Skip to main content

Advertisement

Log in

Fetuin-A and angiopoietins in obesity and type 2 diabetes mellitus

  • Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Although type 2 diabetes mellitus (DM) is a chronic metabolic disorder with multiple etiologies, obesity has been constantly linked with insulin resistance and manifestation of type 2 DM. In addition, obesity is associated with hypertension, dyslipidemia, and fatty liver disease and is regarded as a subclinical inflammatory condition characterized by release of pro-inflammatory mediators such as cytokines from adipose tissue. Both, type 2 DM and obesity are considered as major risks for developing micro- and macrovascular diseases. Recent studies showed that impaired circulating levels of fetuin-A, which is involved in propagating insulin resistance as well as circulating levels of angiopoietins, which are growth factors promoting angiogenesis, were observed in patients with obesity, metabolic syndrome, and type 2 DM. However, independent of type 2 DM and obesity, defective regulation of fetuin-A and angiopoietin are playing a critical role in predisposing to coronary and peripheral vascular diseases. Therefore, mechanisms linking type 2 DM and obesity with fetuin-A and angiopoietins seem to be complex and are in need of further exploration. In this review, we aimed to present a summary concerning associations of type 2 diabetes, obesity, and vascular diseases with circulating levels of angiopoietins and fetuin-A. Furthermore, we aimed to focus on roles of fetuin-A and angiopoietins and to highlight the most plausible mechanisms that might explain their associations with type 2 DM and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Diabetes Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1), S62–S69 (2010). doi:10.2337/dc10-S062

    Article  Google Scholar 

  2. L. Bellamy, J.P. Casas, A.D. Hingorani, D. Williams, Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373(9677), 1773–1779 (2009). doi:10.1016/S0140-6736(09)60731-5

    Article  PubMed  CAS  Google Scholar 

  3. R.J. Chang, R.M. Nakamura, H.L. Judd, S.A. Kaplan, Insulin resistance in nonobese patients with polycystic ovarian disease. J. Clin. Endocrinol. Metab. 57(2), 356–359 (1983)

    Article  PubMed  CAS  Google Scholar 

  4. G.R. Hajer, T.W. van Haeften, F.L. Visseren, Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29(24), 2959–2971 (2008). doi:10.1093/eurheartj/ehn387

    Article  PubMed  CAS  Google Scholar 

  5. N. Stefan, A.M. Hennige, H. Staiger, J. Machann, F. Schick, E. Schleicher, A. Fritsche, H.U. Haring, High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 30(5), 1173–1178 (2007). doi:10.2337/dc06-2342

    Article  PubMed  CAS  Google Scholar 

  6. A. Seppala-Lindroos, S. Vehkavaara, A.M. Hakkinen, T. Goto, J. Westerbacka, A. Sovijarvi, J. Halavaara, H. Yki-Jarvinen, Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J. Clin. Endocrinol. Metab. 87(7), 3023–3028 (2002)

    Article  PubMed  CAS  Google Scholar 

  7. J.H. Hwang, D.T. Stein, N. Barzilai, M.H. Cui, J. Tonelli, P. Kishore, M. Hawkins, Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am. J. Physiol. Endocrinol. Metab. 293(6), E1663–E1669 (2007). doi:10.1152/ajpendo.00590.2006

    Article  PubMed  CAS  Google Scholar 

  8. E.J. de Belin Chantemele, D.W. Stepp, Influence of obesity and metabolic dysfunction on the endothelial control in the coronary circulation. J. Mol. Cell. Cardiol. 52(4), 840–847 (2012). doi:10.1016/j.yjmcc.2011.08.018

    Article  CAS  Google Scholar 

  9. J.B. Lindsey, F. Cipollone, S.M. Abdullah, D.K. McGuire, Receptor for advanced glycation end-products (RAGE) and soluble RAGE (sRAGE): cardiovascular implications. Diabetes Vasc. Dis. Res. 6(1), 7–14 (2009). doi:10.3132/dvdr.2009.002

    Article  Google Scholar 

  10. R. Westenfeld, C. Schafer, T. Kruger, C. Haarmann, L.J. Schurgers, C. Reutelingsperger, O. Ivanovski, T. Drueke, Z.A. Massy, M. Ketteler, J. Floege, W. Jahnen-Dechent, Fetuin-A protects against atherosclerotic calcification in CKD. J. Am. Soc. Nephrol. 20(6), 1264–1274 (2009). doi:10.1681/ASN.2008060572

    Article  PubMed  CAS  Google Scholar 

  11. S. David, P. Kumpers, A. Lukasz, D. Fliser, J. Martens-Lobenhoffer, S.M. Bode-Boger, V. Kliem, H. Haller, J.T. Kielstein, Circulating angiopoietin-2 levels increase with progress of chronic kidney disease. Nephrol. Dial. Transplant. 25(8), 2571–2576 (2010). doi:10.1093/ndt/gfq060

    Article  PubMed  CAS  Google Scholar 

  12. Obesity and Overweight. World Health Organization Fact sheet No. 311 (May 2012)

  13. A. Rodriguez, V. Catalan, J. Gomez-Ambrosi, G. Fruhbeck, Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr. Pharm. Des. 13(21), 2169–2175 (2007)

    Article  PubMed  CAS  Google Scholar 

  14. E.B. Geer, W. Shen, Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 6(Suppl 1), 60–75 (2009). doi:10.1016/j.genm.2009.02.002

    Article  PubMed  Google Scholar 

  15. V. Mohamed-Ali, J.H. Pinkney, S.W. Coppack, Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. Rel. Metab. Disord. 22(12), 1145–1158 (1998)

    Article  CAS  Google Scholar 

  16. M. Pardo, A. Roca-Rivada, L.M. Seoane, F.F. Casanueva, Obesidomics: contribution of adipose tissue secretome analysis to obesity research. Endocrine 41(3), 374–383 (2012). doi:10.1007/s12020-012-9617-z

    Article  PubMed  CAS  Google Scholar 

  17. I. Castan-Laurell, C. Dray, C. Attane, T. Duparc, C. Knauf, P. Valet, Apelin, diabetes, and obesity. Endocrine 40(1), 1–9 (2011). doi:10.1007/s12020-011-9507-9

    Article  PubMed  CAS  Google Scholar 

  18. K. Brochu-Gaudreau, C. Rehfeldt, R. Blouin, V. Bordignon, B.D. Murphy, M.F. Palin, Adiponectin action from head to toe. Endocrine 37(1), 11–32 (2010). doi:10.1007/s12020-009-9278-8

    Article  PubMed  CAS  Google Scholar 

  19. A.D. Pradhan, J.E. Manson, N. Rifai, J.E. Buring, P.M. Ridker, C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 286(3), 327–334 (2001)

    Article  PubMed  CAS  Google Scholar 

  20. N. Kubota, Y. Terauchi, T. Yamauchi, T. Kubota, M. Moroi, J. Matsui, K. Eto, T. Yamashita, J. Kamon, H. Satoh, W. Yano, P. Froguel, R. Nagai, S. Kimura, T. Kadowaki, T. Noda, Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277(29), 25863–25866 (2002). doi:10.1074/jbc.C200251200

    Article  PubMed  CAS  Google Scholar 

  21. J.V. Silha, M. Krsek, J.V. Skrha, P. Sucharda, B.L. Nyomba, L.J. Murphy, Plasma resistin, adiponectin and leptin levels in lean and obese subjects: correlations with insulin resistance. Eur. J. Endocrinol. 149(4), 331–335 (2003)

    Article  PubMed  CAS  Google Scholar 

  22. H. Xu, G.T. Barnes, Q. Yang, G. Tan, D. Yang, C.J. Chou, J. Sole, A. Nichols, J.S. Ross, L.A. Tartaglia, H. Chen, Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 112(12), 1821–1830 (2003). doi:10.1172/JCI19451

    PubMed  CAS  Google Scholar 

  23. M. Roden, Mechanisms of disease: hepatic steatosis in type 2 diabetes-pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2(6), 335–348 (2006). doi:10.1038/ncpendmet0190

    Article  PubMed  CAS  Google Scholar 

  24. S.R. Weston, W. Leyden, R. Murphy, N.M. Bass, B.P. Bell, M.M. Manos, N.A. Terrault, Racial and ethnic distribution of nonalcoholic fatty liver in persons with newly diagnosed chronic liver disease. Hepatology 41(2), 372–379 (2005). doi:10.1002/hep.20554

    Article  PubMed  Google Scholar 

  25. D.M. Ferreira, R.E. Castro, M.V. Machado, T. Evangelista, A. Silvestre, A. Costa, J. Coutinho, F. Carepa, H. Cortez-Pinto, C.M. Rodrigues, Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia 54(7), 1788–1798 (2011). doi:10.1007/s00125-011-2130-8

    Article  PubMed  CAS  Google Scholar 

  26. N. Villanova, S. Moscatiello, S. Ramilli, E. Bugianesi, D. Magalotti, E. Vanni, M. Zoli, G. Marchesini, Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology 42(2), 473–480 (2005). doi:10.1002/hep.20781

    Article  PubMed  Google Scholar 

  27. E. Scorletti, P.C. Calder, C.D. Byrne, Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments. Endocrine 40(3), 332–343 (2011). doi:10.1007/s12020-011-9530-x

    Article  PubMed  CAS  Google Scholar 

  28. G. Marchesini, M. Brizi, G. Bianchi, S. Tomassetti, E. Bugianesi, M. Lenzi, A.J. McCullough, S. Natale, G. Forlani, N. Melchionda, Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50(8), 1844–1850 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. K. Kantartzis, J. Machann, F. Schick, A. Fritsche, H.U. Haring, N. Stefan, The impact of liver fat vs visceral fat in determining categories of prediabetes. Diabetologia 53(5), 882–889 (2010). doi:10.1007/s00125-010-1663-6

    Article  PubMed  CAS  Google Scholar 

  30. G. Marchesini, E. Bugianesi, G. Forlani, F. Cerrelli, M. Lenzi, R. Manini, S. Natale, E. Vanni, N. Villanova, N. Melchionda, M. Rizzetto, Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37(4), 917–923 (2003). doi:10.1053/jhep.2003.50161

    Article  PubMed  Google Scholar 

  31. G. Rauth, O. Poschke, E. Fink, M. Eulitz, S. Tippmer, M. Kellerer, H.U. Haring, P. Nawratil, M. Haasemann, W. Jahnen-Dechent et al., The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur. J. Biochem. 204(2), 523–529 (1992)

    Article  PubMed  CAS  Google Scholar 

  32. P. Auberger, L. Falquerho, J.O. Contreres, G. Pages, G. Le Cam, B. Rossi, A. Le Cam, Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 58(4), 631–640 (1989)

    Article  PubMed  CAS  Google Scholar 

  33. N. Stefan, A. Fritsche, C. Weikert, H. Boeing, H.G. Joost, H.U. Haring, M.B. Schulze, Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes 57(10), 2762–2767 (2008). doi:10.2337/db08-0538

    Article  PubMed  CAS  Google Scholar 

  34. S.T. Mathews, S. Rakhade, X. Zhou, G.C. Parker, D.V. Coscina, G. Grunberger, Fetuin-null mice are protected against obesity and insulin resistance associated with aging. Biochem. Biophys. Res. Commun. 350(2), 437–443 (2006). doi:10.1016/j.bbrc.2006.09.071

    Article  PubMed  CAS  Google Scholar 

  35. J.H. Ix, C.L. Wassel, A.M. Kanaya, E. Vittinghoff, K.C. Johnson, A. Koster, J.A. Cauley, T.B. Harris, S.R. Cummings, M.G. Shlipak, Health ABC Study, Fetuin-A and incident diabetes mellitus in older persons. JAMA 300(2), 182–188 (2008). doi:10.1001/jama.300.2.182

    Article  PubMed  CAS  Google Scholar 

  36. J.H. Ix, M.L. Biggs, K.J. Mukamal, J.R. Kizer, S.J. Zieman, D.S. Siscovick, D. Mozzaffarian, M.K. Jensen, L. Nelson, N. Ruderman, L. Djousse, Association of fetuin-a with incident diabetes mellitus in community-living older adults: the cardiovascular health study. Circulation 125(19), 2316–2322 (2012). doi:10.1161/CIRCULATIONAHA.111.072751

    Article  PubMed  CAS  Google Scholar 

  37. A. Ishibashi, Y. Ikeda, T. Ohguro, Y. Kumon, S. Yamanaka, H. Takata, M. Inoue, T. Suehiro, Y. Terada, Serum fetuin-A is an independent marker of insulin resistance in Japanese men. J. Atheroscler. Thromb. 17(9), 925–933 (2010)

    Article  PubMed  CAS  Google Scholar 

  38. S. Rasul, A. Ilhan, M.H. Reiter, J. Todoric, S. Farhan, H. Esterbauer, A. Kautzky-Willer, Levels of fetuin-A relate to the levels of bone turnover biomarkers in male and female patients with type 2 diabetes. Clin. Endocrinol. 76(4), 499–505 (2012). doi:10.1111/j.1365-2265.2011.04246.x

    Article  CAS  Google Scholar 

  39. K. Mori, M. Emoto, H. Yokoyama, T. Araki, M. Teramura, H. Koyama, T. Shoji, M. Inaba, Y. Nishizawa, Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 29(2), 468 (2006)

    Article  PubMed  Google Scholar 

  40. X. Lin, H.D. Braymer, G.A. Bray, D.A. York, Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life Sci. 63(2), 145–153 (1998)

    Article  PubMed  CAS  Google Scholar 

  41. S.T. Mathews, G.P. Singh, M. Ranalletta, V.J. Cintron, X. Qiang, A.S. Goustin, K.L. Jen, M.J. Charron, W. Jahnen-Dechent, G. Grunberger, Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 51(8), 2450–2458 (2002)

    Article  PubMed  CAS  Google Scholar 

  42. J.H. Ix, M.G. Shlipak, V.M. Brandenburg, S. Ali, M. Ketteler, M.A. Whooley, Association between human fetuin-A and the metabolic syndrome: data from the heart and soul study. Circulation 113(14), 1760–1767 (2006). doi:10.1161/CIRCULATIONAHA.105.588723

    Article  PubMed  CAS  Google Scholar 

  43. S. Farhan, A. Handisurya, J. Todoric, A. Tura, G. Pacini, O. Wagner, K. Klein, R. Jarai, K. Huber, A. Kautzky-Willer, Fetuin-A characteristics during and after pregnancy: result from a case control pilot study. Int. J. Endocrinol. 2012, 896736 (2012). doi:10.1155/2012/896736

    PubMed  Google Scholar 

  44. J.M. Brix, H. Stingl, F. Hollerl, G.H. Schernthaner, H.P. Kopp, G. Schernthaner, Elevated Fetuin-A concentrations in morbid obesity decrease after dramatic weight loss. J. Clin. Endocrinol. Metab. 95(11), 4877–4881 (2010). doi:10.1210/jc.2010-0148

    Article  PubMed  CAS  Google Scholar 

  45. T. Reinehr, C.L. Roth, Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J. Clin. Endocrinol. Metab. 93(11), 4479–4485 (2008). doi:10.1210/jc.2008-1505

    Article  PubMed  CAS  Google Scholar 

  46. N.T. Jenkins, J.A. McKenzie, J.M. Hagberg, S. Witkowski, Plasma fetuin-A concentrations in young and older high- and low-active men. Metab. Clin. Exp. 60(2), 265–271 (2011). doi:10.1016/j.metabol.2010.01.026

    Article  PubMed  CAS  Google Scholar 

  47. A.M. Hennige, H. Staiger, C. Wicke, F. Machicao, A. Fritsche, H.U. Haring, N. Stefan, Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 3(3), e1765 (2008). doi:10.1371/journal.pone.0001765

    Article  PubMed  CAS  Google Scholar 

  48. J.W. Haukeland, T.B. Dahl, A. Yndestad, I.P. Gladhaug, E.M. Loberg, T. Haaland, Z. Konopski, C. Wium, E.T. Aasheim, O.E. Johansen, P. Aukrust, B. Halvorsen, K.I. Birkeland, Fetuin A in nonalcoholic fatty liver disease: in vivo and in vitro studies. Eur. J. Endocrinol. 166(3), 503–510 (2012). doi:10.1530/EJE-11-0864

    Article  PubMed  CAS  Google Scholar 

  49. N. Stefan, A.M. Hennige, H. Staiger, J. Machann, F. Schick, S.M. Krober, F. Machicao, A. Fritsche, H.U. Haring, Alpha2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 29(4), 853–857 (2006)

    Article  PubMed  CAS  Google Scholar 

  50. K. Mussig, H. Staiger, F. Machicao, J. Machann, A.M. Hennige, F. Schick, C.D. Claussen, A. Fritsche, H.U. Haring, N. Stefan, AHSG gene variation is not associated with regional body fat distribution—a magnetic resonance study. Exp. Clin. Endocrinol. Diabetes 117(8), 432–437 (2009). doi:10.1055/s-0028-1103299

    Article  PubMed  CAS  Google Scholar 

  51. Y. Yilmaz, O. Yonal, R. Kurt, F. Ari, A.Y. Oral, C.A. Celikel, S. Korkmaz, E. Ulukaya, O. Ozdogan, N. Imeryuz, E. Avsar, C. Kalayci, Serum fetuin A/alpha2HS-glycoprotein levels in patients with non-alcoholic fatty liver disease: relation with liver fibrosis. Ann. Clin. Biochem. 47(Pt 6), 549–553 (2010). doi:10.1258/acb.2010.010169

    Article  PubMed  CAS  Google Scholar 

  52. A. Kotronen, H. Yki-Jarvinen, Fatty liver: a novel component of the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28(1), 27–38 (2008). doi:10.1161/ATVBAHA.107.147538

    Article  PubMed  CAS  Google Scholar 

  53. S.H. Park, B.I. Kim, J.W. Yun, J.W. Kim, D.I. Park, Y.K. Cho, I.K. Sung, C.Y. Park, C.I. Sohn, W.K. Jeon, H. Kim, E.J. Rhee, W.Y. Lee, S.W. Kim, Insulin resistance and C-reactive protein as independent risk factors for non-alcoholic fatty liver disease in non-obese Asian men. J. Gastroenterol. Hepatol. 19(6), 694–698 (2004). doi:10.1111/j.1440-1746.2004.03362.x

    Article  PubMed  CAS  Google Scholar 

  54. J.M. Hui, A. Hodge, G.C. Farrell, J.G. Kench, A. Kriketos, J. George, Beyond insulin resistance in NASH: tNF-alpha or adiponectin? Hepatology 40(1), 46–54 (2004). doi:10.1002/hep.20280

    Article  PubMed  CAS  Google Scholar 

  55. S. Bellentani, G. Saccoccio, F. Masutti, L.S. Croce, G. Brandi, F. Sasso, G. Cristanini, C. Tiribelli, Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann. Intern. Med. 132(2), 112–117 (2000)

    PubMed  CAS  Google Scholar 

  56. N. Vionnet, E.H. Hani, S. Dupont, S. Gallina, S. Francke, S. Dotte, F. De Matos, E. Durand, F. Lepretre, C. Lecoeur, P. Gallina, L. Zekiri, C. Dina, P. Froguel, Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21–q24. Am. J. Hum. Genet. 67(6), 1470–1480 (2000). doi:10.1086/316887

    Article  PubMed  CAS  Google Scholar 

  57. J. Folkman, Angiogenesis-dependent diseases. Semin. Oncol. 28(6), 536–542 (2001)

    Article  PubMed  CAS  Google Scholar 

  58. D.A. Walsh, C.I. Pearson, Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthr. Res. 3(3), 147–153 (2001)

    Article  CAS  Google Scholar 

  59. M.A. Rupnick, D. Panigrahy, C.Y. Zhang, S.M. Dallabrida, B.B. Lowell, R. Langer, M.J. Folkman, Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. U.S.A. 99(16), 10730–10735 (2002). doi:10.1073/pnas.162349799

    Article  PubMed  CAS  Google Scholar 

  60. N.P. Fam, S. Verma, M. Kutryk, D.J. Stewart, Clinician guide to angiogenesis. Circulation 108(21), 2613–2618 (2003). doi:10.1161/01.CIR.0000102939.04279.75

    Article  PubMed  Google Scholar 

  61. U. Fiedler, H.G. Augustin, Angiopoietins: a link between angiogenesis and inflammation. Trends Immunol. 27(12), 552–558 (2006). doi:10.1016/j.it.2006.10.004

    Article  PubMed  CAS  Google Scholar 

  62. F. Shalaby, J. Rossant, T.P. Yamaguchi, M. Gertsenstein, X.F. Wu, M.L. Breitman, A.C. Schuh, Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535), 62–66 (1995). doi:10.1038/376062a0

    Article  PubMed  CAS  Google Scholar 

  63. P.C. Maisonpierre, C. Suri, P.F. Jones, S. Bartunkova, S.J. Wiegand, C. Radziejewski, D. Compton, J. McClain, T.H. Aldrich, N. Papadopoulos, T.J. Daly, S. Davis, T.N. Sato, G.D. Yancopoulos, Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 55–60 (1997)

    Article  PubMed  CAS  Google Scholar 

  64. J.X. Chen, A. Stinnett, Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardial vascular maturation and angiogenesis in type II diabetic mice. Arterioscler. Thromb. Vasc. Biol. 28(9), 1606–1613 (2008). doi:10.1161/ATVBAHA.108.169235

    Article  PubMed  CAS  Google Scholar 

  65. D. Watanabe, K. Suzuma, I. Suzuma, H. Ohashi, T. Ojima, M. Kurimoto, T. Murakami, T. Kimura, H. Takagi, Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Am. J. Ophthalmol. 139(3), 476–481 (2005). doi:10.1016/j.ajo.2004.10.004

    Article  PubMed  CAS  Google Scholar 

  66. A.Y. Chong, G.J. Caine, B. Freestone, A.D. Blann, G.Y. Lip, Plasma angiopoietin-1, angiopoietin-2, and angiopoietin receptor tie-2 levels in congestive heart failure. J. Am. Coll. Cardiol. 43(3), 423–428 (2004). doi:10.1016/j.jacc.2003.08.042

    Article  PubMed  CAS  Google Scholar 

  67. S. Anuradha, V. Mohan, K. Gokulakrishnan, M. Dixit, Angiopoietin-2 levels in glucose intolerance, hypertension, and metabolic syndrome in Asian Indians (Chennai Urban Rural Epidemiology Study-74). Metab. Clin. Exp. 59(6), 774–779 (2010). doi:10.1016/j.metabol.2009.09.022

    Article  PubMed  CAS  Google Scholar 

  68. Y.C. Chung, Y.C. Hou, C.N. Chang, T.H. Hseu, Expression and prognostic significance of angiopoietin in colorectal carcinoma. J. Surg. Oncol. 94(7), 631–638 (2006). doi:10.1002/jso.20423

    Article  PubMed  CAS  Google Scholar 

  69. S. Rasul, M.H. Reiter, A. Ilhan, K. Lampichler, L. Wagner, A. Kautzky-Willer, Circulating angiopoietin-2 and soluble Tie-2 in type 2 diabetes mellitus: a cross-sectional study. Cardiovasc. Diabetol. 10, 55 (2011). doi:10.1186/1475-2840-10-55

    Article  PubMed  CAS  Google Scholar 

  70. W. Lieb, J.P. Zachariah, V. Xanthakis, R. Safa, M.H. Chen, L.M. Sullivan, M.G. Larson, H.M. Smith, Q. Yang, G.F. Mitchell, J.A. Vita, D.B. Sawyer, R.S. Vasan, Clinical and genetic correlates of circulating angiopoietin-2 and soluble Tie-2 in the community. Circ. Cardiovasc. Genet. 3(3), 300–306 (2010). doi:10.1161/CIRCGENETICS.109.914556

    Article  PubMed  CAS  Google Scholar 

  71. J.V. Silha, M. Krsek, P. Sucharda, L.J. Murphy, Angiogenic factors are elevated in overweight and obese individuals. Int. J. Obes. 29(11), 1308–1314 (2005). doi:10.1038/sj.ijo.0802987

    Article  CAS  Google Scholar 

  72. H.O. Steinberg, G. Paradisi, J. Cronin, K. Crowde, A. Hempfling, G. Hook, A.D. Baron, Type II diabetes abrogates sex differences in endothelial function in premenopausal women. Circulation 101(17), 2040–2046 (2000)

    Article  PubMed  CAS  Google Scholar 

  73. Y. Yamamoto, I. Kato, T. Doi, H. Yonekura, S. Ohashi, M. Takeuchi, T. Watanabe, S. Yamagishi, S. Sakurai, S. Takasawa, H. Okamoto, H. Yamamoto, Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice. J. Clin. Investig. 108(2), 261–268 (2001). doi:10.1172/JCI11771

    PubMed  CAS  Google Scholar 

  74. T. Okamoto, S. Yamagishi, Y. Inagaki, S. Amano, K. Koga, R. Abe, M. Takeuchi, S. Ohno, A. Yoshimura, Z. Makita, Angiogenesis induced by advanced glycation end products and its prevention by cerivastatin. FASEB J. 16(14), 1928–1930 (2002). doi:10.1096/fj.02-0030fje

    PubMed  CAS  Google Scholar 

  75. B. Williams, B. Gallacher, H. Patel, C. Orme, Glucose-induced protein kinase C activation regulates vascular permeability factor mRNA expression and peptide production by human vascular smooth muscle cells in vitro. Diabetes 46(9), 1497–1503 (1997)

    Article  PubMed  CAS  Google Scholar 

  76. X.L. Du, D. Edelstein, L. Rossetti, I.G. Fantus, H. Goldberg, F. Ziyadeh, J. Wu, M. Brownlee, Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. U.S.A. 97(22), 12222–12226 (2000). doi:10.1073/pnas.97.22.12222

    Article  PubMed  CAS  Google Scholar 

  77. H.S. Lim, G.Y. Lip, A.D. Blann, Angiopoietin-1 and angiopoietin-2 in diabetes mellitus: relationship to VEGF, glycaemic control, endothelial damage/dysfunction and atherosclerosis. Atherosclerosis 180(1), 113–118 (2005). doi:10.1016/j.atherosclerosis.2004.11.004

    Article  PubMed  CAS  Google Scholar 

  78. J.X. Chen, H. Zeng, J. Reese, J.L. Aschner, B. Meyrick, Overexpression of angiopoietin-2 impairs myocardial angiogenesis and exacerbates cardiac fibrosis in the diabetic db/db mouse model. Am. J. Physiol. Heart Circ. Physiol. 302(4), H1003–H1012 (2012). doi:10.1152/ajpheart.00866.2011

    Article  PubMed  CAS  Google Scholar 

  79. Q.H. Tuo, H. Zeng, A. Stinnett, H. Yu, J.L. Aschner, D.F. Liao, J.X. Chen, Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 294(6), H2547–H2557 (2008). doi:10.1152/ajpheart.01250.2007

    Article  PubMed  CAS  Google Scholar 

  80. H.P. Hammes, J. Lin, P. Wagner, Y. Feng, F. Vom Hagen, T. Krzizok, O. Renner, G. Breier, M. Brownlee, U. Deutsch, Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53(4), 1104–1110 (2004)

    Article  PubMed  CAS  Google Scholar 

  81. X. Cui, M. Chopp, A. Zacharek, X. Ye, C. Roberts, J. Chen, Angiopoietin/Tie2 pathway mediates type 2 diabetes induced vascular damage after cerebral stroke. Neurobiol. Dis. 43(1), 285–292 (2011). doi:10.1016/j.nbd.2011.04.005

    Article  PubMed  CAS  Google Scholar 

  82. S. Calderari, C. Chougnet, M. Clemessy, H. Kempf, P. Corvol, E. Larger, Angiopoietin 2 alters pancreatic vascularization in diabetic conditions. PLoS One 7(1), e29438 (2012). doi:10.1371/journal.pone.0029438

    Article  PubMed  CAS  Google Scholar 

  83. D. Yao, T. Taguchi, T. Matsumura, R. Pestell, D. Edelstein, I. Giardino, G. Suske, N. Rabbani, P.J. Thornalley, V.P. Sarthy, H.P. Hammes, M. Brownlee, High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A. J. Biol. Chem. 282(42), 31038–31045 (2007). doi:10.1074/jbc.M704703200

    Article  PubMed  CAS  Google Scholar 

  84. H. Kampfer, J. Pfeilschifter, S. Frank, Expressional regulation of angiopoietin-1 and -2 and the tie-1 and -2 receptor tyrosine kinases during cutaneous wound healing: a comparative study of normal and impaired repair. Lab. Investig. 81(3), 361–373 (2001)

    Article  PubMed  CAS  Google Scholar 

  85. L. Qiao, S.L. Lu, J.Y. Dong, F. Song, Abnormal regulation of neo-vascularisation in deep partial thickness scalds in rats with diabetes mellitus. Burns 37(6), 1015–1022 (2011). doi:10.1016/j.burns.2011.03.020

    Article  PubMed  Google Scholar 

  86. H. Singh, N.P. Brindle, V.A. Zammit, High glucose and elevated fatty acids suppress signaling by the endothelium protective ligand angiopoietin-1. Microvasc. Res. 79(2), 121–127 (2010). doi:10.1016/j.mvr.2010.01.005

    Article  PubMed  CAS  Google Scholar 

  87. M. Brissova, A. Shostak, M. Shiota, P.O. Wiebe, G. Poffenberger, J. Kantz, Z. Chen, C. Carr, W.G. Jerome, J. Chen, H.S. Baldwin, W. Nicholson, D.M. Bader, T. Jetton, M. Gannon, A.C. Powers, Pancreatic islet production of vascular endothelial growth factor—a is essential for islet vascularization, revascularization, and function. Diabetes 55(11), 2974–2985 (2006). doi:10.2337/db06-0690

    Article  PubMed  CAS  Google Scholar 

  88. Q.H. Tuo, G.Z. Xiong, H. Zeng, H.D. Yu, S.W. Sun, H.Y. Ling, B.Y. Zhu, D.F. Liao, J.X. Chen, Angiopoietin-1 protects myocardial endothelial cell function blunted by angiopoietin-2 and high glucose condition. Acta Pharmacol. Sin. 32(1), 45–51 (2011). doi:10.1038/aps.2010.183

    Article  PubMed  CAS  Google Scholar 

  89. D. Su, N. Zhang, J. He, S. Qu, S. Slusher, R. Bottino, S. Bertera, J. Bromberg, H.H. Dong, Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis. Diabetes 56(9), 2274–2283 (2007). doi:10.2337/db07-0371

    Article  PubMed  CAS  Google Scholar 

  90. P. Mathieu, P. Pibarot, E. Larose, P. Poirier, A. Marette, J.P. Despres, Visceral obesity and the heart. Int. J. Biochem. Cell Biol. 40(5), 821–836 (2008). doi:10.1016/j.biocel.2007.12.001

    Article  PubMed  CAS  Google Scholar 

  91. D.L. Crandall, G.J. Hausman, J.G. Kral, A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4(2), 211–232 (1997)

    Article  PubMed  CAS  Google Scholar 

  92. P.A. Kern, G.B. Di Gregorio, T. Lu, N. Rassouli, G. Ranganathan, Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 52(7), 1779–1785 (2003)

    Article  PubMed  CAS  Google Scholar 

  93. N. Maeda, I. Shimomura, K. Kishida, H. Nishizawa, M. Matsuda, H. Nagaretani, N. Furuyama, H. Kondo, M. Takahashi, Y. Arita, R. Komuro, N. Ouchi, S. Kihara, Y. Tochino, K. Okutomi, M. Horie, S. Takeda, T. Aoyama, T. Funahashi, Y. Matsuzawa, Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8(7), 731–737 (2002). doi:10.1038/nm724

    Article  PubMed  CAS  Google Scholar 

  94. E. Brakenhielm, N. Veitonmaki, R. Cao, S. Kihara, Y. Matsuzawa, B. Zhivotovsky, T. Funahashi, Y. Cao, Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc. Natl. Acad. Sci. U.S.A. 101(8), 2476–2481 (2004)

    Article  PubMed  CAS  Google Scholar 

  95. M. Kumada, S. Kihara, S. Sumitsuji, T. Kawamoto, S. Matsumoto, N. Ouchi, Y. Arita, Y. Okamoto, I. Shimomura, H. Hiraoka, T. Nakamura, T. Funahashi, Y. Matsuzawa, Osaka CAD Study Group. Coronary Artery Disease, Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler. Thromb. Vasc. Biol. 23(1), 85–89 (2003)

    Article  PubMed  CAS  Google Scholar 

  96. S. Rasul, A. Ilhan, M.H. Reiter, S. Baumgartner-Parzer, A. Kautzky-Willer, Relations of adiponectin to levels of metabolic parameters and sexual hormones in elderly type 2 diabetic patients. Gend. Med. 8(2), 93–102 (2011). doi:10.1016/j.genm.2011.01.004

    Article  PubMed  Google Scholar 

  97. A. Gastaldelli, M. Kozakova, K. Hojlund, A. Flyvbjerg, A. Favuzzi, A. Mitrakou, B. Balkau, RISC Investigators, Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology 49(5), 1537–1544 (2009). doi:10.1002/hep.22845

    Article  PubMed  CAS  Google Scholar 

  98. I. Edirisinghe, K. McCormick Hallam, C.T. Kappagoda, Effect of fatty acids on endothelium-dependent relaxation in the rabbit aorta. Clin. Sci. 111(2), 145–151 (2006). doi:10.1042/CS20060001

    Article  PubMed  CAS  Google Scholar 

  99. M.T. Nguyen, S. Favelyukis, A.K. Nguyen, D. Reichart, P.A. Scott, A. Jenn, R. Liu-Bryan, C.K. Glass, J.G. Neels, J.M. Olefsky, A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282(48), 35279–35292 (2007). doi:10.1074/jbc.M706762200

    Article  PubMed  CAS  Google Scholar 

  100. J.S. Yudkin, M. Kumari, S.E. Humphries, V. Mohamed-Ali, Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis 148(2), 209–214 (2000)

    Article  PubMed  CAS  Google Scholar 

  101. M.Y. Abeywardena, W.R. Leifert, K.E. Warnes, J.N. Varghese, R.J. Head, Cardiovascular biology of interleukin-6. Curr. Pharm. Des. 15(15), 1809–1821 (2009)

    Article  PubMed  CAS  Google Scholar 

  102. N. Ouchi, S. Kihara, T. Funahashi, T. Nakamura, M. Nishida, M. Kumada, Y. Okamoto, K. Ohashi, H. Nagaretani, K. Kishida, H. Nishizawa, N. Maeda, H. Kobayashi, H. Hiraoka, Y. Matsuzawa, Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation 107(5), 671–674 (2003)

    Article  PubMed  CAS  Google Scholar 

  103. Emerging Risk Factors Collaboration, S. Kaptoge, E. Di Angelantonio, G. Lowe, M.B. Pepys, S.G. Thompson, R. Collins, J. Danesh, C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375(9709), 132–140 (2010). doi:10.1016/S0140-6736(09)61717-7

    Article  PubMed  CAS  Google Scholar 

  104. Y. Momiyama, R. Ohmori, Z.A. Fayad, T. Kihara, N. Tanaka, R. Kato, H. Taniguchi, M. Nagata, H. Nakamura, F. Ohsuzu, Associations between plasma C-reactive protein levels and the severities of coronary and aortic atherosclerosis. J. Atheroscler. Thromb. 17(5), 460–467 (2010)

    Article  PubMed  CAS  Google Scholar 

  105. U. Fiedler, Y. Reiss, M. Scharpfenecker, V. Grunow, S. Koidl, G. Thurston, N.W. Gale, M. Witzenrath, S. Rosseau, N. Suttorp, A. Sobke, M. Herrmann, K.T. Preissner, P. Vajkoczy, H.G. Augustin, Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat. Med. 12(2), 235–239 (2006). doi:10.1038/nm1351

    Article  PubMed  CAS  Google Scholar 

  106. E. Volkova, J.A. Willis, J.E. Wells, B.A. Robinson, G.U. Dachs, M.J. Currie, Association of angiopoietin-2, C-reactive protein and markers of obesity and insulin resistance with survival outcome in colorectal cancer. Br. J. Cancer 104(1), 51–59 (2011). doi:10.1038/sj.bjc.6606005

    Article  PubMed  CAS  Google Scholar 

  107. M. Skopkova, A. Penesova, H. Sell, Z. Radikova, M. Vlcek, R. Imrich, J. Koska, J. Ukropec, J. Eckel, I. Klimes, D. Gasperikova, Protein array reveals differentially expressed proteins in subcutaneous adipose tissue in obesity. Obesity 15(10), 2396–2406 (2007). doi:10.1038/oby.2007.285

    Article  PubMed  CAS  Google Scholar 

  108. Z. Wang, T. Nakayama, Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm. 2010, 535918 (2010). doi:10.1155/2010/535918

    Article  PubMed  CAS  Google Scholar 

  109. A. Heiss, A. DuChesne, B. Denecke, J. Grotzinger, K. Yamamoto, T. Renne, W. Jahnen-Dechent, Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J. Biol. Chem. 278(15), 13333–13341 (2003). doi:10.1074/jbc.M210868200

    Article  PubMed  CAS  Google Scholar 

  110. D. Toroian, P.A. Price, The essential role of fetuin in the serum-induced calcification of collagen. Calcif. Tissue Int. 82(2), 116–126 (2008). doi:10.1007/s00223-007-9085-2

    Article  PubMed  CAS  Google Scholar 

  111. J.H. Ix, C.L. Wassel, D.C. Bauer, D. Toroian, F.A. Tylavsky, J.A. Cauley, T.B. Harris, P.A. Price, S.R. Cummings, M.G. Shlipak, Health ABC Study, Fetuin-A and BMD in older persons: the Health Aging and Body Composition (Health ABC) study. J. Bone Miner. Res. 24(3), 514–521 (2009). doi:10.1359/jbmr.081017

    Article  PubMed  Google Scholar 

  112. L. Chailurkit, A. Kruavit, R. Rajatanavin, B. Ongphiphadhanakul, The relationship of fetuin-A and lactoferrin with bone mass in elderly women. Osteoporosis Int. 22(7), 2159–2164 (2011). doi:10.1007/s00198-010-1439-3

    Article  CAS  Google Scholar 

  113. C. Schafer, A. Heiss, A. Schwarz, R. Westenfeld, M. Ketteler, J. Floege, W. Muller-Esterl, T. Schinke, W. Jahnen-Dechent, The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Investig. 112(3), 357–366 (2003). doi:10.1172/JCI17202

    PubMed  Google Scholar 

  114. T. Schinke, C. Amendt, A. Trindl, O. Poschke, W. Muller-Esterl, W. Jahnen-Dechent, The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J. Biol. Chem. 271(34), 20789–20796 (1996)

    Article  PubMed  CAS  Google Scholar 

  115. P.A. Price, J.E. Lim, The inhibition of calcium phosphate precipitation by fetuin is accompanied by the formation of a fetuin-mineral complex. J. Biol. Chem. 278(24), 22144–22152 (2003). doi:10.1074/jbc.M300744200

    Article  PubMed  CAS  Google Scholar 

  116. R.C. Shroff, V. Shah, M.P. Hiorns, M. Schoppet, L.C. Hofbauer, G. Hawa, L.J. Schurgers, A. Singhal, I. Merryweather, P. Brogan, C. Shanahan, J. Deanfield, L. Rees, The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol. Dial. Transplant. 23(10), 3263–3271 (2008). doi:10.1093/ndt/gfn226

    Article  PubMed  CAS  Google Scholar 

  117. A. Kirkpantur, B. Altun, T. Hazirolan, D. Akata, M. Arici, S. Kirazli, C. Turgan, Association among serum fetuin-A level, coronary artery calcification, and bone mineral densitometry in maintenance hemodialysis patients. Artif. Organs 33(10), 844–854 (2009). doi:10.1111/j.1525-1594.2009.00814.x

    Article  PubMed  CAS  Google Scholar 

  118. M. Wang, M. Wang, L.Y. Gan, S.J. Li, N. Hong, M. Zhang, Vascular calcification in maintenance hemodialysis patients. Blood Purif. 28(1), 15–20 (2009). doi:10.1159/000210033

    Article  PubMed  Google Scholar 

  119. J.H. Ix, R. Katz, I.H. de Boer, B.R. Kestenbaum, C.A. Peralta, N.S. Jenny, M. Budoff, M.A. Allison, M.H. Criqui, D. Siscovick, M.G. Shlipak, Fetuin-A is inversely associated with coronary artery calcification in community-living persons: the Multi-Ethnic Study of Atherosclerosis. Clin. Chem. 58(5), 887–895 (2012). doi:10.1373/clinchem.2011.177725

    Article  PubMed  CAS  Google Scholar 

  120. J.H. Ix, E. Barrett-Connor, C.L. Wassel, K. Cummins, J. Bergstrom, L.B. Daniels, G.A. Laughlin, The associations of fetuin-A with subclinical cardiovascular disease in community-dwelling persons: the Rancho Bernardo Study. J. Am. Coll. Cardiol. 58(23), 2372–2379 (2011). doi:10.1016/j.jacc.2011.08.035

    Article  PubMed  CAS  Google Scholar 

  121. E. Fisher, N. Stefan, K. Saar, D. Drogan, M.B. Schulze, A. Fritsche, H.G. Joost, H.U. Haring, N. Hubner, H. Boeing, C. Weikert, Association of AHSG gene polymorphisms with fetuin-A plasma levels and cardiovascular diseases in the EPIC-Potsdam study. Circul. Cardiovasc. Genet. 2(6), 607–613 (2009). doi:10.1161/CIRCGENETICS.109.870410

    Article  CAS  Google Scholar 

  122. G. Cianciolo, G. La Manna, G. Donati, E. Persici, A. Dormi, M.L. Cappuccilli, S. Corsini, R. Fattori, V. Russo, V. Nastasi, L. Coli, M. Wratten, S. Stefoni, Coronary calcifications in end-stage renal disease patients: a new link between osteoprotegerin, diabetes and body mass index? Blood Purif. 29(1), 13–22 (2010). doi:10.1159/000245042

    Article  PubMed  CAS  Google Scholar 

  123. D.P. Lorant, M. Grujicic, C. Hoebaus, J.M. Brix, F. Hoellerl, G. Schernthaner, R. Koppensteiner, G.H. Schernthaner, Fetuin-A levels are increased in patients with type 2 diabetes and peripheral arterial disease. Diabetes Care 34(1), 156–161 (2011). doi:10.2337/dc10-0788

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was supported by a grant of the Austrian National Bank to A.K.-W (ÖNB: 13244).

Conflict of interest

The authors declare that they have no conflicts of interest regarding the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Kautzky-Willer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasul, S., Wagner, L. & Kautzky-Willer, A. Fetuin-A and angiopoietins in obesity and type 2 diabetes mellitus. Endocrine 42, 496–505 (2012). https://doi.org/10.1007/s12020-012-9754-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9754-4

Keywords

Navigation