Skip to main content

Advertisement

Log in

PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

An Erratum to this article was published on 08 July 2016

Abstract

The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a central hub for the regulation of cell proliferation, apoptosis, cell cycle, metabolism, and angiogenesis. Several studies have recently suggested that the PI3K/Akt/mTOR signaling pathway is implicated in the pathogenesis and progression of neuroendocrine tumors. Medullary thyroid cancer (MTC) is a neuroendocrine tumor developing from the C cells of the thyroid. Mutations in the RET proto-oncogene are involved in the pathogenesis of several forms of MTC. The deregulation of the PI3K/Akt/mTOR pathway seems to contribute to the tumorigenic activity of RET proto-oncogene mutations. Targeting this pathway through specific inhibitors at simple or multiple sites may represent an attractive potential therapeutic approach for patients with advanced MTCs. The aim of this review is to examine the role of the PI3K/Akt/mTOR pathway in the development and progression of MTC and the new therapeutic options that target this signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. C. Eng, D. Clayton, I. Schuffenecker, G. Lenoir, G. Cote, R.F. Gagel, H.K. van Amstel, C.J. Lips, I. Nishisho, S.I. Takai, D.J. Marsh, B.G. Robinson, K. Frank-Raue, F. Raue, F. Xue, W.W. Noll, C. Romei, F. Pacini, M. Fink, B. Niederle, J. Zedenius, M. Nordenskjöld, P. Komminoth, G.N. Hendy, L.M. Mulligan et al., The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276(19), 1575–1579 (1996)

    Article  CAS  PubMed  Google Scholar 

  2. C. Eng, L.M. Mulligan, Mutations of the RET protooncogene in multiple endocrine neoplasia type 2, related sporadic tumours and Hirschsprung diseases. Hum. Mutat. 9, 97–109 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. B. Pasini, M.G. Borrello, A. Greco, I. Bongarzone, Y. Luo, P. Mondellini, L. Alberti, C. Miranda, E. Arighi, R. Bocciardi et al., Loss of function effect of RET mutations causing Hirschsprung disease. Nature Genet. 10, 35–40 (1995)

    Article  CAS  PubMed  Google Scholar 

  4. L. Mulligan, C. Eng, C.S. Healey, D. Clayton, J.B. Kwok, E. Gardner, M.A. Ponder, A. Frilling, C.E. Jackson, H. Lehnert et al., Specific mutations of the RET proto-oncogene are related to disease phenotype in MEN 2A and FMTC. Nature Genet. 6, 70–74 (1994)

    Article  CAS  PubMed  Google Scholar 

  5. M.G. Borrello, D.P. Smith, B. Pasini, I. Bongarzone, A. Greco, M.J. Lorenzo, E. Arighi, C. Miranda, C. Eng, L. Alberti et al., RET activation by germline MEN2A and MEN2B mutations. Oncogene 11, 2419–2427 (1995)

    CAS  PubMed  Google Scholar 

  6. G. Vitale, M. Caraglia, A. Ciccarelli, G. Lupoli, A. Abbruzzese, P. Tagliaferri, G. Lupoli, Current approaches and perspectives in the therapy of medullary thyroid carcinoma. Cancer 91(9), 1797–1808 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. C. Puppin, C. Durante, M. Sponziello, A. Verrienti, V. Pecce, E. Lavarone, F. Baldan, A.F. Campese, A. Boichard, L. Lacroix, D. Russo, S. Filetti, G. Damante, Overexpression of genes involved in miRNA biogenesis in medullary thyroid carcinomas with RET mutation. Endocrine (2014). doi:10.1007/s12020-014-0204-3

  8. A. Cerrato, V. De Falco, M. Santoro, Molecular genetics of medullary thyroid carcinoma: the quest for novel therapeutic targets. J. Mol. Endocrinol. 43, 143–155 (2009)

    Article  CAS  PubMed  Google Scholar 

  9. C. Durante, A. Paciaroni, K. Plasmati, F. Trulli, S. Filetti, Vandetanib: opening a new treatment practice in advanced medullary thyroid carcinoma. Endocrine 44(2), 334–342 (2013)

    Article  CAS  PubMed  Google Scholar 

  10. S. Wullschleger, R. Loewith, M.N. Hall, TOR signaling in growth and metabolism. Cell 124, 471–484 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. D.M. Sabatini, MTOR and cancer: insights into a complex relationship. Nat. Rev. Cancer 6, 729–734 (2006)

    Article  CAS  PubMed  Google Scholar 

  12. T. Schmeizle, M.N. Hall, TOR, a central controller of cell growth. Cell 103, 253–262 (2000)

    Article  Google Scholar 

  13. Y. Samuels, Z. Wang, A. Bardelli, N. Silliman, J. Ptak, S. Szabo, H. Yan, A. Gazdar, S.M. Powell, G.J. Riggins, J.K. Willson, S. Markowitz, K.W. Kinzler, B. Vogelstein, V.E. Velculescu, High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004)

    Article  CAS  PubMed  Google Scholar 

  14. I. Vivanco, C.L. Sawyers, The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. A. De Benedetti, J.R. Graff, EIF-4E expression and its role in malignancies and metastases. Oncogene 23, 3189–3199 (2004)

    Article  PubMed  Google Scholar 

  16. J.A. Engelman, Targeting PI3K signaling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009)

    Article  CAS  PubMed  Google Scholar 

  17. J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang, J. Puc, C. Miliaresis, L. Rodgers, R. McCombie, S.H. Bigner, B.C. Giovanella, M. Ittmann, B. Tycko, H. Hibshoosh, M.H. Wigler, R. Parsons, PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. T. Gagliano, M. Bellio, E. Gentilin, D. Molè, F. Tagliati, M. Schiavon, N.G. Cavallesco, L.G. Andriolo, M.R. Ambrosio, F. Rea, E. Degli Uberti, M.C. Zatelli, mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr. Relat. Cancer 20(4), 463–475 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. K.L. Yim, Role of biological targeted therapies in gastroenteropancreatic neuroendocrine tumours. Endocrine 40(2), 181–186 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. J. Capdevila, J. Tabernero, A shining light in the darkness for the treatment of pancreatic neuroendocrine tumors. Cancer Discov. 1, 213–221 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. M.C. Zatelli, M. Minoia, C. Martini, F. Tagliati, M.R. Ambrosio, M. Schiavon, M. Buratto, F. Calabrese, E. Gentilin, G. Cavallesco, L. Berdondini, F. Rea, E.C. degli Uberti, Everolimus as a new potential antiproliferative agent in aggressive human bronchial carcinoids. Endocr. Relat. Cancer. 17(3), 719–729 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. K.I. Alexandraki, G. Kaltsas, Gastroenteropancreatic neuroendocrine tumors: new insights in the diagnosis and therapy. Endocrine 41(1), 40–52 (2012)

    Article  CAS  PubMed  Google Scholar 

  23. E. Missaglia, I. Dalai, S. Barbi, S. Beghelli, M. Falconi, M. della Peruta, L. Piemonti, G. Capurso, A. Di Florio, G. delle Fave, P. Pederzoli, C.M. Croce, A. Scarpa, Pancreatic endocrine tumors: expression profiling evidences a role for Akt-mTOR pathway. J. Clin. Oncol. 28, 245–255 (2010)

    Article  Google Scholar 

  24. Y. Jiao, C. Shi, B.H. Edil, R.F. de Wilde, D.S. Klimstra, A. Maitra, R.D. Schulick, L.H. Tang, C.L. Wolfgang, M.A. Choti, V.E. Velculescu, L.A. Diaz Jr, B. Vogelstein, K.W. Kinzler, R.H. Hruban, N. Papadopoulos, DAXX/ATRX, MEN1 and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. Shida, T. Kishimoto, M. Furuya, T. Nikaido, K. Koda, S. Takano, F. Kimura, H. Shimizu, H. Yoshidome, M. Ohtsuka, T. Tanizawa, Y. Nakatani, M. Miyazaki, Expression of an activated mammalian target of rapamycin (mTOR) in gastroenteropancreatic neuroendocrine tumors. Cancer Chemother. Pharmacol. 65, 889–893 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. F. Meric-Bernstam, A.M. Gonzalez-Angulo, Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27, 2278–2287 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. K.G. Foster, D.C. Fingar, Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J. Biol. Chem. 285, 14071–14077 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J.C. Yao, M.H. Shah, T. Ito, C.L. Bohas, E.M. Wolin, E. Van Cutsem, T.J. Hobday, T. Okusaka, J. Capdevila, E.G. de Vries, P. Tomassetti, M.E. Pavel, S. Hoosen, T. Haas, J. Lincy, D. Lebwohl, K. Öberg, RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group: everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364(6), 514–523 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. R.M. Melillo, F. Carlomagno, G. De Vita, P. Formisano, G. Vecchio, A. Fusco, M. Billaud, M. Santoro, The insulin receptor substrate (IRS)-1 recruits phosphatidylinositol 3-kinase to Ret: evidence for a competition between Shc and IRS-1 for the binding to Ret. Oncogene 20, 209–218 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. I. Rapa, E. Saggiorato, D. Giachino, N. Palestini, F. Orlandi, M. Papotti, M. Volante, Mammalian target of rapamycin pathway activation is associated to RET mutation status in medullary thyroid carcinoma. J. Clin. Endocrinol. Metab. 96, 2146–2153 (2011)

    Article  CAS  PubMed  Google Scholar 

  31. A. Tamburrino, A.A. Molinolo, P. Salerno, R.D. Chernock, M. Raffeld, L. Xi, J.S. Gutkind, J.F. Moley, S.A. Wells Jr, M. Santoro, Activation of the mTOR pathway in primary medullary thyroid carcinoma and lymph node metastases. Clin. Cancer Res. 18, 3532–3540 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. S.A. Wells, M. Santoro, Targeting the RET pathway in thyroid cancer. Clin. Cancer Res. 15, 7119–7123 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. M. Mazumdar, A. Adhikary, S. Chakraborty, S. Mukherjee, A. Manna, S. Saha, S. Mohanty, A. Dutta, P. Bhattacharjee, P. Ray, S. Chattopadhyay, S. Banerjee, J. Chakraborty, A.K. Ray, G. Sa, T. Das, Targeting RET to induce medullary thyroid cancer cell apoptosis: an antagonistic interplay between PI3K/Akt and p38MAPK/caspase-8 pathways. Apoptosis 18, 589–604 (2013)

    Article  CAS  PubMed  Google Scholar 

  34. A. Samadi, J. Bazzill, X. Zhang, R. Gallagher, H. Zhang, R. Gollapudi, K. Kindscher, B. Timmermann, M.S. Cohen, Novel withanolides target medullary thyroid cancer through inhibition of both RET phosphorylation and the mammalian target of rapamycin pathway. Surgery. 152(6), 1238–1247 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  35. H.D. Skinner, J.Z. Zheng, J. Fang, F. Agani, B.H. Jiang, Vascular endothelial growth factor transcriptional activation is mediated by hypoxia inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3kinase/AKT signaling. J. Biol. Chem. 279, 45643–45651 (2004)

    Article  CAS  PubMed  Google Scholar 

  36. A. Sekulic, C.C. Hudson, J.L. Homme, P. Yin, D.M. Otterness, L.M. Karnitz, R.T. Abraham, A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res. 60, 3504–3513 (2000)

    CAS  PubMed  Google Scholar 

  37. G. Vitale, S. Zappavigna, M. Marra, A. Dicitore, S. Meschini, M. Condello, G. Arancia, S. Castiglioni, P. Maroni, P. Bendinelli, R. Piccoletti, P.M. van Koetsveld, F. Cavagnini, A. Budillon, A. Abbruzzese, L.J. Hofland, M. Caraglia, The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol. Adv. 30(1), 169–184 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. S. Isotani, K. Hara, C. Tokunaga, H. Inoue, J. Avruch, K. Yonezawa, Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J. Biol. Chem. 274(48), 34493–34498 (1999)

    Article  CAS  PubMed  Google Scholar 

  39. R. Zoncu, A. Efeyan, D.M. Sabatini, mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12(1), 21–35 (2011)

    Article  CAS  PubMed  Google Scholar 

  40. E. Jacinto, V. Facchinetti, D. Liu, N. Soto, S. Wei, S.Y. Jung, Q. Huang, J. Qin, B. Su, SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125–137 (2006)

    Article  CAS  PubMed  Google Scholar 

  41. J. Martin, J. Masri, A. Bernath, R.N. Nishimura, J. Gera, Hsp70 associates with rictor and is required for mTORC2 formation and activity. Biochem Biophys Res Commun. 372, 578–583 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. D.D. Sarbassov, S.M. Ali, D.H. Kim, D.A. Guertin, R.R. Latek, H. Erdjument-Bromage, P. Tempst, D.M. Sabatini, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 14, 1296–1302 (2004)

    Article  CAS  PubMed  Google Scholar 

  43. P.C. McDonald, A. Oloumi, J. Mills, I. Dobreva, M. Maidan, V. Gray, E.D. Wederell, M.B. Bally, L.J. Foster, S. Dedhar, Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival. Cancer Res. 68, 1618–1624 (2008)

    Article  CAS  PubMed  Google Scholar 

  44. I. Hernandez-Negrete, J. Carretero-Ortega, H. Rosenfeldt, R. Hernández-García, J.V. Calderón-Salinas, G. Reyes-Cruz, J.S. Gutkind, J. Vázquez-Prado, P-Rex1 links mammalian target of rapamycin signaling to Rac activation and cell migration. J. Biol. Chem. 282, 23708–23715 (2007)

    Article  CAS  PubMed  Google Scholar 

  45. Y. Samuels, V.E. Velculescu, Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3, 1221–1224 (2004)

    Article  CAS  PubMed  Google Scholar 

  46. R. Bianco, I. Shin, C.A. Ritter, F.M. Yakes, A. Basso, N. Rosen, J. Tsurutani, P.A. Dennis, G.B. Mills, C.L. Arteaga, Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22, 2812–2822 (2003)

    Article  CAS  PubMed  Google Scholar 

  47. S.L. Moulder, F.M. Yakes, S.K. Muthuswamy, R. Bianco, J.F. Simpson, C.L. Arteaga, Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res. 61, 8887–8895 (2001)

    CAS  PubMed  Google Scholar 

  48. F.M. Yakes, W. Chinratanalab, C.A. Ritter, W. King, S. Seelig, C.L. Arteaga, Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 62, 4132–4141 (2002)

    CAS  PubMed  Google Scholar 

  49. I.K. Mellinghoff, M.Y. Wang, I. Vivanco, D.A. Haas-Kogan, S. Zhu, E.Q. Dia, K.V. Lu, K. Yoshimoto, J.H. Huang, D.J. Chute, B.L. Riggs, S. Horvath, L.M. Liau, W.K. Cavenee, P.N. Rao, R. Beroukhim, T.C. Peck, J.C. Lee, W.R. Sellers, D. Stokoe, M. Prados, T.F. Cloughesy, C.L. Sawyers, P.S. Mischel, Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N. Engl. J. Med. 353, 2012–2024 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. C. Eng, D. Clayton, I. Schuffenecker, G. Lenoir, G. Cote, R.F. Gagel, H.K. van Amstel, C.J. Lips, I. Nishisho, S.I. Takai, D.J. Marsh, B.G. Robinson, K. Frank-Raue, F. Raue, F. Xue, W.W. Noll, C. Romei, F. Pacini, M. Fink, B. Niederle, J. Zedenius, M. Nordenskjöld, P. Komminoth, G.N. Hendy, L.M. Mulligan et al., The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA. 276(19), 1575–1579 (1996)

    CAS  PubMed  Google Scholar 

  51. N. Hay, N. Sonenberg, Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004)

    Article  CAS  PubMed  Google Scholar 

  52. S. Schubbert, K. Shannon, G. Bollag, Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 7, 295–308 (2007)

    Article  CAS  PubMed  Google Scholar 

  53. C. Segouffin-Cariou, M. Billaud, Transforming ability of MEN2A-RET requires activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J. Biol. Chem. 275, 3568–3576 (2000)

    Article  CAS  PubMed  Google Scholar 

  54. M. Drosten, G. Hilken, M. Böckmann, F. Rödicker, N. Mise, A.N. Cranston, U. Dahmen, B.A. Ponder, B.M. Pützer, Role of MEN2Aderived RET in maintenance and proliferation of medullary thyroid cancer. J. Natl Cancer Inst. 96, 1231–1239 (2004)

    Article  CAS  PubMed  Google Scholar 

  55. M.A. Kouvaraki, C. Liakou, A. Paraschi, K. Dimas, E. Patsouris, S. Tseleni-Balafouta, G.Z. Rassidakis, D. Moraitis, Activation of mTOR signaling in medullary and aggressive papillary thyroid carcinomas. Surgery. 150, 1258–1265 (2011)

    Article  PubMed  Google Scholar 

  56. M. Gild, I. Landa, M. Ryder, R.A. Ghossein, J.A. Knauf, J.A. Fagin, Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr. Relat. Cancer 20, 659–667 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. J.F. Burke, L. Schlosser, A.D. Harrison, M. Kunnimalaiyaan, H. Chen, MK-2206 causes growth suppression and reduces neuroendocrine tumor marker production in medullary thyroid cancer through Akt inhibition. Ann. Surg. Oncol. 20(12), 3862–3868 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  58. S. Grozinsky-Glasberg, H. Rubinfeld, Y. Nordenberg, A. Gorshtein, M. Praiss, E. Kendler, R. Feinmesser, A.B. Grossman, I. Shimon, The rapamycin derivative RAD001 (everolimus) inhibits cell viability and interacts with the Akt-mTOR-p70S6K pathway in human medullary thyroid carcinoma cells. Mol. Cell. Endocrinol. 315, 87–94 (2010)

    Article  CAS  PubMed  Google Scholar 

  59. A. Faggiano, V. Ramundo, A. Dicitore, S. Castiglioni, M.O. Borghi, R. Severino, P. Ferolla, L. Crinò, A. Abbruzzese, P. Sperlongano, M. Caraglia, D. Ferone, L. Hofland, A. Colao, G. Vitale, Everolimus is an active agent in medullary thyroid cancer: a clinical and in vitro study. J. Cell Mol. Med. 16, 1563–1572 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. S. Wang, R.V. Lloyd, M.J. Hutzler, M.S. Safran, N.A. Patwardhan, A. Khan, The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod. Pathol. 13, 882–887 (2000)

    Article  CAS  PubMed  Google Scholar 

  61. S.M. Jafarmejad, G. Li, Regulation of p53 by ING family members in suppression of tumor initiation and progression. Cancer Metastasis Rev. 31(1–2), 55–73 (2012)

    Article  Google Scholar 

  62. M. Kunnimayalaan, M. Ndiaye, H. Chen, Apoptosis-mediated medullary thyroid cancer growth suppression by the PI3K inhibitor LY294002. Surgery 140(6), 1009–1015 (2006)

    Article  Google Scholar 

  63. R. Frédérick, C. Mawson, J.D. Kendall, C. Chaussade, G.W. Rewcastle, P.R. Shepherd, W.A. Denny, Phosphoinositide-3-kinase (PI3K) inhibitors: identification of new scaffolds using virtual screening. Bioorg. Med. Chem. Lett. 19(20), 5842–5847 (2009)

    Article  PubMed  Google Scholar 

  64. S.F. Lin, Y.Y. Huang, J.D. Lin, T.C. Chou, C. Hsueh, R.J. Wong, Utility of a PI3K/mTOR Inhibitor (NVP-BEZ235) for Thyroid Cancer Therapy. PLoS One 7(10), e46726 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. M.L. Gild, I. Landa, M. Ryder, R.A. Ghossein, J.A. Knauf, J.A. Fagin, Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocr. Relat. Cancer 20(5), 659–667 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. C.D. Britten, PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother. Pharmacol. 71(6), 1395–1409 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. N. Jin, T. Jiang, D.M. Rosen, B.D. Nelkin, D.W. Ball, Synergistic Action of a RAF Inhibitor and a Dual PI3K/mTOR Inhibitor in Thyroid Cancer. Clin. Cancer Res. 17, 6482–6489 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. M. Druce, T.T. Chung, S. Grozinsky-Glasberg, D.J. Gross, A.B. Grossman, Preliminary report of the use of everolimus in a patient with progressive medullary thyroid carcinoma. Clin. Endocrinol. 77(1), 154–155 (2012)

    Article  Google Scholar 

  69. S.M. Lim, H. Chang, M.J. Yoon, Y.K. Hong, H. Kim, W.Y. Chung, C.S. Park, K.H. Nam, S.W. Kang, M.K. Kim, S.B. Kim, S.H. Lee, H.G. Kim, I.I. Na, Y.S. Kim, M.Y. Choi, J.G. Kim, K.U. Park, H.J. Yun, J.H. Kim, B.C. Cho, A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann. Oncol. 24(12), 3089–3094 (2013)

    Article  CAS  PubMed  Google Scholar 

  70. http://www.clinicaltrials.gov/. Accessed 8 Aug 2014

Download references

Acknowledgments

This work was partially supported by the Italian Ministry of Education, Research and University (FIRB RBAP11884 M).

Conflict of interest

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vitale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manfredi, G.I., Dicitore, A., Gaudenzi, G. et al. PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy. Endocrine 48, 363–370 (2015). https://doi.org/10.1007/s12020-014-0380-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-014-0380-1

Keywords

Navigation