Skip to main content

Advertisement

Log in

The gut sensor as regulator of body weight

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The gastrointestinal (GI) tract comprises a large endocrine organ that regulates not only nutrient sensing and metabolising but also satiety and energy homeostasis. More than 20 hormones secreted from the stomach, intestine, and pancreas as well as signaling mediators of the gut microbiome are involved in this process. A better understanding of how related pathways affect body weight and food intake will help us to find new strategies and drugs to treat obesity. For example, weight loss secondary to lifestyle intervention is often accompanied by unfavorable changes in multiple GI hormones, which may cause difficulties in maintaining a lower body weight status. Conversely, bariatric surgery favorably changes the hormone profile to support improved satiety and metabolic function. This partially explains stronger sustained body weight reduction resulting in better long-term results of improved metabolic functions. This review focuses on GI hormones and signaling mediators of the microbiome involved in satiety regulation and energy homeostasis and summarizes their changes following weight loss. Furthermore, the potential role of GI hormones as anti-obesity drugs is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine or serotonin

CCK:

Cholecystokinin

CNS:

Central nervous system

DPP-4:

Dipeptidyl peptidase-4

GI:

Gastrointestinal

GIP:

Gastric inhibitory peptide

GLP-1:

Glucagon-like peptide-1

GPR:

G protein-coupled receptors

LCFA:

Long-chain fatty acids

NPY:

Neuropeptide Y

NT:

Neurotensin

OXM:

Oxyntomodulin

POMC:

Proopiomelanocortin

PYY:

Peptide tyrosine-tyrosine

RYBP:

Roux Y bypass

RYGB:

Roux-en-Y bypass

SCFA:

Short-chain fatty acids

SR:

Sleeve resection

References

  1. C.L. Roth, T. Reinehr, Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention. Arch. Pediatr. Adolesc. Med. 164(2), 131–138 (2010)

    PubMed  Google Scholar 

  2. P.V. Berghe, P. Janssen, S. Kindt, R. Vos, J. Tack, Contribution of different triggers to the gastric accommodation reflex in humans. Am. J. Physiol. Gastrointest. Liver. Physiol. 297(5), G902–G906 (2009)

    Google Scholar 

  3. M. Kojima, H. Hosoda, Y. Date, M. Nakazato, H. Matsuo, K. Kangawa, Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762), 656–660 (1999)

    CAS  PubMed  Google Scholar 

  4. M. Goebel-Stengel, T. Hofmann, U. Elbelt et al., The ghrelin activating enzyme ghrelin-O-acyltransferase (GOAT) is present in human plasma and expressed dependent on body mass index. Peptides 43, 13–19 (2013)

    CAS  PubMed  Google Scholar 

  5. M.C. Garin, C.M. Burns, S. Kaul, A.R. Cappola, Clinical review: the human experience with ghrelin administration. J. Clin. Endocrinol. Metab. 98(5), 1826–1837 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  6. T.D. Muller, A. Muller, C.X. Yi et al., The orphan receptor Gpr83 regulates systemic energy metabolism via ghrelin-dependent and ghrelin-independent mechanisms. Nat. Commun. 4, 1968 (2013)

    PubMed Central  PubMed  Google Scholar 

  7. A.M. Wren, L.J. Seal, M.A. Cohen et al., Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86(12), 5992 (2001)

    CAS  PubMed  Google Scholar 

  8. D.L. Williams, H.J. Grill, D.E. Cummings, J.M. Kaplan, Overfeeding-induced weight gain suppresses plasma ghrelin levels in rats. J. Endocrinol. Invest. 29(10), 863–868 (2006)

    CAS  PubMed  Google Scholar 

  9. L. Soriano-Guillen, V. Barrios, A. Campos-Barros, J. Argente, Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J. Pediatr. 144(1), 36–42 (2004)

    CAS  PubMed  Google Scholar 

  10. W.A. Blom, A. Lluch, S. Vinoy et al., Effects of gastric emptying on the postprandial ghrelin response. Am. J. Physiol. Endocrinol. Metab. 290(2), E389–E395 (2006)

    CAS  PubMed  Google Scholar 

  11. C. Feinle-Bisset, M. Patterson, M.A. Ghatei, S.R. Bloom, M. Horowitz, Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am. J. Physiol. Endocrinol. Metab. 289(6), E948–E953 (2005)

    CAS  PubMed  Google Scholar 

  12. D.E. Cummings, Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 89(1), 71–84 (2006)

    CAS  PubMed  Google Scholar 

  13. K.E. Foster-Schubert, J. Overduin, C.E. Prudom et al., Acyl and total ghrelin are suppressed strongly by ingested proteins, weakly by lipids, and biphasically by carbohydrates. J. Clin. Endocrinol. Metab. 93(5), 1971–1979 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  14. J.V. Zhang, P.G. Ren, O. Avsian-Kretchmer et al., Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science 310(5750), 996–999 (2005)

    CAS  PubMed  Google Scholar 

  15. A. Stengel, M. Goebel, L. Wang, Y. Tache, Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: role as regulators of food intake and body weight. Peptides 31(2), 357–369 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Z.F. Guo, X. Zheng, Y.W. Qin, J.Q. Hu, S.P. Chen, Z. Zhang, Circulating preprandial ghrelin to obestatin ratio is increased in human obesity. J. Clin. Endocrinol. Metab. 92(5), 1875–1880 (2007)

    CAS  PubMed  Google Scholar 

  17. L. Trovato, D. Gallo, F. Settanni, I. Gesmundo, E. Ghigo, R. Granata, Obestatin: is it really doing something? Front. Horm. Res. 42, 175–185 (2014)

    PubMed  Google Scholar 

  18. C.L. Roth, T. Reinehr, G.H. Schernthaner, H.P. Kopp, S. Kriwanek, G. Schernthaner, Ghrelin and obestatin levels in severely obese women before and after weight loss after Roux-en-Y gastric bypass surgery. Obes. Surg. 19(1), 29–35 (2009)

    PubMed  Google Scholar 

  19. P. Wali, J. King, Z. He, D. Tonb, K. Horvath, Ghrelin and obestatin levels in children with failure to thrive and obesity. J. Pediatr. Gastroenterol. Nutr. 58(3), 376–381 (2014)

    CAS  PubMed  Google Scholar 

  20. M. Goebel, A. Stengel, L. Wang, Y. Tache, Central nesfatin-1 reduces the nocturnal food intake in mice by reducing meal size and increasing inter-meal intervals. Peptides 32(1), 36–43 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  21. A. Stengel, T. Hofmann, M. Goebel-Stengel et al., Ghrelin and NUCB2/nesfatin-1 are expressed in the same gastric cell and differentially correlated with body mass index in obese subjects. Histochem. Cell Biol. 139(6), 909–918 (2013)

    CAS  PubMed  Google Scholar 

  22. C. Posovszky, M. Wabitsch, Regulation of appetite, satiation and body weight by enteroendocrine cells. Horm. Res. Pediatr. (2014)

  23. J. Gibbs, R.C. Young, G.P. Smith, Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84(3), 488–495 (1973)

    CAS  PubMed  Google Scholar 

  24. M.E. Carter, M.E. Soden, L.S. Zweifel, R.D. Palmiter, Genetic identification of a neural circuit that suppresses appetite. Nature 503(7474), 111–114 (2013)

    CAS  PubMed  Google Scholar 

  25. Y. Wang, R. Chandra, L.A. Samsa et al., Amino acids stimulate cholecystokinin release through the Ca2 + -sensing receptor. Am. J. Physiol. Gastrointest. Liver Physiol. 300(4), G528–G537 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  26. A.C. Gerspach, R.E. Steinert, L. Schonenberger, A. Graber-Maier, C. Beglinger, The role of the gut sweet taste receptor in regulating GLP-1, PYY, and CCK release in humans. Am. J. Physiol. Endocrinol. Metab. 301(2), E317–E325 (2011)

    CAS  PubMed  Google Scholar 

  27. H.R. Kissileff, F.X. Pi-Sunyer, J. Thornton, G.P. Smith, C-terminal octapeptide of cholecystokinin decreases food intake in man. Am. J. Clin. Nutr. 34(2), 154–160 (1981)

    CAS  PubMed  Google Scholar 

  28. X. Pi-Sunyer, H.R. Kissileff, J. Thornton, G.P. Smith, C-terminal octapeptide of cholecystokinin decreases food intake in obese men. Physiol. Behav. 29(4), 627–630 (1982)

    CAS  PubMed  Google Scholar 

  29. R.L. Batterham, M.A. Cohen, S.M. Ellis et al., Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 349(10), 941–948 (2003)

    CAS  PubMed  Google Scholar 

  30. E. Karra, K. Chandarana, R.L. Batterham, The role of peptide YY in appetite regulation and obesity. J. Physiol. 587(Pt 1), 19–25 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  31. R.L. Batterham, S.R. Bloom, The gut hormone peptide YY regulates appetite. Ann. N. Y. Acad. Sci. 994, 162–168 (2003)

    CAS  PubMed  Google Scholar 

  32. R.L. Batterham, M.A. Cowley, C.J. Small et al., Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418(6898), 650–654 (2002)

    CAS  PubMed  Google Scholar 

  33. C.L. Roth, K.D. Bongiovanni, B. Gohlke, J. Woelfle, Changes in dynamic insulin and gastrointestinal hormone secretion in obese children. J. Pediatr. Endocrinol. Metab. 23(12), 1299–1309 (2010)

    CAS  PubMed  Google Scholar 

  34. E. Doucet, M. Laviolette, P. Imbeault, I. Strychar, R. Rabasa-Lhoret, D. Prud’homme, Total peptide YY is a correlate of postprandial energy expenditure but not of appetite or energy intake in healthy women. Metabolism 57(10), 1458–1464 (2008)

    CAS  PubMed  Google Scholar 

  35. T.D. Heden, Y. Liu, L. Sims et al., Liquid meal composition, postprandial satiety hormones, and perceived appetite and satiety in obese women during acute caloric restriction. Eur. J. Endocrinol. 168(4), 593–600 (2013)

    CAS  PubMed  Google Scholar 

  36. M.A. Nauck, J. Siemsgluss, C. Orskov, J.J. Holst, Release of glucagon-like peptide 1 (GLP-1 [7-36 amide]), gastric inhibitory polypeptide (GIP) and insulin in response to oral glucose after upper and lower intestinal resections. Z. Gastroenterol. 34(3), 159–166 (1996)

    CAS  PubMed  Google Scholar 

  37. J.J. Holst, Incretin hormones and the satiation signal. Int. J. Obes. 37(9), 1161–1168 (2013)

    CAS  Google Scholar 

  38. A. Wettergren, M. Wojdemann, S. Meisner, F. Stadil, J.J. Holst, The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7-36 amide on gastric acid secretion in humans depends on an intact vagal innervation. Gut 40(5), 597–601 (1997)

    CAS  PubMed Central  PubMed  Google Scholar 

  39. A. Flint, A. Raben, A. Astrup, J.J. Holst, Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101(3), 515–520 (1998)

    CAS  PubMed Central  PubMed  Google Scholar 

  40. G. van Dijk, T.E. Thiele, Glucagon-like peptide-1 (7-36) amide: a central regulator of satiety and interoceptive stress. Neuropeptides 33(5), 406–414 (1999)

    PubMed  Google Scholar 

  41. E.B. Ruttimann, M. Arnold, J.J. Hillebrand, N. Geary, W. Langhans, Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150(3), 1174–1181 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  42. E. Renner, N. Puskas, A. Dobolyi, M. Palkovits, Glucagon-like peptide-1 of brainstem origin activates dorsomedial hypothalamic neurons in satiated rats. Peptides 35(1), 14–22 (2012)

    CAS  PubMed  Google Scholar 

  43. N.A. Rhee, S.H. Ostoft, J.J. Holst, C.F. Deacon, T. Vilsboll, F.K. Knop, The impact of dipeptidyl peptidase 4 inhibition on incretin effect, glucose tolerance, and gastrointestinal-mediated glucose disposal in healthy subjects. Eur. J. Endocrinol. 171(3), 353–362 (2014)

    CAS  PubMed  Google Scholar 

  44. M.D. Turton, D. O’Shea, I. Gunn et al., A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379(6560), 69–72 (1996)

    CAS  PubMed  Google Scholar 

  45. D.L. Williams, Minireview: finding the sweet spot: peripheral versus central glucagon-like peptide 1 action in feeding and glucose homeostasis. Endocrinology 150(7), 2997–3001 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  46. S.E. Kanoski, S.M. Fortin, M. Arnold, H.J. Grill, M.R. Hayes, Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152(8), 3103–3112 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  47. A. Rotondo, A. Amato, S. Baldassano, L. Lentini, F. Mule, Gastric relaxation induced by glucagon-like peptide-2 in mice fed a high-fat diet or fasted. Peptides 32(8), 1587–1592 (2011)

    CAS  PubMed  Google Scholar 

  48. D.G. Burrin, Y. Petersen, B. Stoll, P. Sangild, Glucagon-like peptide 2: a nutrient-responsive gut growth factor. J. Nutr. 131(3), 709–712 (2001)

    CAS  PubMed  Google Scholar 

  49. A. Maida, J.A. Lovshin, L.L. Baggio, D.J. Drucker, The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances beta-cell function but does not inhibit gastric emptying in mice. Endocrinology 149(11), 5670–5678 (2008)

    CAS  PubMed  Google Scholar 

  50. M.A. Cohen, S.M. Ellis, C.W. le Roux et al., Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 88(10), 4696–4701 (2003)

    CAS  PubMed  Google Scholar 

  51. C.L. Dakin, C.J. Small, R.L. Batterham et al., Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145(6), 2687–2695 (2004)

    CAS  PubMed  Google Scholar 

  52. K. Wynne, A.J. Park, C.J. Small et al., Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. 30(12), 1729–1736 (2006)

    CAS  Google Scholar 

  53. J. Kolic, A. Spigelman, A. Smith, J. Manning, P. MacDonald, Insulin Secretion Induced by Glucose-dependent Insulinotropic Polypeptide Requires PI3 Kinase-y in Rodent and Human ß-Cells. J. Biol. Chem. 289(46), 32109–32120 (2014)

    CAS  PubMed  Google Scholar 

  54. M.A. Nauck, B. Baller, J.J. Meier, Gastric inhibitory polypeptide and glucagon-like peptide-1 in the pathogenesis of type 2 diabetes. Diabetes 53(Suppl 3), S190–S196 (2004)

    CAS  PubMed  Google Scholar 

  55. N.N. Rudovich, V.J. Nikiforova, B. Otto et al., Metabolomic linkage reveals functional interaction between glucose-dependent insulinotropic polypeptide and ghrelin in humans. Am. J. Physiol Endocrinol Metab. 301(4), E608–E617 (2011)

    CAS  PubMed  Google Scholar 

  56. K. Miyawaki, Y. Yamada, N. Ban et al., Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 8(7), 738–742 (2002)

    CAS  PubMed  Google Scholar 

  57. A. Leckstrom, E.R. Kim, D. Wong, T.M. Mizuno, Xenin, a gastrointestinal peptide, regulates feeding independent of the melanocortin signaling pathway. Diabetes 58(1), 87–94 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  58. S. Sande-Lee, A.R. Cardoso, C.R. Garlipp et al., Cerebrospinal fluid xenin levels during body mass reduction: no evidence for obesity-associated defective transport across the blood-brain barrier. Int. J. Obes. 37(3), 416–419 (2013)

    Google Scholar 

  59. G.M. Leinninger, D.M. Opland, Y.H. Jo et al., Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14(3), 313–323 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  60. W.C. Mustain, P.G. Rychahou, B.M. Evers, The role of neurotensin in physiologic and pathologic processes. Curr. Opin. Endocrinol. Diabetes Obes. 18(1), 75–82 (2011)

    CAS  PubMed  Google Scholar 

  61. D. Opland, A. Sutton, H. Woodworth et al., Loss of neurotensin receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. Mol. Metab. 2(4), 423–434 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  62. V. Stolakis, K. Kalafatakis, J. Botis, A. Zarros, C. Liapi, The regulatory role of neurotensin on the hypothalamic-anterior pituitary axons: emphasis on the control of thyroid-related functions. Neuropeptides 44(1), 1–7 (2010)

    CAS  PubMed  Google Scholar 

  63. M.J. Low, Clinical endocrinology and metabolism. The somatostatin neuroendocrine system: physiology and clinical relevance in gastrointestinal and pancreatic disorders. Best Pract. Res. Clin. Endocrinol. Metab. 18(4), 607–622 (2004)

    CAS  PubMed  Google Scholar 

  64. Z. Stepanyan, A. Kocharyan, M. Behrens, C. Koebnick, M. Pyrski, W. Meyerhof, Somatostatin, a negative-regulator of central leptin action in the rat hypothalamus. J. Neurochem. 100(2), 468–478 (2007)

    CAS  PubMed  Google Scholar 

  65. A. Foxx-Orenstein, M. Camilleri, D. Stephens, D. Burton, Effect of a somatostatin analogue on gastric motor and sensory functions in healthy humans. Gut 52(11), 1555–1561 (2003)

    CAS  PubMed Central  PubMed  Google Scholar 

  66. F. Cremonini, M. Camilleri, J. Gonenne et al., Effect of somatostatin analog on postprandial satiation in obesity. Obes. Res. 13(9), 1572–1579 (2005)

    CAS  PubMed  Google Scholar 

  67. D.D. Lam, M.J. Przydzial, S.H. Ridley et al., Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology 149(3), 1323–1328 (2008)

    CAS  PubMed Central  PubMed  Google Scholar 

  68. S.C. Nigro, D. Luon, W.L. Baker, Lorcaserin: a novel serotonin 2C agonist for the treatment of obesity. Curr. Med. Res. Opin. 29(7), 839–848 (2013)

    PubMed  Google Scholar 

  69. C.Y. Cheng, J.Y. Chu, B.K. Chow, Central and peripheral administration of secretin inhibits food intake in mice through the activation of the melanocortin system. Neuropsychopharmacology 36(2), 459–471 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  70. J.Y. Chu, C.Y. Cheng, R. Sekar, B.K. Chow, Vagal afferent mediates the anorectic effect of peripheral secretin. PLoS One 8(5), e64859 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  71. M.W. Schwartz, S.C. Woods, D. Porte Jr, R.J. Seeley, D.G. Baskin, Central nervous system control of food intake. Nature 404(6778), 661–671 (2000)

    CAS  PubMed  Google Scholar 

  72. G.J. Morton, M.W. Schwartz, Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91(2), 389–411 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  73. K.A. Posey, D.J. Clegg, R.L. Printz et al., Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296(5), E1003–E1012 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  74. R.L. Batterham, C.W. le Roux, M.A. Cohen et al., Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 88(8), 3989–3992 (2003)

    CAS  PubMed  Google Scholar 

  75. Y. Iwasaki, M. Kakei, H. Nakabayashi et al., Pancreatic polypeptide and peptide YY3-36 induce Ca2 + signaling in nodose ganglion neurons. Neuropeptides 47(1), 19–23 (2013)

    CAS  PubMed  Google Scholar 

  76. J.A. Kanaley, T.D. Heden, Y. Liu et al., Short-term aerobic exercise training increases postprandial pancreatic polypeptide but not peptide YY concentrations in obese individuals. Int. J. Obes. 38(2), 266–271 (2014)

    CAS  Google Scholar 

  77. T.A. Lutz, Control of food intake and energy expenditure by amylin-therapeutic implications. Int. J. Obes. 33(Suppl 1), S24–S27 (2009)

    CAS  Google Scholar 

  78. T.A. Lutz, P.E. Del, E. Scharrer, Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiol. Behav. 55(5), 891–895 (1994)

    CAS  PubMed  Google Scholar 

  79. T.A. Lutz, N. Geary, M.M. Szabady, P.E. Del, E. Scharrer, Amylin decreases meal size in rats. Physiol. Behav. 58(6), 1197–1202 (1995)

    CAS  PubMed  Google Scholar 

  80. S.E. Kahn, S. Andrikopoulos, C.B. Verchere, Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes 48(2), 241–253 (1999)

    CAS  PubMed  Google Scholar 

  81. M. Million, M. Maraninchi, M. Henry et al., Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. 36(6), 817–825 (2012)

    CAS  Google Scholar 

  82. J.M. Evans, L.S. Morris, J.R. Marchesi, The gut microbiome: the role of a virtual organ in the endocrinology of the host. J. Endocrinol. 218(3), R37–R47 (2013)

    CAS  PubMed  Google Scholar 

  83. H. Tilg, A.R. Moschen, A. Kaser, Obesity and the microbiota. Gastroenterology 136(5), 1476–1483 (2009)

    PubMed  Google Scholar 

  84. P. Kovatcheva-Datchary, T. Arora, Nutrition, the gut microbiome and the metabolic syndrome. Best Pract. Res. Clin. Gastroenterol. 27(1), 59–72 (2013)

    CAS  PubMed  Google Scholar 

  85. A. Trompette, E.S. Gollwitzer, K. Yadava et al., Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20(2), 159–166 (2014)

    CAS  PubMed  Google Scholar 

  86. P. Holzer, F. Reichmann, A. Farzi, Y. Neuropeptide, peptide YY and pancreatic polypeptide in the gut-brain axis. Neuropeptides 46(6), 261–274 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  87. R.D. Steele, Blood-brain barrier transport of the alpha-keto acid analogs of amino acids. Fed. Proc. 45(7), 2060–2064 (1986)

    CAS  PubMed  Google Scholar 

  88. M. DeCastro, B.B. Nankova, P. Shah et al., Short chain fatty acids regulate tyrosine hydroxylase gene expression through a cAMP-dependent signaling pathway. Brain Res. Mol. Brain Res. 142(1), 28–38 (2005)

    CAS  PubMed  Google Scholar 

  89. A.J. Brown, S.M. Goldsworthy, A.A. Barnes et al., The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278(13), 11312–11319 (2003)

    CAS  PubMed  Google Scholar 

  90. Y. Xiong, N. Miyamoto, K. Shibata et al., Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. 101(4), 1045–1050 (2004)

    CAS  PubMed Central  PubMed  Google Scholar 

  91. K.M. Maslowski, A.T. Vieira, A. Ng et al., Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461(7268), 1282–1286 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  92. A. Everard, P.D. Cani, Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol. 27(1), 73–83 (2013)

    CAS  PubMed  Google Scholar 

  93. F. Fava, S. Danese, Intestinal microbiota in inflammatory bowel disease: friend of foe? World J. Gastroenterol. 17(5), 557–566 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

  94. T. Reinehr, G. de Sousa, P. Niklowitz, C.L. Roth, Amylin and its relation to insulin and lipids in obese children before and after weight loss. Obesity 15(8), 2006–2011 (2007)

    CAS  PubMed  Google Scholar 

  95. T. Reinehr, P.J. Enriori, K. Harz, M.A. Cowley, C.L. Roth, Pancreatic polypeptide in obese children before and after weight loss. Int. J. Obes. 30(10), 1476–1481 (2006)

    CAS  Google Scholar 

  96. M. Salera, P. Giacomoni, L. Pironi et al., Gastric inhibitory polypeptide release after oral glucose: relationship to glucose intolerance, diabetes mellitus, and obesity. J. Clin. Endocrinol. Metab. 55(2), 329–336 (1982)

    CAS  PubMed  Google Scholar 

  97. N. Arslan, O. Sayin, Y. Tokgoz, Evaluation of serum xenin and ghrelin levels and their relationship with nonalcoholic fatty liver disease and insulin resistance in obese adolescents. J. Endocrinol. Invest. 37(11), 1091–1097 (2014)

    Google Scholar 

  98. C.L. Roth, P.J. Enriori, K. Harz, J. Woelfle, M.A. Cowley, T. Reinehr, Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J. Clin. Endocrinol. Metab. 90(12), 6386–6391 (2005)

    CAS  PubMed  Google Scholar 

  99. C. Verdich, S. Toubro, B. Buemann, M.J. Lysgard, H.J. Juul, A. Astrup, The role of postprandial releases of insulin and incretin hormones in meal-induced satiety–effect of obesity and weight reduction. Int. J. Obes. Relat. Metab. Disord. 25(8), 1206–1214 (2001)

    CAS  PubMed  Google Scholar 

  100. J. Le Beyec, A.L. Pelletier, K. Arapis et al., Overexpression of gastric leptin precedes adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells. Int. J. Obes. 38(10), 1357–1364 (2014)

    Google Scholar 

  101. K. Hermansen, L.S. Mortensen, Bodyweight changes associated with antihyperglycaemic agents in type 2 diabetes mellitus. Drug Saf. 30(12), 1127–1142 (2007)

    CAS  PubMed  Google Scholar 

  102. B.C. Field, A.M. Wren, D. Cooke, S.R. Bloom, Gut hormones as potential new targets for appetite regulation and the treatment of obesity. Drugs 68(2), 147–163 (2008)

    CAS  PubMed  Google Scholar 

  103. S. Polakof, Diabetes therapy: novel patents targeting the glucose-induced insulin secretion. Recent Pat. DNA Gene Seq. 4(1), 1–9 (2010)

    CAS  PubMed  Google Scholar 

  104. R.A. DeFronzo, R.E. Ratner, J. Han, D.D. Kim, M.S. Fineman, A.D. Baron, Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28(5), 1092–1100 (2005)

    CAS  PubMed  Google Scholar 

  105. N.M. Neary, C.J. Small, M.R. Druce et al., Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology 146(12), 5120–5127 (2005)

    CAS  PubMed  Google Scholar 

  106. S.R. Smith, W.A. Prosser, D.J. Donahue, M.E. Morgan, C.M. Anderson, W.R. Shanahan, Lorcaserin (APD356), a selective 5-HT(2C) agonist, reduces body weight in obese men and women. Obesity 17(3), 494–503 (2009)

    CAS  PubMed  Google Scholar 

  107. F.Y. Enc, T. Ones, H.L. Akin et al., Orlistat accelerates gastric emptying and attenuates GIP release in healthy subjects. Am. J. Physiol. Gastrointest. Liver Physiol. 296(3), G482–G489 (2009)

    CAS  PubMed  Google Scholar 

  108. C.N. Bernstein, Antibiotics, Probiotics and Prebiotics in IBD. Nestle Nutr. Inst. Workshop Ser. 79, 83–100 (2014)

    PubMed  Google Scholar 

  109. P.J. Turnbaugh, R.E. Ley, M.A. Mahowald, V. Magrini, E.R. Mardis, J.I. Gordon, An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027–1031 (2006)

    PubMed  Google Scholar 

  110. M. Kalliomaki, M.C. Collado, S. Salminen, E. Isolauri, Early differences in fecal microbiota composition in children may predict overweight. Am. J. Clin. Nutr. 87(3), 534–538 (2008)

    CAS  PubMed  Google Scholar 

  111. J.M. Lecerf, F. Depeint, E. Clerc et al., Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 108(10), 1847–1858 (2012)

    CAS  PubMed  Google Scholar 

  112. J.A. Parnell, R.A. Reimer, Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:lA-cp rats. Br. J. Nutr. 107(4), 601–613 (2012)

    CAS  PubMed  Google Scholar 

  113. P.D. Cani, S. Possemiers, T. Van de Wiele et al., Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58(8), 1091–1103 (2009)

    CAS  PubMed Central  PubMed  Google Scholar 

  114. F. Cabreiro, C. Au, K.Y. Leung et al., Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1), 228–239 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  115. D. Rucker, R. Padwal, S.K. Li, C. Curioni, D.C. Lau, Long term pharmacotherapy for obesity and overweight: updated meta-analysis. BMJ 335(7631), 1194–1199 (2007)

    CAS  PubMed Central  PubMed  Google Scholar 

  116. A.S. Kelly, A.M. Metzig, K.D. Rudser et al., Exenatide as a weight-loss therapy in extreme pediatric obesity: a randomized, controlled pilot study. Obesity 20(2), 364–370 (2012)

    CAS  PubMed Central  PubMed  Google Scholar 

  117. S.R. Smith, N.J. Weissman, C.M. Anderson et al., Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med. 363(3), 245–256 (2010)

    CAS  PubMed  Google Scholar 

  118. W. Huang, R. Liu, Y. Ou et al., Octreotide promotes weight loss via suppression of intestinal MTP and apoB48 expression in diet-induced obesity rats. Nutrition 29(10), 1259–1265 (2013)

    CAS  PubMed  Google Scholar 

  119. T. Tzotzas, K. Papazisis, P. Perros, G.E. Krassas, Use of somatostatin analogues in obesity. Drugs 68(14), 1963–1973 (2008)

    CAS  PubMed  Google Scholar 

  120. T. Reinehr, Lifestyle intervention in childhood obesity: changes and challenges. Nat. Rev. Endocrinol. 9(10), 607–614 (2013)

    PubMed  Google Scholar 

  121. T. Reinehr, K. Widhalm, D. l’Allemand, S. Wiegand, M. Wabitsch, R.W. Holl, Two-year follow-up in 21,784 overweight children and adolescents with lifestyle intervention. Obesity 17(6), 1196–1199 (2009)

    PubMed  Google Scholar 

  122. P. Sumithran, L.A. Prendergast, E. Delbridge et al., Long-term persistence of hormonal adaptations to weight loss. N. Engl. J. Med. 365(17), 1597–1604 (2011)

    CAS  PubMed  Google Scholar 

  123. S.H. Jacobsen, S.C. Olesen, C. Dirksen et al., Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes. Surg. 22(7), 1084–1096 (2012)

    CAS  PubMed  Google Scholar 

  124. K. Zwirska-Korczala, S.J. Konturek, M. Sodowski et al., Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J. Physiol. Pharmacol. 58(Suppl 1), 13–35 (2007)

    PubMed  Google Scholar 

  125. R.V. Seimon, P. Taylor, T.J. Little et al., Effects of acute and longer-term dietary restriction on upper gut motility, hormone, appetite, and energy-intake responses to duodenal lipid in lean and obese men. Am. J. Clin. Nutr. 99(1), 24–34 (2014)

    CAS  PubMed  Google Scholar 

  126. T. Reinehr, W. Kiess, T. Kapellen, W. Andler, Insulin sensitivity among obese children and adolescents, according to degree of weight loss. Pediatrics 114(6), 1569–1573 (2004)

    PubMed  Google Scholar 

  127. T. Reinehr, C.L. Roth, U. Alexy, M. Kersting, W. Kiess, W. Andler, Ghrelin levels before and after reduction of overweight due to a low-fat high-carbohydrate diet in obese children and adolescents. Int. J. Obes. 29(4), 362–368 (2005)

    CAS  Google Scholar 

  128. T. Reinehr, C.L. Roth, G.H. Schernthaner, H.P. Kopp, S. Kriwanek, G. Schernthaner, Peptide YY and glucagon-like peptide-1 in morbidly obese patients before and after surgically induced weight loss. Obes. Surg. 17(12), 1571–1577 (2007)

    PubMed  Google Scholar 

  129. T. Reinehr, G. de Sousa, C.L. Roth, Fasting glucagon-like peptide-1 and its relation to insulin in obese children before and after weight loss. J. Pediatr. Gastroenterol. Nutr. 44(5), 608–612 (2007)

    CAS  PubMed  Google Scholar 

  130. T. Reinehr, G. de Sousa, C.L. Roth, Obestatin and ghrelin levels in obese children and adolescents before and after reduction of overweight. Clin. Endocrinol. 68(2), 304–310 (2008)

    CAS  Google Scholar 

  131. R.C. Vos, H. Pijl, J.M. Wit, E.W. van Zwet, C. van der Bent, E.C. Houdijk, The effect of multidisciplinary lifestyle intervention on the pre- and postprandial plasma gut Peptide concentrations in children with obesity. ISRN Endocrinol. 2011, 353756 (2011)

    PubMed Central  PubMed  Google Scholar 

  132. T.C. Adam, J. Jocken, M.S. Westerterp-Plantenga, Decreased glucagon-like peptide 1 release after weight loss in overweight/obese subjects. Obes. Res. 13(4), 710–716 (2005)

    CAS  PubMed  Google Scholar 

  133. T. Reinehr, C.L. Roth, P.J. Enriori, K. Masur, Changes of dipeptidyl peptidase IV (DPP-IV) in obese children with weight loss: relationships to peptide YY, pancreatic peptide, and insulin sensitivity. J. Pediatr. Endocrinol. Metab. 23(1–2), 101–108 (2010)

    CAS  PubMed  Google Scholar 

  134. T. Reinehr, M. Kleber, N. Lass, A.M. Toschke, Body mass index patterns over 5 y in obese children motivated to participate in a 1-y lifestyle intervention: age as a predictor of long-term success. Am. J. Clin. Nutr. 91(5), 1165–1171 (2010)

    CAS  PubMed  Google Scholar 

  135. S.Y. Ueda, T. Yoshikawa, Y. Katsura, T. Usui, S. Fujimoto, Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J. Endocrinol. 203(3), 357–364 (2009)

    CAS  PubMed  Google Scholar 

  136. A. de Hollanda, A. Jimenez, R. Corcelles, A.M. Lacy, I. Patrascioiu, J. Vidal, Gastrointestinal hormones and weight loss response after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 10(5), 814–819 (2014)

    PubMed  Google Scholar 

  137. C.W. le Roux, R. Welbourn, M. Werling et al., Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246(5), 780–785 (2007)

    PubMed  Google Scholar 

  138. M.B. Mumphrey, L.M. Patterson, H. Zheng, H.R. Berthoud, Roux-en-Y gastric bypass surgery increases number but not density of CCK-, GLP-1-, 5-HT-, and neurotensin-expressing enteroendocrine cells in rats. Neurogastroenterol. Motil. 25(1), e70–e79 (2013)

    CAS  PubMed Central  PubMed  Google Scholar 

  139. W.J. Lee, C.Y. Chen, K.H. Ser et al., Differential influences of gastric bypass and sleeve gastrectomy on plasma nesfatin-1 and obestatin levels in patients with type 2 diabetes mellitus. Curr. Pharm. Des. 19(32), 5830–5835 (2013)

    CAS  PubMed  Google Scholar 

  140. F. Rubino, M. Gagner, P. Gentileschi et al., The early effect of the Roux-en-Y gastric bypass on hormones involved in body weight regulation and glucose metabolism. Ann. Surg. 240(2), 236–242 (2004)

    PubMed Central  PubMed  Google Scholar 

  141. T.P. Solomon, J.M. Haus, K.R. Kelly, M. Rocco, S.R. Kashyap, J.P. Kirwan, Improved pancreatic beta-cell function in type 2 diabetic patients after lifestyle-induced weight loss is related to glucose-dependent insulinotropic polypeptide. Diabetes Care 33(7), 1561–1566 (2010)

    CAS  PubMed Central  PubMed  Google Scholar 

  142. M. Sundbom, C. Holdstock, B.E. Engstrom, F.A. Karlsson, Early changes in ghrelin following Roux-en-Y gastric bypass: influence of vagal nerve functionality? Obes. Surg. 17(3), 304–310 (2007)

    PubMed  Google Scholar 

  143. M. Christ-Crain, R. Stoeckli, A. Ernst et al., Effect of gastric bypass and gastric banding on proneurotensin levels in morbidly obese patients. J. Clin. Endocrinol. Metab. 91(9), 3544–3547 (2006)

    CAS  PubMed  Google Scholar 

  144. D.E. Cummings, J. Overduin, K.E. Foster-Schubert, M.J. Carlson, Role of the bypassed proximal intestine in the anti-diabetic effects of bariatric surgery. Surg. Obes. Relat. Dis. 3(2), 109–115 (2007)

    PubMed Central  PubMed  Google Scholar 

  145. T.E. Sweeney, J.M. Morton, Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract. Res. Clin. Gastroenterol. 28(4), 727–740 (2014)

    CAS  PubMed  Google Scholar 

  146. H. Ashrafian, T. Athanasiou, J.V. Li et al., Diabetes resolution and hyperinsulinaemia after metabolic Roux-en-Y gastric bypass. Obes. Rev. 12(5), e257–e272 (2011)

    CAS  PubMed  Google Scholar 

  147. J. Korner, M. Bessler, W. Inabnet, C. Taveras, J.J. Holst, Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg. Obes. Relat. Dis. 3(6), 597–601 (2007)

    PubMed Central  PubMed  Google Scholar 

  148. F. Rubino, S.A. Amiel, Is the gut the “sweet spot” for the treatment of diabetes? Diabetes 63(7), 2225–2228 (2014)

    PubMed  Google Scholar 

  149. M.L. Alam, B.J. Van der Schueren, B. Ahren et al., Gastric bypass surgery, but not caloric restriction, decreases dipeptidyl peptidase-4 activity in obese patients with type 2 diabetes. Diabetes Obes. Metab. 13(4), 378–381 (2011)

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Reinehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinehr, T., Roth, C.L. The gut sensor as regulator of body weight. Endocrine 49, 35–50 (2015). https://doi.org/10.1007/s12020-014-0518-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0518-1

Keywords

Navigation