Skip to main content

Advertisement

Log in

The bone-preserving effects of exendin-4 in ovariectomized rats

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Exendin-4 was found to be beneficial to the skeleton in diabetic rodents. In this study, we assessed the changes of bone mineral densities (BMDs) and quality in non-diabetic ovariectomized (OVX) rats after treatment with exendin-4. The regulatory role of exendin-4 on osteoblastogenesis and adipogenesis in rat bone marrow stromal cells (BMSCs) was also explored. Three months after sham surgery or OVX, 18 5-month-old female Wistar rats were divided into three groups and received the following treatment for 8 weeks: (1) Sham + vehicle; (2) OVX + vehicle; and (3) OVX + exendin-4 20 µg/kg/day. Micro-CT and three-point bending test were used to evaluate the BMDs, bone morphometric parameters, and biomechanical properties. Real-time PCR and Western blot were performed to measure gene and protein expression after exendin-4 treatment in adipogenesis and osteoblastogenesis of rat BMSCs. Exendin-4 could improve trabecular volume, thickness, and number, increase BMD, and reduce trabecular spacing in the lumbar spine and femur of OVX rats. Exendin-4 had little impact on the mechanical resistance of femurs to fracture. When rat BMSCs were treated with exendin-4, the mRNA expression levels of runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and collagen α1 (Coll-1) were increased, while those of peroxisome proliferators activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein (C/EBPα) decreased. Exendin-4 treatment also resulted in increased expression levels of p38, p42/44, and β-catenin proteins. Exendin-4 was anabolic to bone in OVX rats possibly by facilitating osteoblastogenesis while repressing adipogenesis during BMSC lineage differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Chon, J.P. Riveline, B. Blondeau, J.F. Gautier, Incretin-based therapy and pancreatic beta cells. Diabetes Metab 40(6), 411–422 (2014). doi:10.1016/j.diabet.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  2. K. Mather, Extrapancreatic effects of GLP-1 and other incretins. Revendocrine Metab. Disord. 15(3), 169 (2014). doi:10.1007/s11154-014-9292-x

    Article  Google Scholar 

  3. B. Nuche-Berenguer, S. Portal-Nunez, P. Moreno, N. Gonzalez, A. Acitores, A. Lopez-Herradon, P. Esbrit, I. Valverde, M.L. Villanueva-Penacarrillo, Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J. Cell. Physiol. 225(2), 585–592 (2010). doi:10.1002/jcp.22243

    Article  CAS  PubMed  Google Scholar 

  4. C. Sanz, P. Vazquez, C. Blazquez, P.A. Barrio, M.D.M. Alvarez, E. Blazquez, Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol. Endocrinol Metab 298(3), E634–643 (2010). doi:10.1152/ajpendo.00460.2009

    Article  CAS  PubMed  Google Scholar 

  5. C. Brand, D. Abdel-Atti, Y. Zhang, S. Carlin, S.M. Clardy, E.J. Keliher, W.A. Weber, J.S. Lewis, T. Reiner, In vivo imaging of GLP-1R with a targeted bimodal PET/fluorescence imaging agent. Bioconjug. Chem. 25(7), 1323–1330 (2014). doi:10.1021/bc500178d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Nuche-Berenguer, P. Moreno, P. Esbrit, S. Dapia, J.R. Caeiro, J. Cancelas, J.J. Haro-Mora, M.L. Villanueva-Penacarrillo, Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif. Tissue Int. 84(6), 453–461 (2009). doi:10.1007/s00223-009-9220-3

    Article  CAS  PubMed  Google Scholar 

  7. A. Papazafiropoulou, N. Papanas, S. Pappas, E. Maltezos, Role of endogenous GLP-1 and its agonists in osteopenia and osteoporosis: but we little know until tried. Curr Diabetes Rev. 10(1), 43–47 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. B. Su, H. Sheng, M. Zhang, L. Bu, P. Yang, L. Li, F. Li, C. Sheng, Y. Han, S. Qu, J. Wang, Risk of bone fractures associated with glucagon-like peptide-1 receptor agonists’ treatment: a meta-analysis of randomized controlled trials. Endocrine (2014). doi:10.1007/s12020-014-0361-4

    Google Scholar 

  9. B. Nuche-Berenguer, P. Moreno, S. Portal-Nunez, S. Dapia, P. Esbrit, M.L. Villanueva-Penacarrillo, Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul. Pept. 159(1–3), 61–66 (2010). doi:10.1016/j.regpep.2009.06.010

    Article  CAS  PubMed  Google Scholar 

  10. B. Nuche-Berenguer, D. Lozano, I. Gutierrez-Rojas, P. Moreno, M.L. Marinoso, P. Esbrit, M.L. Villanueva-Penacarrillo, GLP-1 and exendin-4 can reverse hyperlipidic-related osteopenia. J Endocrinol 209(2), 203–210 (2011). doi:10.1530/JOE-11-0015

    Article  CAS  PubMed  Google Scholar 

  11. X. Ma, J. Meng, M. Jia, L. Bi, Y. Zhou, Y. Wang, J. Hu, G. He, X. Luo, Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res 28(7), 1641–1652 (2013). doi:10.1002/jbmr.1898

    Article  CAS  PubMed  Google Scholar 

  12. H. Taipaleenmaki, B.M. Abdallah, A. AlDahmash, A.M. Saamanen, M. Kassem, Wnt signalling mediates the cross-talk between bone marrow derived pre-adipocytic and pre-osteoblastic cell populations. Exp. Cell Res. 317(6), 745–756 (2011). doi:10.1016/j.yexcr.2010.12.015

    Article  CAS  PubMed  Google Scholar 

  13. B.M. Abdallah, M. Kassem, New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50(2), 540–545 (2012). doi:10.1016/j.bone.2011.06.030

    Article  CAS  PubMed  Google Scholar 

  14. K. Tatarkiewicz, P. Belanger, G. Gu, D. Parkes, D. Roy, No evidence of drug-induced pancreatitis in rats treated with exenatide for 13 weeks. Diabetes Obes. Metab. 15(5), 417–426 (2013). doi:10.1111/dom.12040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Roy, K.D. Chadwick, K. Tatarkiewicz, C. LaCerte, A.M. Bergholm, T. Brodie, R.S. Mangipudy, D. Parkes, M.J. Graziano, T.P. Reilly, The glucagon-like peptide-1-based therapeutics exenatide and saxagliptin did not cause detrimental effects on the pancreas in mice, rats, dogs and monkeys. Diabetes Obes. Metab. 16(10), 910–921 (2014). doi:10.1111/dom.12294

    Article  CAS  PubMed  Google Scholar 

  16. C.P. Liang, S. Han, G. Li, I. Tabas, A.R. Tall, Impaired MEK signaling and SERCA expression promote ER stress and apoptosis in insulin-resistant macrophages and are reversed by exenatide treatment. Diabetes 61(10), 2609–2620 (2012). doi:10.2337/db11-1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Taher, C.L. Baker, C. Cuizon, H. Masoudpour, R. Zhang, S. Farr, M. Naples, C. Bourdon, Z. Pausova, K. Adeli, GLP-1 receptor agonism ameliorates hepatic VLDL overproduction and de novo lipogenesis in insulin resistance. Mol Metab 3(9), 823–833 (2014). doi:10.1016/j.molmet.2014.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Q. Zhao, X. Shen, W. Zhang, G. Zhu, J. Qi, L. Deng, Mice with increased angiogenesis and osteogenesis due to conditional activation of HIF pathway in osteoblasts are protected from ovariectomy induced bone loss. Bone 50(3), 763–770 (2012). doi:10.1016/j.bone.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  19. N. Jaiswal, S.E. Haynesworth, A.I. Caplan, S.P. Bruder, Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64(2), 295–312 (1997)

    Article  CAS  PubMed  Google Scholar 

  20. X. Ma, L. Xu, S. Wang, B. Cui, X. Li, J. Xu, G. Ning, Deletion of steroid receptor coactivator-3 gene ameliorates hepatic steatosis. J. Hepatol. 55(2), 445–452 (2011). doi:10.1016/j.jhep.2010.11.022

    Article  CAS  PubMed  Google Scholar 

  21. I. Dicembrini, E. Mannucci, C.M. Rotella, Bone: incretin hormones perceiver or receiver? Exp Diabetes Res 2012, 519784 (2012). doi:10.1155/2012/519784

    Article  PubMed  PubMed Central  Google Scholar 

  22. C. Yamada, Y. Yamada, K. Tsukiyama, K. Yamada, N. Udagawa, N. Takahashi, K. Tanaka, D.J. Drucker, Y. Seino, N. Inagaki, The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149(2), 574–579 (2008). doi:10.1210/en.2007-1292

    Article  CAS  PubMed  Google Scholar 

  23. G. Mabilleau, A. Mieczkowska, N. Irwin, P.R. Flatt, D. Chappard, Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219(1), 59–68 (2013). doi:10.1530/JOE-13-0146

    Article  CAS  PubMed  Google Scholar 

  24. J.Y. Kim, S.K. Lee, K.J. Jo, D.Y. Song, D.M. Lim, K.Y. Park, L.F. Bonewald, B.J. Kim, Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci. 92(10), 533–540 (2013). doi:10.1016/j.lfs.2013.01.001

    Article  PubMed  Google Scholar 

  25. E.L. Pacheco-Pantoja, L.R. Ranganath, J.A. Gallagher, P.J. Wilson, W.D. Fraser, Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11, 12 (2011). doi:10.1186/1472-6793-11-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. T. Akune, S. Ohba, S. Kamekura, M. Yamaguchi, U.I. Chung, N. Kubota, Y. Terauchi, Y. Harada, Y. Azuma, K. Nakamura, T. Kadowaki, H. Kawaguchi, PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Investig. 113(6), 846–855 (2004). doi:10.1172/JCI19900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. H.J. Wee, G. Huang, K. Shigesada, Y. Ito, Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep. 3(10), 967–974 (2002). doi:10.1093/embo-reports/kvf193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. G. Xiao, D. Jiang, R. Gopalakrishnan, R.T. Franceschi, Fibroblast growth factor 2 induction of the osteocalcin gene requires MAPK activity and phosphorylation of the osteoblast transcription factor, Cbfa1/Runx2. J. Biol. Chem. 277(39), 36181–36187 (2002). doi:10.1074/jbc.M206057200

    Article  CAS  PubMed  Google Scholar 

  29. T.J. Rosol, On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicol. Pathol. 41(2), 303–309 (2013). doi:10.1177/0192623312472402

    Article  PubMed  Google Scholar 

  30. F. Boess, C. Bertinetti-Lapatki, S. Zoffmann, C. George, T. Pfister, A. Roth, S.M. Lee, W.E. Thasler, T. Singer, L. Suter, Effect of GLP1R agonists taspoglutide and liraglutide on primary thyroid C-cells from rodent and man. J. Mol. Endocrinol. 50(3), 325–336 (2013). doi:10.1530/JME-12-0186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (No. 81370977, 81170804, 81370018) and the Shanghai Municipal Health Bureau Project (2012-235).

Conflict of interest

All authors state that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-min Liu or Bei Tao.

Additional information

Han-xiao Sun, and Nan Lu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Hx., Lu, N., Liu, Dm. et al. The bone-preserving effects of exendin-4 in ovariectomized rats. Endocrine 51, 323–332 (2016). https://doi.org/10.1007/s12020-015-0667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0667-x

Keywords

Navigation