Skip to main content

Advertisement

Log in

Hypothalamic-autonomic control of energy homeostasis

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Regulation of energy homeostasis is tightly controlled by the central nervous system (CNS). Several key areas such as the hypothalamus and brainstem receive and integrate signals conveying energy status from the periphery, such as leptin, thyroid hormones, and insulin, ultimately leading to modulation of food intake, energy expenditure (EE), and peripheral metabolism. The autonomic nervous system (ANS) plays a key role in the response to such signals, innervating peripheral metabolic tissues, including brown and white adipose tissue (BAT and WAT), liver, pancreas, and skeletal muscle. The ANS consists of two parts, the sympathetic and parasympathetic nervous systems (SNS and PSNS). The SNS regulates BAT thermogenesis and EE, controlled by central areas such as the preoptic area (POA) and the ventromedial, dorsomedial, and arcuate hypothalamic nuclei (VMH, DMH, and ARC). The SNS also regulates lipid metabolism in WAT, controlled by the lateral hypothalamic area (LHA), VMH, and ARC. Control of hepatic glucose production and pancreatic insulin secretion also involves the LHA, VMH, and ARC as well as the dorsal vagal complex (DVC), via splanchnic sympathetic and the vagal parasympathetic nerves. Muscle glucose uptake is also controlled by the SNS via hypothalamic nuclei such as the VMH. There is recent evidence of novel pathways connecting the CNS and ANS. These include the hypothalamic AMP-activated protein kinase–SNS–BAT axis which has been demonstrated to be a key modulator of thermogenesis. In this review, we summarize current knowledge of the role of the ANS in the modulation of energy balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404, 661–671 (2000)

    CAS  PubMed  Google Scholar 

  2. G.J. Morton, D.E. Cummings, D.G. Baskin, G.S. Barsh, M.W. Schwartz, Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. M. Lopez, C.J. Lelliott, A. Vidal-Puig, Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. BioEssays 29, 248–261 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. K. Rahmouni, Obesity, sympathetic overdrive, and hypertension: the leptin connection. Hypertension 55, 844–845 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. K. Rahmouni, Obesity-associated hypertension: recent progress in deciphering the pathogenesis. Hypertension 64, 215–221 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. M.P.B. de Martinez, M. Lopez, “Mens sana in corpore sano”: exercise and hypothalamic ER stress. PLoS Biol. 8(8), e1000464 (2010)

    Article  CAS  Google Scholar 

  7. D.B. Savage, K.F. Petersen, G.I. Shulman, Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87, 507–520 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. J. Park, T.S. Morley, M. Kim, D.J. Clegg, P.E. Scherer, Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 10, 455–465 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. R. Roubenoff, R.A. Roubenoff, J.G. Cannon, J.J. Kehayias, H. Zhuang, B. Dawson-Hughes, C.A. Dinarello, I.H. Rosenberg, Rheumatoid cachexia: cytokine-driven hypermetabolism accompanying reduced body cell mass in chronic inflammation. J Clin Invest. 93, 2379–2386 (1994)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. J.E. Morley, D.R. Thomas, M.M. Wilson, Cachexia: pathophysiology and clinical relevance. Am. J. Clin. Nutr. 83, 735–743 (2006)

    CAS  PubMed  Google Scholar 

  11. S. Kir, J.P. White, S. Kleiner, L. Kazak, P. Cohen, V.E. Baracos, B.M. Spiegelman, Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513, 100–104 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. M. Petruzzelli, M. Schweiger, R. Schreiber, R. Campos-Olivas, M. Tsoli, J. Allen, M. Swarbrick, S. Rose-John, M. Rincon, G. Robertson, R. Zechner, E.F. Wagner, A switch from white to brown fat increases energy expenditure in cancer-associated cachexia. Cell Metab. 20, 433–447 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. T.J. Bartness, Y.B. Shrestha, C.H. Vaughan, G.J. Schwartz, C.K. Song, Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol. Cell. Endocrinol. 318, 34–43 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. E. Fliers, L.P. Klieverik, A. Kalsbeek, Novel neural pathways for metabolic effects of thyroid hormone. Trends Endocrinol. Metab. 21, 230–236 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. S.M. Harlan, K. Rahmouni, PI3K signaling: a key pathway in the control of sympathetic traffic and arterial pressure by leptin. Mol Metab. 2, 69–73 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. R.M. Buijs, The autonomic nervous system: a balancing act. Handb Clin Neurol. 117, 1–11 (2013)

    Article  PubMed  Google Scholar 

  17. T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)

    Article  PubMed Central  Google Scholar 

  18. K. Nonogaki, New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 43, 533–549 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. A. Giordano, C.K. Song, R.R. Bowers, J.C. Ehlen, A. Frontini, S. Cinti, T.J. Bartness, White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. F. Kreier, R.M. Buijs, Evidence for parasympathetic innervation of white adipose tissue, clearing up some vagaries. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R548–R549 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. L.P. Klieverik, S.F. Janssen, A. van Rial, E. Foppen, P.H. Bisschop, M.J. Serlie, A. Boelen, M.T. Ackermans, H.P. Sauerwein, E. Fliers, A. Kalsbeek, Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc. Natl. Acad. Sci. U.S.A. 106, 5966–5971 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. C.X. Yi, S.E. la Fleur, E. Fliers, A. Kalsbeek, The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. R. Rodriguez-Diaz, A. Caicedo, Neural control of the endocrine pancreas. Best Pract Res Clin Endocrinol Metab. 28, 745–756 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. Y. Zhang, R. Proenca, M. Maffei, M. Barone, L. Leopold, J.M. Friedman, Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994)

    Article  CAS  PubMed  Google Scholar 

  25. R.S. Ahima, J.S. Flier, Adipose tissue as an endocrine organ. Trends Endocrinol. Metab. 11, 327–332 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. B. Cannon, J. Nedergaard, Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. A.J. Whittle, M. Lopez, A. Vidal-Puig, Using brown adipose tissue to treat obesity—the central issue. Trends Mol Med. 17, 405–411 (2011)

    Article  PubMed  Google Scholar 

  28. C. Contreras, F. Gonzalez, J. Ferno, C. Dieguez, K. Rahmouni, R. Nogueiras, M. Lopez, The brain and brown fat. Ann. Med. 0, 1–19 (2014)

    Google Scholar 

  29. S.F. Morrison, C.J. Madden, D. Tupone, Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. J. Nedergaard, T. Bengtsson, B. Cannon, Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 293, E444–E452 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. A.M. Cypess, S. Lehman, G. Williams, I. Tal, D. Rodman, A.B. Goldfine, F.C. Kuo, E.L. Palmer, Y.H. Tseng, A. Doria, G.M. Kolodny, C.R. Kahn, Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. K.A. Virtanen, M.E. Lidell, J. Orava, M. Heglind, R. Westergren, T. Niemi, M. Taittonen, J. Laine, N.J. Savisto, S. Enerback, P. Nuutila, Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. W.D. van Marken Lichtenbelt, J.W. Vanhommerig, N.M. Smulders, J.M. Drossaerts, G.J. Kemerink, N.D. Bouvy, P. Schrauwen, G.J. Teule, Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009)

    Article  CAS  PubMed  Google Scholar 

  34. F. Villarroya, A. Vidal-Puig, Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 17, 638–643 (2013)

    Article  CAS  PubMed  Google Scholar 

  35. A. Frontini, S. Cinti, Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. A. Giordano, A. Frontini, M. Castellucci, S. Cinti, Presence and distribution of cholinergic nerves in rat mediastinal brown adipose tissue. J. Histochem. Cytochem. 52, 923–930 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. F.M. Fisher, S. Kleiner, N. Douris, E.C. Fox, R.J. Mepani, F. Verdeguer, J. Wu, A. Kharitonenkov, J.S. Flier, E. Maratos-Flier, B.M. Spiegelman, FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26, 271–281 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. J. Nedergaard, B. Cannon, The browning of white adipose tissue: some burning issues. Cell Metab. 20, 396–407 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. T.J. Bartness, C.H. Vaughan, C.K. Song, Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 34(Suppl 1), S36–S42 (2010)

    Article  PubMed Central  Google Scholar 

  40. L.W. Enquist, Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. J. Infect. Dis. 186(Suppl 2), S209–S214 (2002)

    Article  PubMed  Google Scholar 

  41. M. Bamshad, C.K. Song, T.J. Bartness, CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am. J. Physiol. 276, R1569–R1578 (1999)

    CAS  PubMed  Google Scholar 

  42. B.J. Oldfield, M.E. Giles, A. Watson, C. Anderson, L.M. Colvill, M.J. McKinley, The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110, 515–526 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. M.N. Perkins, N.J. Rothwell, M.J. Stock, T.W. Stone, Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289, 401–402 (1981)

    Article  CAS  PubMed  Google Scholar 

  44. T. Yoshida, G.A. Bray, Catecholamine turnover in rats with ventromedial hypothalamic lesions. Am. J. Physiol. 246, R558–R565 (1984)

    CAS  PubMed  Google Scholar 

  45. S.J. Holt, H.V. Wheal, D.A. York, Hypothalamic control of brown adipose tissue in Zucker lean and obese rats. Effect of electrical stimulation of the ventromedial nucleus and other hypothalamic centres. Brain Res. 405, 227–233 (1987)

    Article  CAS  PubMed  Google Scholar 

  46. D. Lindberg, P. Chen, C. Li, Conditional viral tracing reveals that steroidogenic factor 1-positive neurons of the dorsomedial subdivision of the ventromedial hypothalamus project to autonomic centers of the hypothalamus and hindbrain. J Comp Neurol. 521, 3167–3190 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. K.W. Kim, L. Zhao, J. Donato Jr, D. Kohno, Y. Xu, C.F. Elias, C. Lee, K.L. Parker, J.K. Elmquist, Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc. Natl. Acad. Sci. USA 108, 10673–10678 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. S.F. Morrison, RVLM and raphe differentially regulate sympathetic outflows to splanchnic and brown adipose tissue. Am. J. Physiol. 276, R962–R973 (1999)

    CAS  PubMed  Google Scholar 

  49. T. Uno, M. Shibata, Role of inferior olive and thoracic IML neurons in nonshivering thermogenesis in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R536–R546 (2001)

    CAS  PubMed  Google Scholar 

  50. T. Sakaguchi, K. Arase, G.A. Bray, Effect of intrahypothalamic hydroxybutyrate on sympathetic firing rate. Metabolism. 37, 732–735 (1988)

    Article  CAS  PubMed  Google Scholar 

  51. T. Sakaguchi, G.A. Bray, Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res. 492, 271–280 (1989)

    Article  CAS  PubMed  Google Scholar 

  52. S. Amir, Intra-ventromedial hypothalamic injection of glutamate stimulates brown adipose tissue thermogenesis in the rat. Brain Res. 511, 341–344 (1990)

    Article  CAS  PubMed  Google Scholar 

  53. M. Lopez, L. Varela, M.J. Vazquez, S. Rodriguez-Cuenca, C.R. Gonzalez, V.R. Velagapudi, D.A. Morgan, E. Schoenmakers, K. Agassandian, R. Lage, M.P.B. Martinez de, S. Tovar, R. Nogueiras, D. Carling, C. Lelliott, R. Gallego, M. Oresic, K. Chatterjee, A.K. Saha, K. Rahmouni, C. Dieguez, A. Vidal-Puig, Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. A.J. Whittle, S. Carobbio, L. Martins, M. Slawik, E. Hondares, M.J. Vazquez, D. Morgan, R.I. Csikasz, R. Gallego, S. Rodriguez-Cuenca, M. Dale, S. Virtue, F. Villarroya, B. Cannon, K. Rahmouni, M. Lopez, A. Vidal-Puig, BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. M. Tanida, N. Yamamoto, T. Shibamoto, K. Rahmouni, Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8, e56660 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. P. Seoane-Collazo, M.P.B. Martinez de, J. Ferno, C. Dieguez, R. Nogueiras, M. Lopez, Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats. Endocrinology 155, 1679–1689 (2014)

    Article  PubMed  CAS  Google Scholar 

  57. M.P.B. Martinez de, I. Gonzalez-Garcia, L. Martins, R. Lage, D. Fernandez-Mallo, N. Martinez-Sanchez, F. Ruiz-Pino, J. Liu, D.A. Morgan, L. Pinilla, R. Gallego, A.K. Saha, A. Kalsbeek, E. Fliers, P.H. Bisschop, C. Dieguez, R. Nogueiras, K. Rahmouni, M. Tena-Sempere, M. Lopez, Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014)

    Article  CAS  Google Scholar 

  58. D. Beiroa, M. Imbernon, R. Gallego, A. Senra, D. Herranz, F. Villaroya, M. Serrano, J. Ferno, J. Salvador, J. Escalada, C. Dieguez, M. Lopez, G. Fruhbeck, R. Nogueiras, GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014)

    Article  CAS  PubMed  Google Scholar 

  59. B.M. Owen, X. Ding, D.A. Morgan, K.C. Coate, A.L. Bookout, K. Rahmouni, S.A. Kliewer, D.J. Mangelsdorf, FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 20, 670–677 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. C. Fernandes-Santos, Z. Zhang, D.A. Morgan, D.F. Guo, A.F. Russo, K. Rahmouni, Amylin acts in the central nervous system to increase sympathetic nerve activity. Endocrinology 154, 2481–2488 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. M. Lopez, R. Nogueiras, Firing up brown fat with brain amylin. Endocrinology 154, 2263–2265 (2013)

    Article  CAS  PubMed  Google Scholar 

  62. C. Contreras, I. Gonzalez-Garcia, N. Martinez-Sanchez, P. Seoane-Collazo, J. Jacas, D.A. Morgan, D. Serra, R. Gallego, F. Gonzalez, N. Casals, R. Nogueiras, K. Rahmouni, C. Dieguez, M. Lopez, Central ceramide-induced hypothalamic lipotoxicity and ER stress regulate energy balance. Cell Rep. 9, 366–377 (2014)

    Article  CAS  PubMed  Google Scholar 

  63. L.L. Bernardis, L.L. Bellinger, The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc. Soc. Exp. Biol. Med. 218, 284–306 (1998)

    Article  CAS  PubMed  Google Scholar 

  64. J.A. Dimicco, D.V. Zaretsky, The dorsomedial hypothalamus: a new player in thermoregulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R47–R63 (2007)

    Article  CAS  PubMed  Google Scholar 

  65. W.H. Cao, S.F. Morrison, Glutamate receptors in the raphe pallidus mediate brown adipose tissue thermogenesis evoked by activation of dorsomedial hypothalamic neurons. Neuropharmacology 51, 426–437 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. P.J. Enriori, P. Sinnayah, S.E. Simonds, R.C. Garcia, M.A. Cowley, Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance. J. Neurosci. 31, 12189–12197 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Y. Zhang, I.A. Kerman, A. Laque, P. Nguyen, M. Faouzi, G.W. Louis, J.C. Jones, C. Rhodes, H. Munzberg, Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci. 31, 1873–1884 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. P.T. Chao, L. Yang, S. Aja, T.H. Moran, S. Bi, Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab. 13, 573–583 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. K. Rezai-Zadeh, S. Yu, Y. Jiang, A. Laque, C. Schwartzenburg, C.D. Morrison, A.V. Derbenev, A. Zsombok, H. Munzberg, Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab. 3, 681–693 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. S.J. Lee, S. Verma, S.E. Simonds, M.A. Kirigiti, P. Kievit, S.R. Lindsley, A. Loche, M.S. Smith, M.A. Cowley, K.L. Grove, Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice. J. Neurosci. 33, 15306–15317 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. S.M. Harlan, D.A. Morgan, K. Agassandian, D.F. Guo, M.D. Cassell, C.D. Sigmund, A.L. Mark, K. Rahmouni, Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ. Res. 108, 808–812 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. G.A. Bewick, J.V. Gardiner, W.S. Dhillo, A.S. Kent, N.E. White, Z. Webster, M.A. Ghatei, S.R. Bloom, Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J. 19, 1680–1682 (2005)

    CAS  PubMed  Google Scholar 

  73. Y.C. Shi, J. Lau, Z. Lin, H. Zhang, L. Zhai, G. Sperk, R. Heilbronn, M. Mietzsch, S. Weger, X.F. Huang, R.F. Enriquez, P.A. Baldock, L. Zhang, A. Sainsbury, H. Herzog, S. Lin, Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab. 17, 236–248 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. R.D. Cone, Anatomy and regulation of the central melanocortin system. Nat. Neurosci. 8, 571–578 (2005)

    Article  CAS  PubMed  Google Scholar 

  75. R.D. Cone, Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 (2006)

    Article  CAS  PubMed  Google Scholar 

  76. H. Krude, H. Biebermann, W. Luck, R. Horn, G. Brabant, A. Gruters, Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 (1998)

    Article  CAS  PubMed  Google Scholar 

  77. C. Vaisse, K. Clement, E. Durand, S. Hercberg, B. Guy-Grand, P. Froguel, Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest. 106, 253–262 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. A.A. Butler, R.D. Cone, The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 (2002)

    Article  CAS  PubMed  Google Scholar 

  79. I.S. Farooqi, S. Drop, A. Clements, J.M. Keogh, J. Biernacka, S. Lowenbein, B.G. Challis, S. O’Rahilly, Heterozygosity for a POMC-null mutation and increased obesity risk in humans. Diabetes 55, 2549–2553 (2006)

    Article  CAS  PubMed  Google Scholar 

  80. E.D. Berglund, T. Liu, X. Kong, J.W. Sohn, L. Vong, Z. Deng, C.E. Lee, S. Lee, K.W. Williams, D.P. Olson, P.E. Scherer, B.B. Lowell, J.K. Elmquist, Melanocortin 4 receptors in autonomic neurons regulate thermogenesis and glycemia. Nat. Neurosci. 17, 911–913 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Y. Zhang, G.E. Kilroy, T.M. Henagan, V. Prpic-Uhing, W.G. Richards, A.W. Bannon, R.L. Mynatt, T.W. Gettys, Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J. 19, 1482–1491 (2005)

    Article  CAS  PubMed  Google Scholar 

  82. M. Schneeberger, M.O. Dietrich, D. Sebastian, M. Imbernon, C. Castano, A. Garcia, Y. Esteban, A. Gonzalez-Franquesa, I.C. Rodriguez, A. Bortolozzi, P.M. Garcia-Roves, R. Gomis, R. Nogueiras, T.L. Horvath, A. Zorzano, M. Claret, Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155, 172–187 (2013)

    Article  CAS  PubMed  Google Scholar 

  83. G. Ramadori, T. Fujikawa, M. Fukuda, J. Anderson, D.A. Morgan, R. Mostoslavsky, R.C. Stuart, M. Perello, C.R. Vianna, E.A. Nillni, K. Rahmouni, R. Coppari, SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab. 12, 78–87 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. H.B. Ruan, M.O. Dietrich, Z.W. Liu, M.R. Zimmer, M.D. Li, J.P. Singh, K. Zhang, R. Yin, J. Wu, T.L. Horvath, X. Yang, O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159, 306–317 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. J.K. Elmquist, R. Coppari, N. Balthasar, M. Ichinose, B.B. Lowell, Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 493, 63–71 (2005)

    Article  CAS  PubMed  Google Scholar 

  86. G.S. Yeo, L.K. Heisler, Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012)

    Article  CAS  PubMed  Google Scholar 

  87. C.J. Madden, S.F. Morrison, Neurons in the paraventricular nucleus of the hypothalamus inhibit sympathetic outflow to brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R831–R843 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. D. Kong, Q. Tong, C. Ye, S. Koda, P.M. Fuller, M.J. Krashes, L. Vong, R.S. Ray, D.P. Olson, B.B. Lowell, GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151, 645–657 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. M. Lopez, C.V. Alvarez, R. Nogueiras, C. Dieguez, Energy balance regulation by thyroid hormones at central level. Trends Mol Med. 19, 418–427 (2013)

    Article  CAS  PubMed  Google Scholar 

  90. E. Satinoff, D. Valentino, P. Teitelbaum, Thermoregulatory cold-defense deficits in rats with preoptic/anterior hypothalamic lesions. Brain Res. Bull. 1, 553–565 (1976)

    Article  CAS  PubMed  Google Scholar 

  91. J.D. Guieu, J.D. Hardy, Effects of heating and cooling of the spinal cord on preoptic unit activity. J. Appl. Physiol. 29, 675–683 (1970)

    CAS  PubMed  Google Scholar 

  92. J.A. Boulant, J.D. Hardy, The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. 240, 639–660 (1974)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. H.T. Hammel, J.D. Hardy, M.M. Fusco, Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am. J. Physiol. 198, 481–486 (1960)

    CAS  PubMed  Google Scholar 

  94. K. Imai-Matsumura, K. Matsumura, T. Nakayama, Involvement of ventromedial hypothalamus in brown adipose tissue thermogenesis induced by preoptic cooling in rats. Jpn. J. Physiol. 34, 939–943 (1984)

    Article  CAS  PubMed  Google Scholar 

  95. S. Amir, A. Schiavetto, Injection of prostaglandin E2 into the anterior hypothalamic preoptic area activates brown adipose tissue thermogenesis in the rat. Brain Res. 528, 138–142 (1990)

    Article  CAS  PubMed  Google Scholar 

  96. C.H. Vaughan, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R1049–R1058 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. V. Ryu, J.T. Garretson, Y. Liu, C.H. Vaughan, T.J. Bartness, Brown adipose tissue has sympathetic-sensory feedback circuits. J. Neurosci. 35, 2181–2190 (2015)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. P.E. Scherer, Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55, 1537–1545 (2006)

    Article  CAS  PubMed  Google Scholar 

  99. A.S. Greenberg, M.S. Obin, Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461S–465S (2006)

    CAS  PubMed  Google Scholar 

  100. A.P. Coll, I.S. Farooqi, S. O’Rahilly, The hormonal control of food intake. Cell 129, 251–262 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. F.F. Casanueva, C. Dieguez, Neuroendocrine regulation and actions of leptin. Front. Neuroendocrinol. 20, 317–363 (1999)

    Article  CAS  PubMed  Google Scholar 

  102. T.J. Bartness, S.C. Kay, H. Shi, R.R. Bowers, M.T. Foster, Brain-adipose tissue cross talk. Proc Nutr Soc. 64, 53–64 (2005)

    Article  CAS  PubMed  Google Scholar 

  103. R. Nogueiras, M. Lopez, C. Dieguez, Regulation of lipid metabolism by energy availability: a role for the central nervous system. Obes. Rev. 11, 185–201 (2010)

    Article  CAS  PubMed  Google Scholar 

  104. M. Bamshad, V.T. Aoki, M.G. Adkison, W.S. Warren, T.J. Bartness, Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am. J. Physiol. 275, R291–R299 (1998)

    CAS  PubMed  Google Scholar 

  105. H. Shi, T.J. Bartness, Neurochemical phenotype of sympathetic nervous system outflow from brain to white fat. Brain Res. Bull. 54, 375–385 (2001)

    Article  CAS  PubMed  Google Scholar 

  106. M.A. van Baak, The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14 (2001)

    Article  PubMed  Google Scholar 

  107. G. Fruhbeck, L. Mendez-Gimenez, J.A. Fernandez-Formoso, S. Fernandez, A. Rodriguez, Regulation of adipocyte lipolysis. Nutr. Res. Rev. 27, 63–93 (2014)

    Article  PubMed  CAS  Google Scholar 

  108. J. Shen, M. Tanida, J.F. Yao, A. Niijima, K. Nagai, Biphasic effects of orexin-A on autonomic nerve activity and lipolysis. Neurosci. Lett. 444, 166–171 (2008)

    Article  CAS  PubMed  Google Scholar 

  109. M. Imbernon, D. Beiroa, M.J. Vazquez, D.A. Morgan, C. Veyrat-Durebex, B. Porteiro, A. Diaz-Arteaga, A. Senra, S. Busquets, D.A. Velasquez, O. Al-Massadi, L. Varela, M. Gandara, F.J. Lopez-Soriano, R. Gallego, L.M. Seoane, J.M. Argiles, M. Lopez, R.J. Davis, G. Sabio, F. Rohner-Jeanrenaud, K. Rahmouni, C. Dieguez, R. Nogueiras, Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways. Gastroenterology 144, 636–649 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. J.J. Hwa, L. Ghibaudi, J. Gao, E.M. Parker, Central melanocortin system modulates energy intake and expenditure of obese and lean Zucker rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R444–R451 (2001)

    CAS  PubMed  Google Scholar 

  111. P.D. Raposinho, R.B. White, M.L. Aubert, The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J. Neuroendocrinol. 15, 173–181 (2003)

    Article  CAS  PubMed  Google Scholar 

  112. C.K. Song, R.M. Jackson, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA is expressed in sympathetic nervous system outflow neurons to white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1467–R1476 (2005)

    Article  CAS  PubMed  Google Scholar 

  113. C.K. Song, C.H. Vaughan, E. Keen-Rhinehart, R.B. Harris, D. Richard, T.J. Bartness, Melanocortin-4 receptor mRNA expressed in sympathetic outflow neurons to brown adipose tissue: neuroanatomical and functional evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R417–R428 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  114. M.N. Brito, N.A. Brito, D.J. Baro, C.K. Song, T.J. Bartness, Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology 148, 5339–5347 (2007)

    Article  CAS  PubMed  Google Scholar 

  115. R. Nogueiras, P. Wiedmer, D. Perez-Tilve, C. Veyrat-Durebex, J.M. Keogh, G.M. Sutton, P.T. Pfluger, T.R. Castaneda, S. Neschen, S.M. Hofmann, P.N. Howles, D.A. Morgan, S.C. Benoit, I. Szanto, B. Schrott, A. Schurmann, H.G. Joost, C. Hammond, D.Y. Hui, S.C. Woods, K. Rahmouni, A.A. Butler, I.S. Farooqi, S. O’Rahilly, F. Rohner-Jeanrenaud, M.H. Tschop, The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 117, 3475–3488 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. S. Kaushik, E. Arias, H. Kwon, N.M. Lopez, D. Athonvarangkul, S. Sahu, G.J. Schwartz, J.E. Pessin, R. Singh, Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep. 13, 258–265 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. M. Ruffin, S. Nicolaidis, Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Res. 846, 23–29 (1999)

    Article  CAS  PubMed  Google Scholar 

  118. A. Takahashi, T. Shimazu, Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis. J. Auton. Nerv. Syst. 4, 195–205 (1981)

    Article  CAS  PubMed  Google Scholar 

  119. P. Cardinal, C. Andre, C. Quarta, L. Bellocchio, S. Clark, M. Elie, T. Leste-Lasserre, M. Maitre, D. Gonzales, A. Cannich, U. Pagotto, G. Marsicano, D. Cota, CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Mol Metab. 3, 705–716 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. V. Ryu, T.J. Bartness, Short and long sympathetic-sensory feedback loops in white fat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R886–R900 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. C.K. Song, G.J. Schwartz, T.J. Bartness, Anterograde transneuronal viral tract tracing reveals central sensory circuits from white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R501–R511 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. B. Ahren, Autonomic regulation of islet hormone secretion–implications for health and disease. Diabetologia 43, 393–410 (2000)

    Article  CAS  PubMed  Google Scholar 

  123. B. Thorens, Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes. Metab. 13(Suppl 1), 82–88 (2011)

    Article  CAS  PubMed  Google Scholar 

  124. T. Li, J.Y. Chiang, Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 45, 145–155 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. R.J. Perry, V.T. Samuel, K.F. Petersen, G.I. Shulman, The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84–91 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. C.J. Ramnanan, D.S. Edgerton, G. Kraft, A.D. Cherrington, Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes. Metab. 13(Suppl 1), 118–125 (2011)

    Article  CAS  PubMed  Google Scholar 

  127. S.E. la Fleur, A. Kalsbeek, J. Wortel, R.M. Buijs, Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 871, 50–56 (2000)

    Article  PubMed  Google Scholar 

  128. V. Ulken, G.P. Puschel, K. Jungermann, Increase in glucose and lactate output and perfusion resistance by stimulation of hepatic nerves in isolated perfused rat liver: role of alpha 1-, alpha 2-, beta 1- and beta 2-receptors. Biol Chem Hoppe Seyler. 372, 401–409 (1991)

    Article  CAS  PubMed  Google Scholar 

  129. R. Burcelin, M. Uldry, M. Foretz, C. Perrin, A. Dacosta, M. Nenniger-Tosato, J. Seydoux, S. Cotecchia, B. Thorens, Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J. Biol. Chem. 279, 1108–1115 (2004)

    Article  CAS  PubMed  Google Scholar 

  130. T.O. Mundinger, G.J. Taborsky Jr, Differential action of hepatic sympathetic neuropeptides: metabolic action of galanin, vascular action of NPY. Am J Physiol Endocrinol Metab. 278, E390–E397 (2000)

    CAS  PubMed  Google Scholar 

  131. S.T. Ruohonen, U. Pesonen, N. Moritz, K. Kaipio, M. Roytta, M. Koulu, E. Savontaus, Transgenic mice overexpressing neuropeptide Y in noradrenergic neurons: a novel model of increased adiposity and impaired glucose tolerance. Diabetes 57, 1517–1525 (2008)

    Article  CAS  PubMed  Google Scholar 

  132. N. Uyama, A. Geerts, H. Reynaert, Neural connections between the hypothalamus and the liver. Anat Rec A Discov Mol Cell Evol Biol. 280, 808–820 (2004)

    Article  PubMed  Google Scholar 

  133. T. Shimazu, Nervous control of peripheral metabolism. Acta Physiol Pol. 30, 1–18 (1979)

    CAS  PubMed  Google Scholar 

  134. T. Shimazu, S. Ogasawara, Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. Am. J. Physiol. 228, 1787–1793 (1975)

    CAS  PubMed  Google Scholar 

  135. C.X. Yi, M.J. Serlie, M.T. Ackermans, E. Foppen, R.M. Buijs, H.P. Sauerwein, E. Fliers, A. Kalsbeek, A major role for perifornical orexin neurons in the control of glucose metabolism in rats. Diabetes 58, 1998–2005 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. H. Tsuneki, E. Tokai, Y. Nakamura, K. Takahashi, M. Fujita, T. Asaoka, K. Kon, Y. Anzawa, T. Wada, I. Takasaki, K. Kimura, H. Inoue, M. Yanagisawa, T. Sakurai, T. Sasaoka, Hypothalamic orexin prevents hepatic insulin resistance via daily bidirectional regulation of autonomic nervous system in mice. Diabetes 64, 459–470 (2015)

    Article  CAS  PubMed  Google Scholar 

  137. A. Takahashi, H. Ishimaru, Y. Ikarashi, E. Kishi, Y. Maruyama, Effects of ventromedial hypothalamus stimulation on glycogenolysis in rat liver using in vivo microdialysis. Metabolism. 46, 897–901 (1997)

    Article  CAS  PubMed  Google Scholar 

  138. R.J. McCrimmon, X. Fan, Y. Ding, W. Zhu, R.J. Jacob, R.S. Sherwin, Potential role for AMP-activated protein kinase in hypoglycemia sensing in the ventromedial hypothalamus. Diabetes 53, 1953–1958 (2004)

    Article  CAS  PubMed  Google Scholar 

  139. R.J. McCrimmon, X. Fan, H. Cheng, E. McNay, O. Chan, M. Shaw, Y. Ding, W. Zhu, R.S. Sherwin, Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55, 1755–1760 (2006)

    Article  CAS  PubMed  Google Scholar 

  140. R.J. McCrimmon, M. Shaw, X. Fan, H. Cheng, Y. Ding, M.C. Vella, L. Zhou, E.C. McNay, R.S. Sherwin, Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008)

    Article  CAS  PubMed  Google Scholar 

  141. Q. Tong, C. Ye, R.J. McCrimmon, H. Dhillon, B. Choi, M.D. Kramer, J. Yu, Z. Yang, L.M. Christiansen, C.E. Lee, C.S. Choi, J.M. Zigman, G.I. Shulman, R.S. Sherwin, J.K. Elmquist, B.B. Lowell, Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 5, 383–393 (2007)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. R. Zhang, H. Dhillon, H. Yin, A. Yoshimura, B.B. Lowell, E. Maratos-Flier, J.S. Flier, Selective inactivation of Socs3 in SF1 neurons improves glucose homeostasis without affecting body weight. Endocrinology 149, 5654–5661 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  143. O. Chan, W. Zhu, Y. Ding, R.J. McCrimmon, R.S. Sherwin, Blockade of GABA(A) receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes 55, 1080–1087 (2006)

    Article  CAS  PubMed  Google Scholar 

  144. O. Chan, S. Paranjape, D. Czyzyk, A. Horblitt, W. Zhu, Y. Ding, X. Fan, M. Seashore, R. Sherwin, Increased GABAergic output in the ventromedial hypothalamus contributes to impaired hypoglycemic counterregulation in diabetic rats. Diabetes 60, 1582–1589 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  145. R. Coppari, M. Ichinose, C.E. Lee, A.E. Pullen, C.D. Kenny, R.A. McGovern, V. Tang, S.M. Liu, T. Ludwig, S.C. Chua Jr, B.B. Lowell, J.K. Elmquist, The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005)

    Article  CAS  PubMed  Google Scholar 

  146. L. Huo, K. Gamber, S. Greeley, J. Silva, N. Huntoon, X.H. Leng, C. Bjorbaek, Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 9, 537–547 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. G.H. Goncalves, W. Li, A.V. Garcia, M.S. Figueiredo, C. Bjorbaek, Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin’s antidiabetic actions. Cell Rep. 7, 1093–1103 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. A.M. van den Hoek, C. van Heijningen, J.P. Schröder-van der Elst, D.M. Ouwens, L.M. Havekes, J.A. Romijn, A. Kalsbeek, H. Pijl, Intracerebroventricular administration of neuropeptide Y induces hepatic insulin resistance via sympathetic innervation. Diabetes 57, 2304–2310 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. C.X. Yi, E. Foppen, W. Abplanalp, Y. Gao, A. Alkemade, S.E. la Fleur, M.J. Serlie, E. Fliers, R.M. Buijs, M.H. Tschop, A. Kalsbeek, Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 61, 339–345 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  150. A. Kalsbeek, E. Foppen, I. Schalij, C. van Heijningen, J. van der Vliet, E. Fliers, R.M. Buijs, Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS One 3, e3194 (2008)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. A. Pick, J. Clark, C. Kubstrup, M. Levisetti, W. Pugh, S. Bonner-Weir, K.S. Polonsky, Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47, 358–364 (1998)

    Article  CAS  PubMed  Google Scholar 

  152. C. Bernard, M.F. Berthault, C. Saulnier, A. Ktorza, Neogenesis vs. apoptosis As main components of pancreatic beta cell ass changes in glucose-infused normal and mildly diabetic adult rats. FASEB J. 13, 1195–1205 (1999)

    CAS  PubMed  Google Scholar 

  153. M. Paris, C. Bernard-Kargar, M.F. Berthault, L. Bouwens, A. Ktorza, Specific and combined effects of insulin and glucose on functional pancreatic beta-cell mass in vivo in adult rats. Endocrinology 144, 2717–2727 (2003)

    Article  CAS  PubMed  Google Scholar 

  154. B. Thorens, Neural regulation of pancreatic islet cell mass and function. Diabetes Obes. Metab. 16(Suppl 1), 87–95 (2014)

    Article  CAS  PubMed  Google Scholar 

  155. A.S. Jansen, J.L. Hoffman, A.D. Loewy, CNS sites involved in sympathetic and parasympathetic control of the pancreas: a viral tracing study. Brain Res. 766, 29–38 (1997)

    Article  CAS  PubMed  Google Scholar 

  156. L. Rinaman, R.R. Miselis, The organization of vagal innervation of rat pancreas using cholera toxin-horseradish peroxidase conjugate. J. Auton. Nerv. Syst. 21, 109–125 (1987)

    Article  CAS  PubMed  Google Scholar 

  157. R.M. Buijs, S.J. Chun, A. Niijima, H.J. Romijn, K. Nagai, Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol. 431, 405–423 (2001)

    Article  CAS  PubMed  Google Scholar 

  158. R. Rodriguez-Diaz, S. Speier, R.D. Molano, A. Formoso, I. Gans, M.H. Abdulreda, O. Cabrera, J. Molina, A. Fachado, C. Ricordi, I. Leibiger, A. Pileggi, P.O. Berggren, A. Caicedo, Noninvasive in vivo model demonstrating the effects of autonomic innervation on pancreatic islet function. Proc Natl Acad Sci USA 109, 21456–21461 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. W.P. Borg, R.S. Sherwin, M.J. During, M.A. Borg, G.I. Shulman, Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44, 180–184 (1995)

    Article  CAS  PubMed  Google Scholar 

  160. M.A. Borg, R.S. Sherwin, W.P. Borg, W.V. Tamborlane, G.I. Shulman, Local ventromedial hypothalamus glucose perfusion blocks counterregulation during systemic hypoglycemia in awake rats. J Clin Invest. 99, 361–365 (1997)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. H.R. Berthoud, B. Jeanrenaud, Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105, 146–151 (1979)

    Article  CAS  PubMed  Google Scholar 

  162. S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, E.C. McNay, J.A. Cresswell, J.S. Bogan, R.J. McCrimmon, R.S. Sherwin, Influence of insulin in the ventromedial hypothalamus on pancreatic glucagon secretion in vivo. Diabetes 59, 1521–1527 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. S.A. Paranjape, O. Chan, W. Zhu, A.M. Horblitt, C.A. Grillo, S. Wilson, L. Reagan, R.S. Sherwin, Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Physiol Endocrinol Metab. 301, E978–E983 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. J.D. Kim, C. Toda, G. D’Agostino, C.J. Zeiss, R.J. DiLeone, J.D. Elsworth, R.G. Kibbey, O. Chan, B.K. Harvey, C.T. Richie, M. Savolainen, T. Myohanen, J.K. Jeong, S. Diano, Hypothalamic prolyl endopeptidase (PREP) regulates pancreatic insulin and glucagon secretion in mice. Proc Natl Acad Sci USA 111, 11876–11881 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. A. Joly-Amado, R.G. Denis, J. Castel, A. Lacombe, C. Cansell, C. Rouch, N. Kassis, J. Dairou, P.D. Cani, R. Ventura-Clapier, A. Prola, M. Flamment, F. Foufelle, C. Magnan, S. Luquet, Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. H.R. Berthoud, E.A. Fox, T.L. Powley, Localization of vagal preganglionics that stimulate insulin and glucagon secretion. Am. J. Physiol. 258, R160–R168 (1990)

    CAS  PubMed  Google Scholar 

  167. E. Ionescu, F. Rohner-Jeanrenaud, H.R. Berthoud, B. Jeanrenaud, Increases in plasma insulin levels in response to electrical stimulation of the dorsal motor nucleus of the vagus nerve. Endocrinology 112, 904–910 (1983)

    Article  CAS  PubMed  Google Scholar 

  168. B.M. Mussa, D.M. Sartor, C. Rantzau, A.J. Verberne, Effects of nitric oxide synthase blockade on dorsal vagal stimulation-induced pancreatic insulin secretion. Brain Res. 1394, 62–70 (2011)

    Article  CAS  PubMed  Google Scholar 

  169. B.M. Mussa, A.J. Verberne, The dorsal motor nucleus of the vagus and regulation of pancreatic secretory function. Exp. Physiol. 98, 25–37 (2013)

    Article  CAS  PubMed  Google Scholar 

  170. S. Wan, F.H. Coleman, R.A. Travagli, Glucagon-like peptide-1 excites pancreas-projecting preganglionic vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1474–G1482 (2007)

    Article  CAS  PubMed  Google Scholar 

  171. S. Wan, K.N. Browning, R.A. Travagli, Glucagon-like peptide-1 modulates synaptic transmission to identified pancreas-projecting vagal motoneurons. Peptides 28, 2184–2191 (2007)

    Article  CAS  PubMed  Google Scholar 

  172. B.B. Kahn, J.S. Flier, Obesity and insulin resistance. J Clin Invest. 106, 473–481 (2000)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. J.S. Marino, Y. Xu, J.W. Hill, Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab. 22, 275–285 (2011)

    CAS  PubMed  Google Scholar 

  174. I.A. Kerman, L.W. Enquist, S.J. Watson, B.J. Yates, Brainstem substrates of sympatho-motor circuitry identified using trans-synaptic tracing with pseudorabies virus recombinants. J. Neurosci. 23, 4657–4666 (2003)

    CAS  PubMed  Google Scholar 

  175. I.A. Kerman, H. Akil, S.J. Watson, Rostral elements of sympatho-motor circuitry: a virally mediated transsynaptic tracing study. J. Neurosci. 26, 3423–3433 (2006)

    Article  CAS  PubMed  Google Scholar 

  176. T. Babic, M.N. Purpera, B.W. Banfield, H.R. Berthoud, C.D. Morrison, Innervation of skeletal muscle by leptin receptor-containing neurons. Brain Res. 1345, 146–155 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  177. M.S. Haque, Y. Minokoshi, M. Hamai, M. Iwai, M. Horiuchi, T. Shimazu, Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. Diabetes 48, 1706–1712 (1999)

    Article  CAS  PubMed  Google Scholar 

  178. T. Shimazu, M. Sudo, Y. Minokoshi, A. Takahashi, Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res. Bull. 27, 501–504 (1991)

    Article  CAS  PubMed  Google Scholar 

  179. M. Sudo, Y. Minokoshi, T. Shimazu, Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am. J. Physiol. 261, E298–E303 (1991)

    CAS  PubMed  Google Scholar 

  180. Y. Minokoshi, Y. Okano, T. Shimazu, Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 649, 343–347 (1994)

    Article  CAS  PubMed  Google Scholar 

  181. Y. Minokoshi, M.S. Haque, T. Shimazu, Microinjection of leptin into the ventromedial hypothalamus increases glucose uptake in peripheral tissues in rats. Diabetes 48, 287–291 (1999)

    Article  CAS  PubMed  Google Scholar 

  182. T. Shiuchi, M.S. Haque, S. Okamoto, T. Inoue, H. Kageyama, S. Lee, C. Toda, A. Suzuki, E.S. Bachman, Y.B. Kim, T. Sakurai, M. Yanagisawa, S. Shioda, K. Imoto, Y. Minokoshi, Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab. 10, 466–480 (2009)

    Article  CAS  PubMed  Google Scholar 

  183. R.S. Ahima, J.S. Flier, Leptin. Annu. Rev. Physiol. 62, 413–437 (2000)

    Article  CAS  PubMed  Google Scholar 

  184. M.A. Cowley, J.L. Smart, M. Rubinstein, M.G. Cerdan, S. Diano, T.L. Horvath, R.D. Cone, M.J. Low, Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411, 480–484 (2001)

    Article  CAS  PubMed  Google Scholar 

  185. G. Fruhbeck, M. Aguado, J. Gomez-Ambrosi, J.A. Martinez, Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice. Biochem Biophys Res Commun. 250, 99–102 (1998)

    Article  CAS  PubMed  Google Scholar 

  186. S. Kamohara, R. Burcelin, J.L. Halaas, J.M. Friedman, M.J. Charron, Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389, 374–377 (1997)

    Article  CAS  PubMed  Google Scholar 

  187. C. Buettner, E.D. Muse, A. Cheng, L. Chen, T. Scherer, A. Pocai, K. Su, B. Cheng, X. Li, J. Harvey-White, G.J. Schwartz, G. Kunos, L. Rossetti, C. Buettner, Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  188. W.G. Haynes, D.A. Morgan, S.A. Walsh, A.L. Mark, W.I. Sivitz, Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 100, 270–278 (1997)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  189. S. Park, I.S. Ahn, D.S. Kim, Central infusion of leptin improves insulin resistance and suppresses beta-cell function, but not beta-cell mass, primarily through the sympathetic nervous system in a type 2 diabetic rat model. Life Sci. 86, 854–862 (2010)

    Article  CAS  PubMed  Google Scholar 

  190. J. German, F. Kim, G.J. Schwartz, P.J. Havel, C.J. Rhodes, M.W. Schwartz, G.J. Morton, Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology 150, 4502–4511 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. A. Warner, J. Mittag, Thyroid hormone and the central control of homeostasis. J. Mol. Endocrinol. 49, R29–R35 (2012)

    Article  CAS  PubMed  Google Scholar 

  192. N. Martinez-Sanchez, C.V. Alvarez, J. Ferno, R. Nogueiras, C. Dieguez, M. Lopez, Hypothalamic effects of thyroid hormones on metabolism. Best Pract Res Clin Endocrinol Metab. 28, 703–712 (2014)

    Article  CAS  PubMed  Google Scholar 

  193. M. Sjogren, A. Alkemade, J. Mittag, K. Nordstrom, A. Katz, B. Rozell, H. Westerblad, A. Arner, B. Vennstrom, Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J. 26, 4535–4545 (2007)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  194. L.P. Klieverik, H.P. Sauerwein, M.T. Ackermans, A. Boelen, A. Kalsbeek, E. Fliers, Effects of thyrotoxicosis and selective hepatic autonomic denervation on hepatic glucose metabolism in rats. Am J Physiol Endocrinol Metab. 294, E513–E520 (2008)

    Article  CAS  PubMed  Google Scholar 

  195. C.B. Cook, I. Kakucska, R.M. Lechan, R.J. Koenig, Expression of thyroid hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077–1079 (1992)

    CAS  PubMed  Google Scholar 

  196. L. Varela, N. Martinez-Sanchez, R. Gallego, M.J. Vazquez, J. Roa, M. Gandara, E. Schoenmakers, R. Nogueiras, K. Chatterjee, M. Tena-Sempere, C. Dieguez, M. Lopez, Hypothalamic mTOR pathway mediates thyroid hormone-induced hyperphagia in hyperthyroidism. J Pathol. 227, 209–222 (2012)

    Article  CAS  PubMed  Google Scholar 

  197. A.C. Konner, R. Janoschek, L. Plum, S.D. Jordan, E. Rother, X. Ma, C. Xu, P. Enriori, B. Hampel, G.S. Barsh, C.R. Kahn, M.A. Cowley, F.M. Ashcroft, J.C. Bruning, Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5, 438–449 (2007)

    Article  PubMed  CAS  Google Scholar 

  198. A.C. Konner, T. Klockener, J.C. Bruning, Control of energy homeostasis by insulin and leptin: targeting the arcuate nucleus and beyond. Physiol. Behav. 97, 632–638 (2009)

    Article  PubMed  CAS  Google Scholar 

  199. D.M. Smith, S.R. Bloom, M.C. Sugden, M.J. Holness, Glucose transporter expression and glucose utilization in skeletal muscle and brown adipose tissue during starvation and re-feeding. Biochem. J. 282(Pt 1), 231–235 (1992)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. M.C. Sugden, M.J. Holness, Physiological modulation of the uptake and fate of glucose in brown adipose tissue. Biochem. J. 295(Pt 1), 171–176 (1993)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  201. K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  202. E. Fliers, F. Kreier, P.J. Voshol, L.M. Havekes, H.P. Sauerwein, A. Kalsbeek, R.M. Buijs, J.A. Romijn, White adipose tissue: getting nervous. J. Neuroendocrinol. 15, 1005–1010 (2003)

    Article  CAS  PubMed  Google Scholar 

  203. L. Koch, F.T. Wunderlich, J. Seibler, A.C. Konner, B. Hampel, S. Irlenbusch, G. Brabant, C.R. Kahn, F. Schwenk, J.C. Bruning, Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest. 118, 2132–2147 (2008)

    PubMed Central  CAS  PubMed  Google Scholar 

  204. T. Scherer, J. O’Hare, K. Diggs-Andrews, M. Schweiger, B. Cheng, C. Lindtner, E. Zielinski, P. Vempati, K. Su, S. Dighe, T. Milsom, M. Puchowicz, L. Scheja, R. Zechner, S.J. Fisher, S.F. Previs, C. Buettner, Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194 (2011)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. C. Buettner, R.C. Camacho, Hypothalamic control of hepatic glucose production and its potential role in insulin resistance. Endocrinol. Metab. Clin. North Am. 37, 825–840 (2008)

    Article  CAS  PubMed  Google Scholar 

  206. S. Obici, B.B. Zhang, G. Karkanias, L. Rossetti, Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382 (2002)

    Article  CAS  PubMed  Google Scholar 

  207. S.J. Fisher, C.R. Kahn, Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest. 111, 463–468 (2003)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  208. A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn, Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232–2243 (2014)

    Article  PubMed Central  PubMed  Google Scholar 

  209. J. Havrankova, J. Roth, M. Brownstein, Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272, 827–829 (1978)

    Article  CAS  PubMed  Google Scholar 

  210. K. Rahmouni, D.A. Morgan, G.M. Morgan, X. Liu, C.D. Sigmund, A.L. Mark, W.G. Haynes, Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest. 114, 652–658 (2004)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  211. N.L. Nguyen, J. Randall, B.W. Banfield, T.J. Bartness, Central sympathetic innervations to visceral and subcutaneous white adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R375–R386 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  212. M. Ahmadian, R.E. Duncan, H.S. Sul, The skinny on fat: lipolysis and fatty acid utilization in adipocytes. Trends Endocrinol. Metab. 20, 424–428 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  213. K. Rahmouni, C.D. Sigmund, W.G. Haynes, A.L. Mark, Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58, 536–542 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  214. S.M. Harlan, D.F. Guo, D.A. Morgan, C. Fernandes-Santos, K. Rahmouni, Hypothalamic mTORC1 signaling controls sympathetic nerve activity and arterial pressure and mediates leptin effects. Cell Metab. 17, 599–606 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  215. A.L. Mark, A.W. Norris, K. Rahmouni, Sympathetic inhibition after bariatric surgery. Hypertension 64, 235–236 (2014)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement No 281854—the ObERStress European Research Council Project (ML), the Xunta de Galicia (ML: 2012-CP070; RN: EM 2012/039 and 2012-CP069), Instituto de Salud Carlos III (ISCIII) (ML: PI12/01814), and MINECO co-funded by the European Union FEDER Program (RN: BFU2012-35255; CD: BFU2011-29102). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIII. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The manuscript was edited for English language by Dr. Pamela V Lear.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Seoane-Collazo or Miguel López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seoane-Collazo, P., Fernø, J., Gonzalez, F. et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine 50, 276–291 (2015). https://doi.org/10.1007/s12020-015-0658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0658-y

Keywords

Navigation