Skip to main content

Advertisement

Log in

The effects of angiotensin peptides and angiotensin receptor antagonists on the cell growth and angiogenic activity of GH3 lactosomatotroph cells in vitro

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The local renin–angiotensin system (RAS) is present in the pituitary gland, and inhibitory effects of angiotensins on the lactosomatotroph (GH3) cell growth have been revealed. The aim of this study was to examine the influence of various angiotensin peptides and angiotensin AT1, AT2, and AT4 receptors antagonists on the cell proliferation, viability, and VEGF secretion in pituitary lactosomatotroph GH3 cell culture in order to identify receptors involved in antiproliferative effects of angiotensins on GH3 tumor cells. Cell viability and proliferation using Mosmann method and BrdU incorporation during DNA synthesis, and VEGF secretion using ELISA assay were estimated. The inhibitory effects of ang II, ang IV, and ang 5–8 on the cell viability and BrdU incorporation in GH3 culture were not abolished by AT1, AT2, and AT4 receptors antagonists. Ang II, as well as ang III and ang IV at lower concentrations stimulated the secretion of VEGF in GH3 cell culture. The secretion of VEGF was inhibited by ang III and ang IV at higher concentrations. AT1 and AT2 receptors antagonists prevented the proangiogenic effects of ang II. Ang II, ang IV, and ang 5–8 decrease the cell number and proliferation in GH3 cell culture independently of the AT1, AT2, and AT4 receptors. These peptides affect also secretion of VEGF in culture examined. Both the AT1 and AT2 receptors appear to mediate the proangiogenic effects of ang II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I. Haulica, W. Bild, D.N. Serban, Angiotensin peptides and their pleiotropic actions. J. Renin. Angiotensin Aldosterone Syst. 6, 121–131 (2005)

    Article  PubMed  CAS  Google Scholar 

  2. D.E. Dotal, Angiotensin II stimulation of left ventricular hypertrophy in adult rat heart. Mediation by the AT1 receptor. Am. J. Hypertens. 5, 276–280 (1992)

    Google Scholar 

  3. P.S. Leung, Pancreatic RAS. Adv. Exp. Med. Biol. 690, 89–105 (2010)

    Article  PubMed  Google Scholar 

  4. S. Louis, L. Saward, P. Zahradka, Both AT1 and AT2 receptors mediate proliferation and migration of porcine vascular smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 301, H746–H756 (2011)

    Article  PubMed  CAS  Google Scholar 

  5. J.L. Zhuo, X.C. Li, New insights and perspectives on intrarenal renin–angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides 32, 1551–1565 (2011)

    Article  PubMed  CAS  Google Scholar 

  6. M. de Gasparo, K.J. Catt, T. Inagami, J.W. Wright, T.H. Unger, International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000)

    PubMed  Google Scholar 

  7. J. Kunert-Radek, H. Stępień, J. Komorowski, M. Pawlikowski, Stimulatory effect of angiotensin II on the proliferation of mouse spleen lymphocytes in vitro is mediated via both types of angiotensin II receptors. Biochem. Biophys. Res. Commun. 198, 1034–1039 (1994)

    Article  PubMed  CAS  Google Scholar 

  8. M. Pawlikowski, G. Mełeń Mucha, S. Mucha, The involvement of the renin–angiotensin system in the regulation of cell proliferation in the rat endometrium. Cell. Mol. Life Sci. 55, 506–510 (1999)

    Article  PubMed  CAS  Google Scholar 

  9. M. Pawlikowski, A. Gruszka, S. Mucha, G. Melen-Mucha, Angiotensins II and IV stimulate the rat adrenocortical cell proliferation acting via different receptors. Endocr. Regul. 35, 139–142 (2001)

    PubMed  CAS  Google Scholar 

  10. M. Pawlikowski, G. Melen-Mucha, S. Mucha, The involvement of angiotensins in the control of prostatic epithelial cell proliferation in the rat. Folia Histochem. Cytobiol. 39, 341–343 (2001)

    PubMed  CAS  Google Scholar 

  11. L. Bu, S. Qu, X. Gao, J.J. Zou, W. Tang, L.L. Sun, Z.M. Liu, Enhanced angiotensin-converting enzyme 2 attenuates angiotensin II-induced collagen production via AT1 receptor-phosphoinositide 3-kinase-Akt pathway. Endocrine 39, 139–147 (2011)

    Article  PubMed  CAS  Google Scholar 

  12. P. Liakos, N. Bourmeyster, G. Defaye, E.M. Chambaz, S.P. Bottari, ANG II AT1 and AT2 receptors both inhibit bFGF-induced proliferation of bovine adrenocortical cells. Am. J. Physiol. Cell Physiol. 273, C1324–C1334 (1997)

    CAS  Google Scholar 

  13. M. Stoll, U.M. Steckelings, M. Paul, S.P. Bottari, R. Metzger, T. Unger, The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Invest. 95, 651–657 (1995)

    Article  PubMed  CAS  Google Scholar 

  14. M. Otis, S. Campbell, M.D. Payet, N. Gallo-Payet, Angiotensin II stimulates protein synthesis and inhibits proliferation in primary cultures of rat adrenal glomerulosa cells. Endocrinology 146, 633–642 (2005)

    Article  PubMed  CAS  Google Scholar 

  15. M. Otis, S. Campbell, M.D. Payet, N. Gallo-Payet, The growth-promoting effects of angiotensin II in adrenal glomerulosa cells: an interactive tale. Mol. Cell. Endocrinol. 273, 1–5 (2007)

    Article  PubMed  CAS  Google Scholar 

  16. H. Lawnicka, A.M. Potocka, A. Juzala, M.C. Fournie-Zaluski, M. Pawlikowski, Angiotensin II and its fragment (angiotensin III and angiotensin IV) decrease the growth of DU-145 prostate cancer cells in vitro. Med. Sci. Monit. 10, BR410–413 (2004)

    PubMed  CAS  Google Scholar 

  17. A.S. Greene, S.L. Amaral, Microvascular angiogenesis and the renin–angiotensin system. Curr. Hypertens. Rep. 4, 56–62 (2002)

    Article  PubMed  Google Scholar 

  18. F.A.C. Le Noble, J.W.M. Hekking, H.W.M. Van Straaten, D.W. Slaaf, H.A.J. Struyker Boudier, Angiotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo. Eur. J. Pharmacol. 195, 305–306 (1991)

    Article  PubMed  Google Scholar 

  19. D.H. Munzenmaier, A.S. Greene, Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27(pt 2), 760–765 (1996)

    Article  PubMed  CAS  Google Scholar 

  20. D.A. Walsh, D.E. Hu, J. Wharton, J.D. Catravas, D.R. Blake, T.P.D. Fan, Sequential development of angiotensin receptors and angiotensin I converting enzyme during angiogenesis in the rat subcutaneous sponge granuloma. Br. J. Pharmacol. 120, 1302–1311 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. T. Imanishi, T. Hano, I. Nishio, Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens. Res. 2004(27), 101–108 (2004)

    Article  Google Scholar 

  22. A. Otani, H. Takagi, H. Oh, K. Zuzuma, M. Matsumura, F. Ikeda, Y. Honda, Angiotensin II-stimulated vascular endothelial growth factor expression in bovine retinal pericytes. Invest. Ophthalmol. Vis. Sci. 41, 1192–1199 (2000)

    PubMed  CAS  Google Scholar 

  23. C. Pupilli, L. Lasagni, P. Romagnani, B.F. Bellini, M. Mannelli, N. Misciglia, C. Mavilla, U. Vellei, D. Villari, M. Serio, Angiotensin II stimulates the synthesis and secretion of vascular permeability factor/vascular endothelial growth factor in human mesangial cells. J. Am. Soc. Nephrol. 10, 245–255 (1999)

    PubMed  CAS  Google Scholar 

  24. H. Yoshiji, S. Kuriyama, H. Fukui, Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol. 23, 348–356 (2002)

    Article  PubMed  CAS  Google Scholar 

  25. Y.D. Li, E.R. Block, J.M. Patel, Activation of multiple signaling modules is critical for angiotensin IV-induced lung endothelial cell proliferation. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L707–L716 (2002)

    PubMed  CAS  Google Scholar 

  26. J.M. Patel, Y.D. Li, J.L. Zhang, C.H. Gelband, M.K. Raizada, E.R. Block, Increased expression of calreticulin is linked to ang IV-mediated activation of lung endothelial NOS. Am. Physiol. Lung Cell. Mol. Physiol. 277, L794–L801 (1999)

    CAS  Google Scholar 

  27. S.Y. Chai, R. Fernando, G. Peck, S.Y. Ye, F.A. Mendelsohn, T.A. Jenkins, A.L. Albiston, The angiotensin IV/AT4 receptor. Cell. Mol. Life Sci. 61, 2728–2737 (2004)

    Article  PubMed  CAS  Google Scholar 

  28. L.T. Krebs, E.A. Kramar, J.M. Hanesworth, M.F. Sardinia, A.E. Ball, T.J.W. Wrigh, J.W. Harding, Characterization of the binding properties and physiological action of divalinal-angiotensin IV, a putative receptor antagonist. Regul. Pept. 67, 123–130 (1996)

    Article  PubMed  CAS  Google Scholar 

  29. M. Pawlikowski, Immunohistochemical detection of angiotensin receptors AT1 and AT2 in normal rat pituitary gland, estrogen-induced rat pituitary tumor and human pituitary adenomas. Folia Histochem. Cytobiol. 44, 173–177 (2006)

    PubMed  Google Scholar 

  30. E. Vila–Porcile, A. Barret, P. Corvol, Secretion of renin–angiotensin system (RAS) components by normal and tumoral lactotropes: a comparative study using reverse hemolytic plaque assay (RHPA) and immunoelectron microscopy. J. Histoch. Cytochem. 48, 1691–1704 (2000)

    Article  CAS  Google Scholar 

  31. W.F. Ganong, Angiotensin II in the brain and pituitary: contrasting roles in the regulation of adenohypophyseal secretion. Horm. Res. 31, 24–31 (1989)

    Article  PubMed  CAS  Google Scholar 

  32. E. Sánchez-Lemus, J. Benicky, J. Pavel, J.M. Saavedra, In vivo Angiotensin II AT1 receptor blockade selectively inhibits LPS-induced innate immune response and ACTH release in rat pituitary gland. Brain Behav. Immun. 23, 945–957 (2009)

    Article  PubMed  Google Scholar 

  33. M. Pawlikowski, S. Mucha, J. Kunert-Radek, H. Stępień, H. Pisarek, A. Stawowy, Is estrogen-induced pituitary hyperplasia and hiperprolactinemia mediated by angiotensin II?, in Current Concept: Tissue Rennin–Angiotensin Systems as Local Regulators in Reproductive, Endocrine Organs, ed. by A.K. Mukhopadyay, M.K. Raizada (Plenum Press, New York, 1995), pp. 371–378

    Google Scholar 

  34. C. Moreau, R. Rasolonjanahary, V. Audinot, C. Kordon, A. Enjalbert, Angiotensin II effects on second messengers involved in prolactin secretion are mediated by AT1 receptor in anterior pituitary cells. Mol. Cell. Neurosci. 5, 597–603 (1994)

    Article  PubMed  CAS  Google Scholar 

  35. M. Pawlikowski, J. Kunert-Radek, Angiotensin IV stimulates the proliferation of rat anterior pituitary cells in vitro. Biochem. Biophys. Res. Commun. 232, 292–293 (1997)

    Article  PubMed  CAS  Google Scholar 

  36. S. Mucha, H. Sępień, A. Lachowicz-Ochędalska, M. Pawlikowski, The effect of angiotensin-converting enzyme inhibition on estrogen-induced cell proliferation in the rat pituitary gland. Neuroendocrinol. Lett. 15, 369–375 (1993)

    CAS  Google Scholar 

  37. D. Ptasinska-Wnuk, H. Lawnicka, S. Mucha, J. Kunert-Radek, M. Pawlikowski, H. Stepien, Angiotensins inhibit cell growth in GH3 lactosomatotroph pituitary tumor cell culture: a possible involvement of the p44/42 and p38 MAPK pathways. Sci. World J. in press (2012)

  38. K. Egarni, T. Murohara, T. Shimada, K. Sasaki, S. Shintani, T. Sugaya, M. Ishii, T. Akagi, H. Ikeda, T. Matsuishi, T. Imaizumi, Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J. Clin. Invest. 112, 67–75 (2003)

    Google Scholar 

  39. M. Fujita, I. Hayashi, S. Yamashina, M. Itoman, M. Majima, Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem. Biophys. Res. Commun. 294, 411–447 (2002)

    Article  Google Scholar 

  40. N. Imai, T. Hashimoto, M. Kihara, S. Yoshida, I. Kawana, T. Yazawa, H. Kitamura, S. Umemura, Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis. Lab. Invest. 87, 189–198 (2007)

    Article  PubMed  CAS  Google Scholar 

  41. A. H. Tashjian Jr, F.C. Bancroft, L. Levine, Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. Differential effects of hydrocortisone and tissue extracts. J. Cell Biol. 47, 61–70 (1970)

    Article  PubMed  CAS  Google Scholar 

  42. Z. Lenkei, A.M. Nuyt, D. Grouselle, P. Corvol, C. Llorens-Cortes, Identification of endocrine cell populations expressing the AT1B subtype of angiotensin II receptors in the anterior pituitary. Endocrinology 140, 472–477 (1999)

    Article  PubMed  CAS  Google Scholar 

  43. A.L. Ochedalska, E. Rebas, J. Kunert-Radek, M.C. Fournie-Zaluski, M. Pawlikowski, Angiotensins II and IV stimulate the activity of tyrosine kinases in estrogen-induced rat pituitary tumors. Biochem. Biophys. Res. Commun. 297, 931–933 (2002)

    Article  PubMed  Google Scholar 

  44. D. Ptasinska-Wnuk, J. Kunert-Radek, M. Pawlikowski, Angiotensins II and IV stimulate the rat anterior pituitary cell proliferation independently of the AT1 receptor subtype. Neuroendorinol. Lett. 24, 397–400 (2003)

    CAS  Google Scholar 

  45. E. Rebas, A. Lachowicz-Ochedalska, M. Pawlikowski, Angiotensin IV stimulates the activity of tyrosine kinases in rat anterior pituitary gland acting via AT1-like receptors? J. Physiol. Pharmacol. 55, 107–111 (2004)

    PubMed  CAS  Google Scholar 

  46. P.E. Gallagher, E.A. Tallant, Inhibition of human lung cancer by angiotensin 1–7. Carcinogenesis 25, 2045–2052 (2004)

    Article  PubMed  CAS  Google Scholar 

  47. C. Suárez, I.G. Tornadú, C. Cristina, J. Vela, A.G. Iglesias, C. Libertun, G. Díaz-Torga, D. Becu-Villalobos, Angiotensin and calcium signaling in the pituitary and hypothalamus. Cell. Mol. Neurobiol. 22, 315–333 (2002)

    Article  PubMed  Google Scholar 

  48. B. Williams, A.Q. Baker, B. Gallacher, D. Lodwick, Angiotensin II increases vascular permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25, 913–917 (1995)

    Article  PubMed  CAS  Google Scholar 

  49. S.K. Banerjee, D.R. Campbell, A.P. Weston, D.K. Banerjee, Biphasic estrogen response on bovine adrenal medulla capillary endothelial cell adhesion, proliferation and tube formation. Mol. Cell. Biochem. 177, 97–105 (1997)

    Article  PubMed  CAS  Google Scholar 

  50. R. Benndorf, R.H. Böger, S. Ergün, A. Steenpass, T. Wieland, Angiotensin II type 2 receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of human endothelial cells. Circ. Res. 93, 438–447 (2003)

    Article  PubMed  CAS  Google Scholar 

  51. S. Fujiyama, H. Matsubara, Y. Nozawa, K. Maruyama, Y. Mori, Y. Tsutsumi, H. Masaki, Y. Uchiyama, Y. Koyama, A. Nose, O. Iba, E. Tateishi, N. Ogata, N. Jyo, S. Higashiyama, T. Iwasaka, Angiotensin AT(1) and AT(2) receptors differentially regulate angiopoietin-2 and vascular endothelial growth factor expression and angiogenesis by modulating heparin binding-epidermal growth factor (EGF)-mediated EGF receptor transactivation. Circ. Res. 88, 22–29 (2001)

    Article  PubMed  CAS  Google Scholar 

  52. M. Pawlikowski, M. Grochal, A. Kulig, K. Zieliński, H. Stępień, J. Kunert-Radek, S. Mucha, The effect of angiotensin II receptor antagonist on diethylstilboestrol-induced vascular changes in the rat anterior pituitary gland: a quantitative evaluation. Histol. Histopathol. 11, 909–913 (1996)

    CAS  Google Scholar 

  53. B. Rizkalla, J.M. Forbes, Z. Cao, G. Boner, M.E. Cooper, Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes: role of the renin–angiotensin system. J. Hypertens. 23, 153–164 (2005)

    Article  PubMed  CAS  Google Scholar 

  54. S. Sarlos, B. Rizkalla, C.J. Moravski, Z. Cao, M.E. Cooper, J.L. Wilkinson-Berka, Retinal angiogenesis is mediated by an interaction between the angiotensin type 2 receptor, VEGF, and angiopoietin. Am. J. Pathol. 163, 879–887 (2003)

    Article  PubMed  CAS  Google Scholar 

  55. X. Zhang, M. Lassila, M.E. Cooper, Z. Cao, Retinal expression of vascular endothelial growth factor is mediated by angiotensin type 1 and type 2 receptors. Hypertension 43, 276–281 (2004)

    Article  PubMed  CAS  Google Scholar 

  56. C. Onofri, M. Theodoropoulou, M. Losa, E. Uhl, M. Lange, E. Arzt, G.K. Stalla, U. Renner, Localization of vascular endothelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J. Endocrinol. 191, 249–261 (2006)

    Article  PubMed  CAS  Google Scholar 

  57. M.C. Zatelli, D. Piccin, C. Vignali, F. Tagliati, M.R. Ambrosio, M. Bondanelli, V. Cimino, A. Bianchi, H.A. Schmid, M. Scanarini, A. Pontecorvi, L. De Marinis, G. Maira, E.C. degli Uberti, Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr. Relat. Cancer 14, 91–102 (2007)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported with the contribution of European Cooperation in the field of Scientific and Technical Research—COST ACTION, Grant No. CM0602 and by Polish Ministry of Science and Higher Education, Grant No. 505-04-001. The authors are grateful to Professor John W Wright from Department of Physiology of Washington State University for providing Divalinal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henryk Stepien.

Additional information

Dorota Ptasinska-Wnuk and Slawomir A. Mucha have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ptasinska-Wnuk, D., Mucha, S.A., Lawnicka, H. et al. The effects of angiotensin peptides and angiotensin receptor antagonists on the cell growth and angiogenic activity of GH3 lactosomatotroph cells in vitro. Endocrine 42, 88–96 (2012). https://doi.org/10.1007/s12020-012-9659-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-012-9659-2

Keywords

Navigation