Skip to main content

Advertisement

Log in

Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The aim of the study was to assess the effect of sitagliptin addition on the epicardial adipose tissue (EAT) thickness in subjects with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. This was a 24-week interventional pilot study in 26 consecutive type 2 diabetic patients, 14 females and 12 males average age of 43.8 ± 9.0 years, with Hemoglobin A1c (HbA1c) ≥7 % on metformin monotherapy. Subjects who met the inclusion criteria were added on sitagliptin and started on sitagliptin/metformin combination at the dosage of 50 mg/1000 mg twice daily. EAT and visceral and total body fat were measured, respectively, with echocardiography and bioelectrical impedance analysis at baseline and after 24 weeks of sitagliptin/metformin treatment in each subject. HbA1c and plasma lipids were also measured. EAT decreased significantly from 9.98 ± 2.63 to 8.10 ± 2.11 mm, p = 0.001, accounting for a percentage of reduction (∆ %) of −15 % after 24 weeks of sitagliptin addition, whereas total body fat percentage, visceral fat, and body mass index (BMI), decreased by 8, 12, and 7 %, respectively (p = 0.001 for all). After 6 month, EAT ∆ % was significantly correlated with ∆ % of visceral fat (r = 0.456; p = 0.01), whereas no correlation with either BMI ∆ % (r = 0.292; p = 0.147) or HbA1c ∆ % was found. The addition of Sitagliptin produced a significant and rapid reduction of EAT, marker of organ-specific visceral fat, in overweight/obese individuals with type 2 diabetes inadequately controlled on metformin monotherapy. EAT as measured with ultrasound can serve as no invasive and accurate marker of visceral fat changes during pharmaceutical interventions targeting the fat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Iacobellis, A.M. Sharma, Epicardial adipose tissue as new cardio-metabolic risk marker and potential therapeutic target in the metabolic syndrome. Curr. Pharm. Des. 13, 2180–2184 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. A. Gastaldelli, G. Basta, Ectopic fat and cardiovascular disease: what is the link? Nutr. Metab. Cardiovasc. Dis. 20, 481–490 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. G. Iacobellis, D. Corradi, A.M. Sharma, Epicardial adipose tissue: anatomical, biomolecular and clinical relation to the heart. Nat. Clin. Pract. Cardiovasc. Med. 2, 536–543 (2005)

    Article  PubMed  Google Scholar 

  4. G. Iacobellis, Epicardial adipose tissue in endocrine and metabolic diseases. Endocrine 46, 8–15 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. M.M. Lima-Martínez, C. Blandenier, G. Iacobellis, Epicardial adipose tissue: more than a simple fat deposit? Endocrinol. Nutr. 60, 320–328 (2013)

    Article  PubMed  Google Scholar 

  6. G. Iacobellis, Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol. 11, 363–371 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. G. Iacobellis, H.J. Willens, Echocardiographic epicardial fat: a review of research and clinical applications. J. Am. Soc. Echocardiogr. 22, 1311–1319 (2009)

    Article  PubMed  Google Scholar 

  8. A.E. Malavazos, G. Di Leo, F. Secchi, E.N. Lupo, G. Dogliotti, C. Coman, L. Morricone, M.M. Corsi, F. Sardanelli, G. Iacobellis, Relation of echocardiographic epicardial fat thickness and myocardial fat. Am. J. Cardiol. 105, 1831–1835 (2010)

    Article  PubMed  Google Scholar 

  9. G. Iacobellis, M.C. Ribaudo, F. Assael, E. Vecci, C. Tiberti, A. Zappaterreno, U. Di Mario, F. Leonetti, Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 88, 5163–5168 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. M.M. Lima-Martínez, G. López-Mendez, R. Odreman, J.H. Donis, M. Paoli, Epicardial adipose tissue thickness and its association with adiponectin in metabolic syndrome patients from Mérida, Venezuela. Arq. Bras. Endocrinol. Metab. 58, 352–361 (2014)

    Article  Google Scholar 

  11. S.D. Pierdomenico, A.M. Pierdomenico, F. Cuccurullo, G. Iacobellis, Meta-analysis of the relation of echocardiographic epicardial adipose tissue thickness and the metabolic syndrome. Am. J. Cardiol. 111, 73–78 (2013)

    Article  PubMed  Google Scholar 

  12. G. Iacobellis, E. Lonn, A. Lamy, N. Singh, A.M. Sharma, Epicardial fat thickness and coronary artery disease correlate independently of obesity. Int. J. Cardiol. 146, 452–454 (2011)

    Article  PubMed  Google Scholar 

  13. Y. Xu, X. Cheng, K. Hong, C. Huang, L. Wan, How to interpret epicardial adipose tissue as a cause of coronary artery disease: a meta-analysis. Coron. Artery Dis. 23, 227–233 (2012)

    Article  PubMed  Google Scholar 

  14. H.S. Sacks, J.N. Fain, P. Cheema, S.W. Bahouth, E. Garrett, R.Y. Wolf, D. Wolford, J. Samaha, Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: changes associated with pioglitazone. Diabetes Care 34, 730–733 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. J.T. Jonker, H.J. Lamb, R.W. van der Meer, L.J. Rijzewijk, L.J. Menting, M. Diamant, J.J. Bax, A. de Roos, J.A. Romijn, J.W. Smit, Pioglitazone compared with metformin increases pericardial fat volume in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 95, 456–460 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. J.H. Park, Y.S. Park, Y.J. Kim, I.S. Lee, J.H. Kim, J.H. Lee, S.W. Choi, J.O. Jeong, I.W. Seong, Effects of statins on the epicardial fat thickness in patients with coronary artery stenosis underwent percutaneous coronary intervention: comparison of atorvastatin with simvastatin/ezetimibe. J. Cardiovasc. Ultrasound. 18, 121–126 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  17. G. Iacobellis, N. Singh, S. Wharton, A.M. Sharma, Substantial changes in epicardial fat thickness after weight loss in severely obese subjects. Obesity 16, 1693–1697 (2008)

    Article  PubMed  Google Scholar 

  18. H.J. Willens, P. Byers, J.A. Chirinos, E. Labrador, J.M. Hare, E. de Marchena, Effects of weight loss after bariatric surgery on epicardial fat measured using echocardiography. Am. J. Cardiol. 99, 1242–1245 (2007)

    Article  PubMed  Google Scholar 

  19. A.J. Scheen, Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes. Postgrad. Med. 125, 7–20 (2013)

    Article  PubMed  Google Scholar 

  20. A. Mikada, T. Narita, H. Yokoyama, R. Yamashita, Y. Horikawa, K. Tsukiyama, Y. Yamada, Effects of miglitol, sitagliptin, and initial combination therapy with both on plasma incretin responses to a mixed meal and visceral fat in over-weight Japanese patients with type 2 diabetes. “The MASTER randomized, controlled trial”. Diabetes Res. Clin. Pract. 106, 538–547 (2014)

    Article  CAS  PubMed  Google Scholar 

  21. R. Scott, T. Loeys, M.J. Davies, S.S. Engel, Sitagliptin Study 801 Group, Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes. Obes. Metab. 10, 959–969 (2008)

    Article  CAS  Google Scholar 

  22. American Diabetes Association, Classification and diagnosis of diabetes. Diabetes Care 38(Suppl), S8–S16 (2015)

    Article  Google Scholar 

  23. American Diabetes Association, Foundations of care: education, nutrition, physical activity, smoking cessation, psychosocial care, and immunization. Diabetes Care 38(Suppl), S20–S30 (2015)

    Article  Google Scholar 

  24. D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985)

    Article  CAS  PubMed  Google Scholar 

  25. G. Iacobellis, F. Assael, M.C. Ribaudo, A. Zappaterreno, G. Alessi, U. Di Mario, F. Leonetti, Epicardial fat from echocardiography: a new method for visceral adipose tissue prediction. Obes. Res. 11, 304–310 (2003)

    Article  PubMed  Google Scholar 

  26. T.B. Nguyen-Duy, M.Z. Nichaman, T.S. Church, S.N. Blair, R. Ross, Visceral fat and liver fat are independent predictors of metabolic risk factors in men. Am. J. Physiol. Endocrinol. Metab. 284, E1065–E1071 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. M.M. Lima-Martínez, M. Paoli, J.H. Donis, R. Odreman, C. Torres, G. Iacobellis, Cut-off point of epicardial adipose tissue thickness for predicting metabolic syndrome in Venezuelan population. Endocrinol. Nutr. 60, 570–576 (2013)

    Article  PubMed  Google Scholar 

  28. G. Iacobellis, G. Barbaro, H.C. Gerstein, Relationship of epicardial fat thickness and fasting glucose. Int. J. Cardiol. 128, 424–426 (2008)

    Article  PubMed  Google Scholar 

  29. G. Iacobellis, F. Leonetti, Epicardial adipose tissue and insulin resistance in obese subjects. J. Clin. Endocrinol. Metab. 90, 6300–6302 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. G. Iacobellis, S. Diaz, A. Mendez, R. Goldberg, Increased epicardial fat and plasma leptin in type 1 diabetes independently of obesity. Nutr. Metab. Cardiovasc. Dis. 24, 725–729 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. S.W. Rabkin, H. Campbell, Comparison of reducing epicardial fat by exercise, diet or bariatric surgery weight loss strategies: a systematic review and meta-analysis. Obes. Rev. 16, 406–415 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Y. Yilmaz, O. Yonal, O. Deyneli, C.A. Celikel, C. Kalayci, D.G. Duman, Effects of sitagliptin in diabetic patients with nonalcoholic steatohepatitis. Acta Gastroenterol. Belg. 75, 240–244 (2012)

    PubMed  Google Scholar 

  33. M. Itou, T. Kawaguchi, E. Taniguchi, T. Oriishi, M. Sata, Dipeptidyl peptidase IV inhibitor improves insulin resistance and steatosis in a refractory nonalcoholic fatty liver disease patient: a case report. Case Rep. Gastroenterol. 6, 538–544 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  34. G. Iacobellis, G. Barbarini, C. Letizia, G. Barbaro, Epícardial fat thickness and nonalcoholic fatty liver disease in obese subjects. Obesity (Silver Spring) 22, 332–336 (2014)

    Article  Google Scholar 

  35. J. Vendrell, R. El Bekay, B. Peral, E. García-Fuentes, A. Megia, M. Macias-Gonzalez, J. Fernández-Real, Y. Jimenez-Gomez, X. Escoté, G. Pachón, R. Simó, D.M. Selva, M.M. Malagón, F.J. Tinahones, Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 152, 4072–4079 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. S. Morano, E. Romagnoli, T. Filardi, L. Nieddu, E. Mandosi, M. Fallarino, I. Turinese, M.P. Dagostino, A. Lenzi, V. Carnevale, Short-term effects of glucagon-like peptide 1 (GLP-1) receptor agonist on fat distribution in patients with type 2 diabetes mellitus: an ultrasonography study. Acta Diabetol. 52, 727–732 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. A.R. Baker, A.L. Harte, N. Howell, D.C. Pritlove, A.M. Ranasinghe, N.F. da Silva, E.M. Youssef, K. Khunti, M.J. Davies, R.S. Bonser, S. Kumar, D. Pagano, P.G. McTernan, Epicardial adipose tissue as a source of nuclear factor-kappaB and c-Jun N-terminal kinase mediated inflammation in patients with coronary artery disease. J. Clin. Endocrinol. Metab. 94, 261–267 (2009)

    Article  CAS  PubMed  Google Scholar 

  38. Z. Shah, T. Kampfrath, J.A. Deiuliis, J. Zhong, C. Pineda, Z. Ying, X. Xu, B. Lu, S. Moffatt-Bruce, R. Durairaj, Q. Sun, G. Mihai, A. Maiseyeu, S. Rajagopalan, Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124, 2338–2349 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. A. Aroor, S. McKarns, R. Nistala, V. DeMarco, M. Gardner, M. Garcia-Touza, A. Whaley-Connell, J.R. Sowers, DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal. Med. 3, 48–56 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. M.M. Lima-Martínez, E. Guerra-Alcalá, M. Contreras, J. Nastasi, J.A. Noble, C. Polychronakos, One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin. Endocrinol. Diabetes Metab. Case Rep. 2014, 140072 (2014)

    PubMed Central  PubMed  Google Scholar 

  41. M.M. Lima-Martínez, E. Campo, J. Salazar, M. Paoli, I. Maldonado, C. Acosta, M. Rodney, M. Contreras, J.O. Cabrera-Rego, G. Iacobellis, Epicardial fat thickness as cardiovascular risk factor and therapeutic target in patients with rheumatoid arthritis treated with biological and nonbiological therapies. Arthritis 2014, 782850 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  42. D. Lamers, S. Famulla, N. Wronkowitz, S. Hartwig, S. Lehr, D.M. Ouwens, K. Eckardt, J.M. Kaufman, M. Ryden, S. Müller, F.G. Hanisch, J. Ruige, P. Arner, H. Sell, J. Eckel, Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60, 1917–1925 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. A.D. Dobrian, Q. Ma, J.W. Lindsay, K.A. Leone, K. Ma, J. Coben, E.V. Galkina, J.L. Nadler, Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am. J. Physiol. Endocrinol. Metab. 300, E410–E421 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. R. Verovská, Z. Lacnák, D. Haluziková, P. Fábin, P. Hájek, L. Horák, M. Haluzík, S. Svacina, M. Matoulek, Comparison of various methods of body fat analysis in overweight and obese women. Vnitr. Lek. 55, 455–461 (2009)

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ana Pensa and José Ledezma for their support, and Prof. Carlos Mota for his valuable comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos M. Lima-Martínez.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima-Martínez, M.M., Paoli, M., Rodney, M. et al. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: a pilot study. Endocrine 51, 448–455 (2016). https://doi.org/10.1007/s12020-015-0710-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0710-y

Keywords

Navigation