Skip to main content

Advertisement

Log in

PRMT1 promotes glucose toxicity-induced β cell dysfunction by regulating the nucleo-cytoplasmic trafficking of PDX-1 in a FOXO1-dependent manner in INS-1 cells

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Protein N-arginine methyltransferase-1 (PRMT1), the major asymmetric arginine methyltransferase, plays important roles in various cellular processes. Previous reports have demonstrated that levels and activities of PRMT1 can vary in animals with type 2 diabetes mellitus. The aim of this study was to assess the expression and mechanism of action of PRMT1 during glucose toxicity-induced β cell dysfunction. Liposome-mediated gene transfection was used to transfect INS-1 cells with siPRMT1, which inhibits PRMT1 expression, and pALTER–FOXO1, which overexpresses forkhead box protein O1 (FOXO1). The cells were then cultured in media containing 5.6 or 25 mmol/L glucose with or without the small molecule PRMT1 inhibitor AMI-1 for 48 h. The protein levels of PRMT1, the arginine methylated protein α-metR, FOXO1, Phospho-FOXO1, pancreas duodenum homeobox-1 (PDX-1), and the intracellular localization of PDX-1 and FOXO1 were then measured by western blotting. FOXO1 methylation was detected by immunoprecipitated with anti-PRMT1 antibody and were immunoblotted with α-metR. The levels of insulin mRNA were measured by real-time fluorescence quantitative PCR. Glucose-stimulated insulin secretion (GSIS) and intracellular insulin content were measured using radioimmunoassays. Intracellular Ca2+ ([Ca2+]i) was detected using Fura-2 AM. Intracellular cAMP levels were measured using ELISA. Chronic exposure to high glucose impaired insulin secretion, decreased insulin mRNA levels and insulin content, increased intracellular [Ca2+]i and cAMP levels, and abolishes their responses to glucose. Inhibiting PRMT1 expression improved insulin secretion, increased mRNA levels and insulin content by regulating the intracellular translocation of PDX-1 and FOXO1, decreasing the methylation of FOXO1, and reducing intracellular [Ca2+]i and cAMP concentrations. Transient overexpression of constitutively active FOXO1 in nuclear reversed the AMI-1-induced improvement of β cell function without changing arginine methylation. It is concluded therefore that PRMT1 regulates GSIS in INS-1 cells, through enhanced methylation-induced nuclear localization of FOXO1, which subsequently suppresses the nuclear localization of PDX-1. Our results suggest a novel mechanism that might contribute to the deficient insulin secretion observed under conditions of chronically hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PRMT1:

Protein N-arginine methyltransferase-1

FOXO1:

Forkhead box protein O1

PDX-1:

Pancreas duodenum homeobox-1

GSIS:

Glucose-stimulated insulin secretion

AMI-1:

7,7′-Carbonylbis[azanediyl]bis[4-hydroxynaphthalene-2-sulfonic acid]

α-metR:

Anti-mono and dimethyl arginine protein

References

  1. R.H. Unger, S. Grundy, Hyperglycaemia as an inducer as well as a consequence of impaired islet cell function and insulin resistance: implications for the management of diabetes. Diabetologia 28(3), 119–121 (1985)

    CAS  PubMed  Google Scholar 

  2. V. Poitout, R.P. Robertson, Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr. Rev. 29, 351–366 (2008)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. R.H. Unger, Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 44(8), 863–870 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. J.C. Henquin, Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49, 1751–1760 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. J.Y. Altarejos, M. Montminy, CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell. Biol. 12(3), 141–151 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. A. Tengholm, Cyclic AMP dynamics in the pancreatic β-cell. Upsala J. Med. Sci. 117(4), 355–369 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  7. W. Jin, M.E. Patti, Genetic determinants and molecular pathways in the pathogenesis of type 2 diabetes. Clin. Sci. 116, 99–111 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. C.H. Waddington, The epigenotype. Endeavour 41(1), 10–13 (2012)

    CAS  Google Scholar 

  9. M. Volkmar, S. Dedeurwaerder, D.A. Cunha, M.N. Ndlovu, M. Defrance, R. Deplus, E. Calonne, U. Volkmar, M. Igoillo-Esteve, N. Naamane, S. Del Guerra, M. Masini, M. Bugliani, P. Marchetti, M. Cnop, D.L. Eizirik, F. Fuks, DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. EMBO J. 31(6), 1405–1426 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. D.Y. Lee, C. Teyssier, B.D. Strahl, M.R. Stallcup, Role of protein methylation in regulation of transcription. Endocr. Rev. 26, 147–170 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. M.T. Bedford, S. Richard, Arginine methylation: an emerging regulator of protein function. Mol. Cell. 18, 263–272 (2005)

    Article  CAS  PubMed  Google Scholar 

  12. J. Tang, A. Frankel, R.J. Cook, S. Kim, W.K. Paik, K.R. Williams, S. Clarke, H.R. Herschman, PRMT1 is the predominant type I protein arginine methyltransferase in mammalian cells. J. Biol. Chem. 275, 7723–7730 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. C.D. Krause, Z.H. Yang, Y.S. Kim, J.H. Lee, J.R. Cook, S. Pestka, Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol. Ther. 113, 50–87 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. M.T. Bedford, S.G. Clarke, Protein arginine methylation in mammals: who, what, and why. Mol. Cell. 33(1), 1–13 (2009)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. N. Cheung, L.C. Chan, A. Thompson, M.L. Cleary, C.W. So, Protein arginine-methyltransferase-dependent oncogenesis. Nat. Cell Biol. 9, 1208–1215 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. I. Goulet, G. Gauvin, S. Boisvenue, J. Cote, Alternative splicing yields protein arginine methyltransferase 1 isoforms with distinct activity, substrate specificity, and subcellular localization. J. Biol. Chem. 282, 33009–33021 (2007)

    Article  CAS  PubMed  Google Scholar 

  17. Y. Chen, X. Xu, M. Sheng, X. Zhang, Q. Gu, Z. Zheng, PRMT-1 and DDAHs-induced ADMA upregulation is involved in ROS- and RAS-mediated diabetic retinopathy. Exp. Eye Res. 89(6), 1028–1034 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. H. Iwasaki, Impaired PRMT1 activity in the liver and pancreas of type 2 diabetic Goto-Kakizaki rats. Life Sci. 85(3–4), 161–166 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. M. Sander, M.S. German, The beta cell transcription factors and development of the pancreas. J. Mol. Med. (Berl.) 75(5), 327–340 (1997)

    Article  CAS  Google Scholar 

  20. J.F. Habener, D.A. Stoffers, A newly discovered role of transcription factors involved in pancreas development and the pathogenesis of diabetes mellitus. Proc. Assoc. Am. Physicians 110(1), 12–21 (1998)

    CAS  PubMed  Google Scholar 

  21. Y. Tanaka, C.E. Gleason, P.O. Tran, J.S. Harmon, R.P. Robertson, Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc. Natl. Acad. Sci. USA 96, 10857–10862 (1999)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. H. Kaneto, Y. Kajimoto, J. Miyagawa, T. Matsuoka, Y. Fujitani, Y. Umayahara, T. Hanafusa, Y. Matsuzawa, Y. Yamasaki, M. Hori, Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48, 2398–2406 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. L.K. Olson, A. Sharma, M. Peshavaria, C.V. Wright, H.C. Towle, R.P. Robertson, R. Stein, Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression. Proc. Natl. Acad. Sci. USA 92, 9127–9131 (1995)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. L.K. Olson, J. Qian, V. Poitout, Glucose rapidly and reversibly decreases INS-1 cell insulin gene transcription via decrements in STF-1 and C1 activator transcription factor activity. Mol. Endocrinol. 12, 207–219 (1998)

    Article  CAS  PubMed  Google Scholar 

  25. U. Ahlgren, J. Jonsson, L. Jonsson, K. Simu, H. Edlund, Beta-cell-specific inactivation of the mouse Ipf1/PDX-1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 12, 1763–1768 (1998)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. M. Brissova, M. Shiota, W.E. Nicholson, M. Gannon, S.M. Knobel, D.W. Piston, C.V. Wright, A.C. Powers, Reduction in pancreatic transcription factor PDX-1 impairs glucose-stimulated insulin secretion. J. Biol. Chem. 277, 11225–11232 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yoneda, Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells 5, 777–787 (2000)

    Article  CAS  PubMed  Google Scholar 

  28. I.W. Mattaj, L. Englmeier, Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998)

    Article  CAS  PubMed  Google Scholar 

  29. L.J. Elrick, K. Docherty, Phosphorylation-dependent nucleocytoplasmic shuttling of pancreatic duodenal homeobox-1. Diabetes 50, 2244–2252 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. S. Ogg, S. Paradis, S. Gottlieb, G.I. Patterson, L. Lee, H.A. Tissenbaum, G. Ruvkun, The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997)

    Article  CAS  PubMed  Google Scholar 

  31. D. Accili, K.C. Arden, FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117, 421–426 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. J. Nakae, W.H. Biggs III, T. Kitamura, W.K. Cavenee, C.V. Wright, K.C. Arden, D. Accili, Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor FOXO1. Nat. Genet. 32, 245–253 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. T. Kitamura, J. Nakae, Y. Kitamura, Y. Kido, W.H. Biggs, C.V. Wright, M.F. White, K.C. Arden, D. Accili, The forkhead transcription factor FOXO1 links insulin signaling to PDX-1 regulation of pancreatic beta cell growth. J. Clin. Investig. 110, 1839–1847 (2002)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. S.K. Kim, L. Selleri, J.S. Lee, A.Y. Zhang, X. Gu, Y. Jacobs, M.L. Cleary, Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 30, 430–435 (2002)

    Article  CAS  PubMed  Google Scholar 

  35. H. Wang, M. Iezzi, S. Theander, P.A. Antinozzi, B.R. Gauthier, P.A. Halban, C.B. Wollheim, Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells. Diabetologia 48, 720–731 (2005)

    Article  CAS  PubMed  Google Scholar 

  36. D. Choi, K.J. Oh, H.S. Han, Y.S. Yoon, C.Y. Jung, S.T. Kim, S.H. Koo, Protein arginine methyltransferase 1 regulates hepatic glucose production in a FOXO1-dependent manner. Hepatology 56(4), 1546–1556 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. S. Guo, G. Rena, S. Cichy, X. He, P. Cohen, T. Unterman, Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J. Biol. Chem. 274(24), 17184–17192 (1999)

    Article  CAS  PubMed  Google Scholar 

  38. M. Asfari, D. Janjic, P. Meda, G. Li, P.A. Halban, C.B. Wollheim, Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130(1), 167–178 (1992)

    CAS  PubMed  Google Scholar 

  39. G. Grynkiewicz, M. Poenie, R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260(6), 3440–3450 (1985)

    CAS  PubMed  Google Scholar 

  40. J. Buteau, D. Accili, Regulation of pancreatic β-cell function by the forkhead protein FOXO1. Diabetes Obes. Metab. 9(Suppl 2), 140 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. D. Kawamori, H. Kaneto, Y. Nakatani, T.A. Matsuoka, M. Matsuhisa, M. Hori, Y. Yamasaki, The forkhead transcription factor FOXO1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation. J. Biol. Chem. 281, 1091–1098 (2006)

    Article  CAS  PubMed  Google Scholar 

  42. K. Yamagata, H. Daitoku, Y. Takahashi, K. Namiki, K. Hisatake, K. Kako, H. Mukai, Y. Kasuya, A. Fukamizu, Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol. Cell. 32(2), 221–231 (2008)

    Article  CAS  PubMed  Google Scholar 

  43. H. Iwasaki, T. Yada, Protein arginine methylation regulates insulin signaling in L6 skeletal muscle cells. Biochem. Biophys. Res. Commun. 364(4), 1015–1021 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. D. Cheng, N. Yadav, R.W. King, M.S. Swanson, E.J. Weinstein, M.T. Bedford, Small molecule regulators of protein arginine methyltransferases. J. Biol. Chem. 279(23), 23892–23899 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. F. Chen, D.J. Fulton, An inhibitor of protein arginine methyltransferases, 7,7′-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1), is a potent scavenger of NADPH-oxidase-derived superoxide. Mol. Pharmacol. 77(2), 280–287 (2010)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. F.M. Ashcroft, P. Rorsman, Electrophysiology of the pancreatic beta-cell. Prog. Biophys. Mol. Biol. 54, 87–143 (1989)

    Article  CAS  PubMed  Google Scholar 

  47. M. Dubois, P. Vacher, B. Roger, D. Huyghe, B. Vandewalle, J. Kerr-Conte, F. Pattou, N. Moustaid-Moussa, J. Lang, Glucotoxicity inhibits late steps of insulin exocytosis. Endocrinology 148, 1605–1614 (2007)

    Article  CAS  PubMed  Google Scholar 

  48. H. Wang, G. Kouri, C.B. Wollheim, ER stress and SREBP-1 activation are implicated in beta-cell glucolipotoxicity. J. Cell Sci. 118(Pt 17), 3905–3915 (2005)

    Article  CAS  PubMed  Google Scholar 

  49. V. Poitout, D. Hagman et al., Regulation of the insulin gene by glucose and fatty acids. J. Nutr. 136, 873–876 (2006)

    CAS  PubMed Central  PubMed  Google Scholar 

  50. L.R. Landa Jr, M. Harbeck, K. Kaihara et al., Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J. Biol. Chem. 280(35), 31294–31302 (2005)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. I. Valverde, A. Vandermeers et al., Calmodulin activation of adenylate cyclase in pancreatic islets. Science (Wash., DC) 206, 225–227 (1979)

    Article  CAS  Google Scholar 

  52. Dachicourt N, Serradas P, et al. Decreased glucose-induced cAMP and insulin release in islets of diabetic rats: reversal by IBMX, glucagon, GIP. Am J Physiol. 271(4 Pt 1):E725-32 (1996)

  53. A. Björklund, A. Lansner et al., Glucose-induced [Ca2+]i abnormalities in human pancreatic islets: important role of overstimulation. Diabetes 49(11), 1840–1848 (2000)

    Article  PubMed  Google Scholar 

  54. J.C. Henquin, J.C. Jonas et al., Functional significance of Ca2+ oscillations in pancreatic β-cells. Diabetes Metab. 24, 30–36 (1998)

    CAS  PubMed  Google Scholar 

  55. L. Huang, A. Bhattacharjee, J.T. Taylor et al., [Ca2+]i regulates trafficking of Cav1.3 (alpha1D Ca2+ channel) in insulin-secreting cells. Am. J. Physiol. Cell Physiol. 286(2), C213–C221 (2004)

    Article  CAS  PubMed  Google Scholar 

  56. Y.F. Chen, A.Y. Zhang et al., Protein methylation activates reconstituted ryanodine receptor-Ca release channels from coronary artery myocytes. J. Vasc. Res. 41(3), 229–240 (2004)

    Article  CAS  PubMed  Google Scholar 

  57. J.S. Johnson, T. Kono et al., Pancreatic and duodenal homeobox protein 1 (Pdx-1) maintains endoplasmic reticulum calcium levels through transcriptional regulation of sarco-endoplasmic reticulum calcium ATPase 2b (SERCA2b) in the islet β cell. J. Biol. Chem. 289(47), 32798–32810 (2014)

    Article  CAS  PubMed  Google Scholar 

  58. Y. Feng, N. Xie, J. Wu, C. Yang, Y.G. Zheng, Inhibitory study of protein arginine methyltransferase 1 using a fluorescent approach. Biochem. Biophys. Res. Commun. 379(2), 567–572 (2009)

    Article  CAS  PubMed  Google Scholar 

  59. S. Marshak, E. Benshushan, M. Shoshkes, L. Havin, E. Cerasi, D. Melloul, Functional conservation of regulatory elements in the PDX-1 gene: PDX-1 and hepatocyte nuclear factor 3beta transcription factors mediate beta-cell-specific expression. Mol. Cell. Biol. 20, 7583–7590 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. M. Peshavaria, E. Henderson, A. Sharma, C.V. Wright, R. Stein, Functional characterization of the transactivation properties of the PDX-1 homeodomain protein. Mol. Cell. Biol. 17, 3987–3996 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The Natural Science Foundation Project of CQ CSTC (Project Number: csct2011jjzt0100) supported this study. We also thank Dr. Unterman (University of Illinois, Chicago, IL, USA) for his generous donation of the pALTER-FOXO1 plasmid. We also thank Dr. Sun (Dalian Medical University, Dalian, China) for providing the INS-1 cells.

Conflict of interest

All the authors have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Liu.

Additional information

Lixia Lv and Hewen Chen have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, L., Chen, H., Sun, J. et al. PRMT1 promotes glucose toxicity-induced β cell dysfunction by regulating the nucleo-cytoplasmic trafficking of PDX-1 in a FOXO1-dependent manner in INS-1 cells. Endocrine 49, 669–682 (2015). https://doi.org/10.1007/s12020-015-0543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0543-8

Keywords

Navigation