, K. Saruta, M. Ishii, Y. Kusunoki, R. Kon, T. Toda, W. Ochiai, H. Yamada, K. Sugiyama, Consumption of a high-fat diet during pregnancy decreases the activity of cytochrome P450 3a in the livers of offspring. Eur J Pharm Sci 47(1), 108–116 (2012). doi:10.1016/j.ejps.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  26. L.L. Moltke, D.J. Greenblatt, J. Schmider, J.S. Harmatz, R.I. Shader, Metabolism of drugs by cytochrome P450 3A isoforms implications for drug interactions in psychopharmacology. Clin Pharmacokinet 29(Suppl 1), 33–43 (1995). (discussion 43–34)

    Article  Google Scholar 

  27. G.M. Centola, Surface features of exfoliated vaginal epithelial cells during the oestrous cycle of the rat examined by scanning electron microscopy. J. Anat. 127(Pt 3), 553–561 (1978)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Barria, V. Leyton, S.R. Ojeda, H.E. Lara, Ovarian steroidal response to gonadotropins and beta-adrenergic stimulation is enhanced in polycystic ovary syndrome: role of sympathetic innervation. Endocrinology 133(6), 2696–2703 (1993). doi:10.1210/endo.133.6.8243293

    CAS  PubMed  Google Scholar 

  29. E.G. Bligh, W.J. Dyer, A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8), 911–917 (1959)

    Article  CAS  PubMed  Google Scholar 

  30. V.D. Ramirez, C.H. Sawyer, Advancement of puberty in the female rat by estrogen. Endocrinology 76, 1158–1168 (1965). doi:10.1210/endo-76-6-1158

    Article  CAS  PubMed  Google Scholar 

  31. V. Matagne, G. Rasier, M.C. Lebrethon, A. Gerard, J.P. Bourguignon, Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology 145(6), 2775–2783 (2004). doi:10.1210/en.2003-1259

    Article  CAS  PubMed  Google Scholar 

  32. S.M. Losa-Ward, K.L. Todd, K.A. McCaffrey, K. Tsutsui, H.B. Patisaul, Disrupted organization of RFamide pathways in the hypothalamus is associated with advanced puberty in female rats neonatally exposed to bisphenol A. Biol. Reprod. 87(2), 28 (2012). doi:10.1095/biolreprod.112.100826

    Article  PubMed  PubMed Central  Google Scholar 

  33. T. Yum, S. Lee, Y. Kim, Association between precocious puberty and some endocrine disruptors in human plasma. J Environ Sci Health Part A, Toxic/Hazard Subst Environ Eng 48(8), 912–917 (2013). doi:10.1080/10934529.2013.762734

    Article  CAS  Google Scholar 

  34. T.J. Key, N.E. Allen, E.A. Spencer, R.C. Travis, Nutrition and breast cancer. Breast 12(6), 412–416 (2003)

    Article  PubMed  Google Scholar 

  35. R.C. Travis, T.J. Key, Oestrogen exposure and breast cancer risk. Breast Cancer Res: BCR 5(5), 239–247 (2003). doi:10.1186/bcr628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Cruz, W. Foster, A. Paredes, K.D. Yi, M. Uzumcu, Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J. Neuroendocrinol. 26(9), 613–624 (2014). doi:10.1111/jne.12181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. C.D. Fisher, A.J. Lickteig, L.M. Augustine, J. Ranger-Moore, J.P. Jackson, S.S. Ferguson, N.J. Cherrington, Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos Biol Fate Chem 37(10), 2087–2094 (2009). doi:10.1124/dmd.109.027466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D. Kolwankar, R. Vuppalanchi, B. Ethell, D.R. Jones, S.A. Wrighton, S.D. Hall, N. Chalasani, Association between nonalcoholic hepatic steatosis and hepatic cytochrome P-450 3A activity. Clin Gastroenterol Hepatol 5(3), 388–393 (2007). doi:10.1016/j.cgh.2006.12.021

    Article  CAS  PubMed  Google Scholar 

  39. S.J. Woolsey, S.E. Mansell, R.B. Kim, R.G. Tirona, M.D. Beaton, CYP3A activity and expression in nonalcoholic fatty liver disease. Drug Metab Dispos 43(10), 1484–1490 (2015). doi:10.1124/dmd.115.065979

    Article  CAS  PubMed  Google Scholar 

  40. S.A. Bayol, B.H. Simbi, R.C. Fowkes, N.C. Stickland, A maternal “junk food” diet in pregnancy and lactation promotes nonalcoholic Fatty liver disease in rat offspring. Endocrinology 151(4), 1451–1461 (2010). doi:10.1210/en.2009-1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. M. Mukai, K. Ozasa, K. Hayashi, K. Kawai, Various S-GOT/S-GPT ratios in nonviral liver disorders and related physical conditions and life-style. Dig. Dis. Sci. 47(3), 549–555 (2002)

    Article  CAS  PubMed  Google Scholar 

  42. Z. Abdel-Razzak, P. Loyer, A. Fautrel, J.C. Gautier, L. Corcos, B. Turlin, P. Beaune, A. Guillouzo, Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol. Pharmacol. 44(4), 707–715 (1993)

    CAS  PubMed  Google Scholar 

  43. T. Zhou, S. Cong, S. Sun, H. Sun, R. Zou, S. Wang, C. Wang, J. Jiao, K. Goto, H. Nawata, T. Yanase, Y. Zhao, Identification of endocrine disrupting chemicals activating SXR-mediated transactivation of CYP3A and CYP7A1. Mol. Cell. Endocrinol. 365(1), 36–43 (2013). doi:10.1016/j.mce.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  44. S.Y. Choi, K.H. Koh, H. Jeong, Isoform-specific regulation of cytochromes P450 expression by estradiol and progesterone. Drug metabolism and disposition: the biological fate of chemicals 41(2), 263–269 (2013). doi:10.1124/dmd.112.046276

    Article  CAS  Google Scholar 

  45. R. Sotomayor-Zarate, M. Dorfman, A. Paredes, H.E. Lara, Neonatal exposure to estradiol valerate programs ovarian sympathetic innervation and follicular development in the adult rat. Biol. Reprod. 78(4), 673–680 (2008). doi:10.1095/biolreprod.107.063974

    Article  CAS  PubMed  Google Scholar 

  46. G. Cruz, R. Riquelme, P. Espinosa, P. Jara, A. Dagnino-Subiabre, G.M. Renard, R. Sotomayor-Zarate, Neonatal exposure to estradiol valerate increases dopamine content in nigrostriatal pathway during adulthood in the rat. Horm Metab Res 46(5), 322–327 (2014). doi:10.1055/s-0033-1361159

    CAS  PubMed  Google Scholar 

  47. M.K. Moon, I.K. Jeong, T.J. Oh, H.Y. Ahn, H.H. Kim, Y.J. Park, H.C. Jang, K.S. Park, Long-term oral exposure to bisphenol A induces glucose intolerance and insulin resistance. J Endocrinol (2015). doi:10.1530/JOE-14-0714

    PubMed  Google Scholar 

  48. C. Alexanderson, E. Eriksson, E. Stener-Victorin, M. Lonn, A. Holmang, Early postnatal oestradiol exposure causes insulin resistance and signs of inflammation in circulation and skeletal muscle. J Endocrinol 201(1), 49–58 (2009). doi:10.1677/JOE-08-0534

    Article  CAS  PubMed  Google Scholar 

  49. A.M. Zama, M. Uzumcu, Targeted genome-wide methylation and gene expression analyses reveal signaling pathways involved in ovarian dysfunction after developmental EDC exposure in rats. Biol. Reprod. 88(2), 52 (2013). doi:10.1095/biolreprod.112.104802

    Article  PubMed  PubMed Central  Google Scholar 

  50. A.E. Armenti, A.M. Zama, L. Passantino, M. Uzumcu, Developmental methoxychlor exposure affects multiple reproductive parameters and ovarian folliculogenesis and gene expression in adult rats. Toxicol. Appl. Pharmacol. 233(2), 286–296 (2008). doi:10.1016/j.taap.2008.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. D.H. Abbott, D.A. Dumesic, S. Franks, Developmental origin of polycystic ovary syndrome—a hypothesis. J Endocrinol 174(1), 1–5 (2002)

    Article  CAS  PubMed  Google Scholar 

  52. V. Padmanabhan, A. Veiga-Lopez, Developmental origin of reproductive and metabolic dysfunctions: androgenic versus estrogenic reprogramming. Sem Reprod Med 29(3), 173–186 (2011). doi:10.1055/s-0031-1275519

    Article  Google Scholar 

  53. H. Li, Y. Chen, L.Y. Yan, J. Qiao, Increased expression of P450scc and CYP17 in development of endogenous hyperandrogenism in a rat model of PCOS. Endocrine 43(1), 184–190 (2013). doi:10.1007/s12020-012-9739-3

    Article  CAS  PubMed  Google Scholar 

  54. A.D. Genazzani, F. Ricchieri, C. Lanzoni, Use of metformin in the treatment of polycystic ovary syndrome. Women’s Health 6(4), 577–593 (2010). doi:10.2217/whe.10.43

    Article  CAS  PubMed  Google Scholar 

  55. N.P. Johnson, Metformin use in women with polycystic ovary syndrome. Ann Transl Med 2(6), 56 (2014). doi:10.3978/j.issn.2305-5839.2014.04.15

    PubMed  PubMed Central  Google Scholar 

  56. G.L. Rodriguez-Gonzalez, C.C. Vega, L. Boeck, M. Vazquez, C.J. Bautista, L.A. Reyes-Castro, O. Saldana, D. Lovera, P.W. Nathanielsz, E. Zambrano, Maternal obesity and overnutrition increase oxidative stress in male rat offspring reproductive system and decrease fertility. Int J Obes 39(4), 549–556 (2015). doi:10.1038/ijo.2014.209

    Article  CAS  Google Scholar 

  57. H.M. Rivera, K.J. Christiansen, E.L. Sullivan, The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci 9, 194 (2015). doi:10.3389/fnins.2015.00194

    Article  PubMed  PubMed Central  Google Scholar 

  58. L. Fan, S.R. Lindsley, S.M. Comstock, D.L. Takahashi, A.E. Evans, G.W. He, K.L. Thornburg, K.L. Grove, Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes 37(2), 254–262 (2013). doi:10.1038/ijo.2012.42

    Article  CAS  Google Scholar 

  59. A.M. Samuelsson, A. Morris, N. Igosheva, S.L. Kirk, J.M. Pombo, C.W. Coen, L. Poston, P.D. Taylor, Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension 55(1), 76–82 (2010). doi:10.1161/HYPERTENSIONAHA.109.139402

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fondecyt Initiation Grant 11130707-CONICYT. Additional funds were provided by Center for Neurobiology and Cerebral Plasticity (CNPC)—Universidad de Valparaíso. We thank Dr. Gladys Tapia from University of Chile for helping with hepatic studies and Dr. Alfonso Paredes from University of Chile for kindly providing LH and FSH kits. We thank to Ms. Tania Cerda from University of Valparaíso for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Cruz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Valery Ambrosetti and Marcelo Guerra have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosetti, V., Guerra, M., Ramírez, L.A. et al. Increase in endogenous estradiol in the progeny of obese rats is associated with precocious puberty and altered follicular development in adulthood. Endocrine 53, 258–270 (2016). https://doi.org/10.1007/s12020-016-0858-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0858-0

Keywords

Navigation