Skip to main content

Advertisement

Log in

Bone Biomechanics and Bone Quality: Effects of Pharmaceutical Agents Used to Treat Osteoporosis

  • Bone quality
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The biomechanical properties of bone define skeletal fragility. Surrogates such as bone density or biochemical markers are used to estimate the mechanical properties of bone because mechanical properties cannot be measured in a clinical environment. Within the set of bone’s mechanical properties, the material properties of the tissue itself are the defining feature of bone quality. Because they are the summation of all bone quality characteristics, bone’s material properties can define whether bone is fragile or healthy, even though other studies are required to determine the exact characteristics of microarchitecture, microdamage, and tissue physical properties that make the bone more or less fragile. For these reasons, measurement of the mechanical properties of bone is critical to assess bone health following drug treatments meant to ameliorate low bone mass, and are a common outcome measure in preclinical studies that assess the potential of these medications. This review describes the effects of existing anti-catabolic (bisphosphonates, SERMS, RANKL inhibitors) and anabolic (rhPTH (1-34) agents used to treat osteoporosis, and also several emerging potential therapies (cathepsin K inhibitors, anti-sclerostin antibody), on bone’s structural and material mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Watts NB, Geusens P, Barton IP, Felsenberg D. Relationship between changes in BMD and nonvertebral fracture incidence associated with risedronate reduction in risk of nonvertebral fracture is not related to change in BMD. J Bone Miner Res. 2005;20:2097–104.

    Article  PubMed  Google Scholar 

  2. Imbert L, Boskey A. Effects of drugs on bone quality (this issue).

  3. Hunt HB, Donnelly E. Bone quality assessment techniques: geometric, compositional, and mechanical characterization from macroscale to nanoscale (this issue).

  4. Allen MR, McNerny EMB, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30:1539–50.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hernandez CJ, Cresswell EN. Understanding bone strength from finite element models: what clinicians need to know (this issue).

  6. Currey JD. Bones. 2nd ed. Princeton: University Press; 2002.

    Google Scholar 

  7. Currey JD. Incompatible mechanical properties in compact bone. J Theor Biol. 2004;231:569–80.

    Article  PubMed  Google Scholar 

  8. Yao W, Cheng Z, Koester KJ, Ager JW, Balooch M, Pham A, Chefo S, Busse C, Ritchie RO, Lane NE. The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone. 2007;41:804–12.

    Article  CAS  PubMed  Google Scholar 

  9. Burr DB, Russell RGG. Special Issue: bisphosphonates. Bone. 2011;49:1–145.

    Article  PubMed  Google Scholar 

  10. Boyce RW, Paddock CL, Gleason JR, Sletsema WK, Eriksen EF. The effects of risedronate on canine cancellous bone remodeling: three-dimensional kinetic reconstruction of the remodeling site. J Bone Miner Res. 1995;10:211–21.

    Article  CAS  PubMed  Google Scholar 

  11. Allen MR, Erickson AM, Wang X, Burr DB, Martin RB, Hazelwood SJ. Morphological assessment of basic multicellular unit resorption parameters in dogs shows additional mechanisms of bisphosphonate effects on bone. Calcif Tissue Int. 2010;86:67–71.

    Article  CAS  PubMed  Google Scholar 

  12. Matheny JB, Slyfield CR, Tkachenko EV, Lin I, Ehlert KM, Tomlinson RE, Wilson DL, Hernandez CJ. Anti-resorptive agents reduce the size of resorption cavities: a three-dimensional dynamic bone histomorphometry study. Bone. 2013;57:277–83.

    Article  CAS  PubMed  Google Scholar 

  13. Boivin G, Chavassieux PM, Santora AC, Yates J, Meunier PJ. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone. 2000;27:687–94.

    Article  CAS  PubMed  Google Scholar 

  14. Burr DB, Miller L, Grynpas M, Li J, Boyde A, Mashiba T, Hirano T, Johnston CC. Tissue mineralization is increased following 1-year treatment with high doses of bisphosphonates in dogs. Bone. 2003;33:960–9.

    Article  CAS  PubMed  Google Scholar 

  15. Currey JD. The mechanical consequences of variation in the mineral content of bone. J Biomech. 1969;2:1–11.

    Article  CAS  PubMed  Google Scholar 

  16. Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22:57–66.

    Article  CAS  PubMed  Google Scholar 

  17. Currey JD, Brear K, Zioupos P. The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech. 1996;29:257–60.

    Article  CAS  PubMed  Google Scholar 

  18. Allen MR, Iwata K, Phipps R, Burr DB. Alterations in canine vertebral bone turnover, microdamage accumulation, and biomechanical properties following 1-year treatment with clinical treatment doses of risedronate or alendronate. Bone. 2006;39:872–9.

    Article  CAS  PubMed  Google Scholar 

  19. Allen MR, Burr DB. Changes in vertebral strength-density and energy absorption-density relationships following bisphosphonate treatment in beagle dogs. Osteoporos Int. 2008;19:95–9.

    Article  CAS  PubMed  Google Scholar 

  20. Balena R, Roolan BC, Balena R, Toolan BC, Shea M, Markatos A, Myers ER, Lee SC, Opas EE, Seedor JG, Klein H, Frankenfield D, Quartuccio H, Fioravanti C, Clair J, Brown E, Hayes WC, Rodan GA. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest. 1993;92:2577–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. LaFage M-H, Balena R, Battle MA, Shea M, Seedor JG, Klein H, Hayes WC, Rodan GA. Comparison of alendronate and sodium fluoride effects on cancellous and cortical bone in minipigs. J Clin Invest. 1995;95:2127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Allen MR, Burr DB. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res. 2007;22:1759–65.

    Article  CAS  PubMed  Google Scholar 

  23. Lalla S, Hothorn LA, Haag N, Bader R, Bauss F. Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats. Osteoporos Int. 1998;8:97–103.

    Article  CAS  PubMed  Google Scholar 

  24. Bauss F, Lalla S, Endele R, Hothorn LA. Effects of treatment with ibandronate on bone mass, architecture, biomechanical properties, and bone concentration of ibandronate in ovariectomized aged rats. J Rheumatol. 2002;29:2200–8.

    CAS  PubMed  Google Scholar 

  25. Smith SY, Recker RR, Hannan M, Müller R, Bauss F. Intermittent intravenous administration of the bisphosphonate ibandronate prevents bone loss and maintains bone strength and quality in ovariectomized cynomolgus monkeys. Bone. 2003;32:45–55.

    Article  CAS  PubMed  Google Scholar 

  26. Müller R, Hannan M, Smith S, Bauss F. Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res. 2004;19:1787–96.

    Article  PubMed  CAS  Google Scholar 

  27. Russell RGG. Ibandronate: pharmacology and preclinical studies. Bone. 2006;38(Suppl1):S7–12.

    Article  CAS  PubMed  Google Scholar 

  28. Gasser JA, Ingold P, Venturiere A, Shen V, Green JR. Long-ter protective effects of zolendronic acid on cancellous and cortical bone in the ovariectomized rat. J Bone Miner Res. 2008;23:544–51.

    Article  CAS  PubMed  Google Scholar 

  29. Toolan BC, Shea M, Myers ER, Borchers RE, Seedor JG, Quartuccio H, Rodan G, Hayes WC. Effects of 4-amino-1-hydroxybutylidene bisphosphonate on bone biomechanics in rats. J Bone Miner Res. 1992;7:1399–406.

    Article  CAS  PubMed  Google Scholar 

  30. Guy JF, Shea M, Balena R, Seedor JG, Rodan GA, Hayes WC. The bisphosphonate alendronate preserves both the mechanical properties and bone mineral density in the aging estrogen deficient rats. J Bone Miner Res. 1993;8:S70 (Abstract).

    Google Scholar 

  31. Balooch G, Yao W, Ager JW, Balooch M, Nalla RK, Porter AE, Ritchie RO, Lane NE. The aminobisphosphonate risedronate preserves localized mineral and material properties of bone in the presence of glucocorticoids. Arthritis Rheumatol. 2007;56:3726–37.

    Article  CAS  Google Scholar 

  32. Yano T, Yamada M, Konda T, Shiozaki M, Inoue D. Risedronate improves bone architecture and strength faster than alendronate in ovariectomized rats on a low-calcium diet. J Bone Miner Metab. 2014;32:653–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bauss F, Wagner M, Hothorn LH. Total administered dose of ibandronate determines its effects on bone mass and architecture in ovariectomized aged rats. J Rheumatol. 2002;29:990–8.

    CAS  PubMed  Google Scholar 

  34. Keaveny TM, Donley DW, Hoffmann PF, Mitlak BH, Glass EV, San Martin JA. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22:149–57.

    Article  CAS  PubMed  Google Scholar 

  35. Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res. 2008;23:1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seeman E. To stop or not to stop, that is the question. Osteoporos Int. 2009;20:187–95.

    Article  PubMed  Google Scholar 

  37. Cummings SR, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. J Am Med Assoc. 1998;280:2077–82.

    Article  CAS  Google Scholar 

  38. Wang X, Shen X, Li X, Agrawal CM. Age-related changes in the collagen network and toughness of bone. Bone. 2002;31:1–7.

    Article  PubMed  Google Scholar 

  39. Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD. Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int. 2008;19:329–37.

    Article  CAS  PubMed  Google Scholar 

  40. Poundarik AA, Wu P-C, Evis Z, Sroga GE, Ural A, Rubin M. Vashishthe D A direct role of collagen glycation in bone fracture. J Biomed Behav Biomed Mater. 2015;50:82–92.

    Article  Google Scholar 

  41. Viguet-Carrin S, Roux JP, Arlot ME, Merabet Z, Leeming DJ, Byrjalsen I, Delmas PD, Bouxsein ML. Contribution of the advanced glycation end product pentosidine and of maturation of type I collagen to compressive biomechanical properties of human lumbar vertebrae. Bone. 2006;39:1073–9.

    Article  CAS  PubMed  Google Scholar 

  42. Tang SY, Allen MR, Phipps R, Butt DB, Vashishth D. Changes in non-enzymatic glycation and its association with altered mechanical properties following 1-year treatment with risedronate or alendronate. Osteoporos Int. 2009;20:887–94.

    Article  CAS  PubMed  Google Scholar 

  43. Tang SY, Vashishth D. The relative contributions of non-enzymatic glycation and cortical porosity on the fracture toughness of ageing bone. J Biomech. 2011;44:330–6.

    Article  CAS  PubMed  Google Scholar 

  44. Shahnazari M, Yao W, Dai W, Wang B, Ionova-Martin SS, Ritchie RO, Heeren D, Burghardt AJ, Nicolella DP, Kimiecik MG, Lane NE. Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats. Bone. 2010;46:1267–74.

    Article  CAS  PubMed  Google Scholar 

  45. Balena R, Markatos A, Guy J, Shea M, Seedor JG, Hayes WC, Peter CP, Rodan GA. Effects of three years treatment with alendronate in adult beagles. J Bone Miner Res. 1993;8:S614 (Abstract).

    Google Scholar 

  46. Yamagami Y, Mashiba T, Iwata K, Tanaka M, Nozaki K, Yamamoto T. Effects of minodronic acid and alendronate on bone remodeling, microdamage accumulation, degree of mineralization and bone mechanical properties in ovariectomized cynomolgus monkeys. Bone. 2013;54:1–7.

    Article  CAS  PubMed  Google Scholar 

  47. Aerssons J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998;139:663–70.

    Google Scholar 

  48. Pearce A, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007;13:1–10.

    CAS  PubMed  Google Scholar 

  49. Peter CP, Guy J, Shea M, Bagdon W, Kline WF, Hayes WC. Long-term safety of the aminobisphosphonate alendronate in adult dogs. I. General safety and biomechanical properties of bone. J Pharmacol Exp Ther. 1996;276:271–6.

    CAS  PubMed  Google Scholar 

  50. Komatsubara S, Mori S, Mashiba T, Ito M, Li J, Kaji Y, Akiyama T, Miyamoto K, Cao Y, Kawanishi J, Norimatsu H. Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J Bone Miner Res. 2003;18:512–20.

    Article  CAS  PubMed  Google Scholar 

  51. Mashiba T, Turner CH, Hirano T, Forwood MR, Johnston CC, Burr DB. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone. 2001;28:524–31.

    Article  CAS  PubMed  Google Scholar 

  52. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB. Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res. 2000;15:613–20.

    Article  CAS  PubMed  Google Scholar 

  53. Burr DB, Diab T, Koivunemi A, Koivunemi M, Allen MR. Effects of 1 to 3 years’ treatment with alendronate on mechanical properties of the femoral shaft in a canine model: implications for subtrochanteric femoral fracture risk. J Orthop Res. 2009;27:1288–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Komatsubara S, Mori S, Mashiba T, Li J, Nonaka K, Kaji Y, Akiyama T, Miyamoto K, Cao Y, Kawanishi J, Norimatsu H. Suppressed bone turnover by long-term bisphosphonate treatment accumulates microdamage but maintains intrinsic material properties in cortical bone of dog rib. J Bone Miner Res. 2004;2004(19):999–1005.

    Article  CAS  Google Scholar 

  55. Allen MR, Reinwald S, Burr DB. Alendronate reduces bone turnover of ribs without significantly increasing microdamage accumulation in dogs following 3 years of daily treatment. Calcif Tissue Int. 2008;82:354–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Allen MR, Burr DB. Mineralization, microdamage, and matrix: how bisphosphonates influence material properties of bone. Bonekey Osteovision. 2007;4:49–60.

    Article  Google Scholar 

  57. Tanaka M, Mori H, Kawabata K, Mashiba T. Minodronic acid ameliorates vertebral bone strength by increasing bone mineral density in 9-month treatment of ovariectomized cynomolgus monkeys. Bone. 2016;88:157–64.

    Article  CAS  PubMed  Google Scholar 

  58. Kosteniuk PJ, Smith SY, Samadfam R, Jolette J, Zhou L, Ominsky MS. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2015;30:657–69.

    Article  CAS  Google Scholar 

  59. Acevedo C, Bale H, Gludovatz B, Wat A, Tang SY, Wang M, Busse B, Zimmerman EA, Schaible E, Allen MR, Burr DB, Ritchie RO. Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone. 2015;81:352–63.

    Article  CAS  PubMed  Google Scholar 

  60. Li J, Mashiba T, Burr DB. Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage. Calcif Tissue Int. 2001;69:281–6.

    Article  CAS  PubMed  Google Scholar 

  61. Chavassieux PM, Arlot ME, Reda C, Wei L, Yates J, Meunier PJ. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest. 1997;100:1475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Burr DB, Liu Z, Allen MR. Duration-dependent effects of clinically relevant oral alendronate doses on cortical bone toughness in beagle dogs. Bone. 2015;71:58–62.

    Article  CAS  PubMed  Google Scholar 

  63. Shane E, Burr DB, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for bone and mineral research. J Bone Miner Res. 2014;29:1–23.

    Article  PubMed  Google Scholar 

  64. Shane E, Burr D, Ebeling PR, et al. Atypical subtrochanteric and diaphyseal femoral fractures: report of a task force of the American Society for bone and mineral research. J Bone Miner Res. 2010;25:1–28.

    Article  Google Scholar 

  65. Khosla S, Burr D, Cauley Dempster DW, Ebeling PR, Felsenberg D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for bone and mineral research. J Bone Miner Res. 2007;22:1479–91.

    Article  PubMed  Google Scholar 

  66. Khan AA, Morrison A, Hanley DA, Felsenberg McCauley LK, O’Ryan F, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30:3–23.

    Article  PubMed  Google Scholar 

  67. Olejnik C, Falgayrac G, During A, Vieillard MH, Maes JM, Cortet B, Penel G. Molecular alterations of bone quality in sequesters of bisphosphonate-related osteonecrosis of the jaws. Osteroporos Int. 2014;25:747–56.

    Article  CAS  Google Scholar 

  68. Bajaj D, Geissler JR, Allen MR, Burr DB, Fritton JC. The resistance of cortical bone tissue to failure under cyclic loading is reduced with alendronate. Bone. 2014;64:57–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ettinger B, Burr DB, Ritchie RO. Proposed pathogenesis for atypical femoral fractures: lessons from materials research. Bone. 2013;55:495–500.

    Article  CAS  PubMed  Google Scholar 

  70. Dell RM, Adams AL, Greene DF, Funahashi TT, Silverman SL, Eisemon EO, Zhou H, Burchette RJ, Ott SM. Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res. 2012;27:2544–50.

    Article  PubMed  Google Scholar 

  71. Ettinger B, Black D, Mitlak B, Knickerbocker R, Nickelsen T, Genant H. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene: results from a 3-year randomized clinical trial. Multiple outcomes of raloxifene evaluation (MORE) investigators. JAMA. 1999;282:637–45.

    Article  CAS  PubMed  Google Scholar 

  72. Seeman E, Crans G, Diez-Perez A, Pinette K, Delams P. Anti-vertebral fracture efficacy of raloxifene: a meta-analysis. Osteoporos Int. 2006;17:313–6.

    Article  PubMed  Google Scholar 

  73. Hopkins RB, Goeree R, Pullenayegum E, Adachi JD, Papaioannous A, Xie F, Thabane L. The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women. BMC Musculoskelet Disord. 2011;12:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Recker RR, Mitlak BH, Ni X, Krege JH. Long-term raloxifene for postmenopausal osteoporosis. Curr Med Res Opin. 2011;27:1755–61.

    Article  PubMed  Google Scholar 

  75. Allen MR, Iwata K, Sato M, Burr DB. Raloxifene enhances vertebral mechanical properties independent of bone density. Bone. 2006;39:1130–5.

    Article  CAS  PubMed  Google Scholar 

  76. Allen MR, Hogan HA, Hobbs WA, Koivuniemi AS, Koivuniemi MC, Burr DB. Raloxifene enhances material-level mechanical properties of femoral cortical and trabecular bone. Endocrinology. 2007;148:3908–13.

    Article  CAS  PubMed  Google Scholar 

  77. Janghorbani M, van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007;166:495–505.

    Article  PubMed  Google Scholar 

  78. Yamamoto M, Yamaguchi TY, Yamauchi M, Kaji H, Sugimoto T. Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res. 2009;24:702–9.

    Article  CAS  PubMed  Google Scholar 

  79. Saito M, Fujii K, Mori Y, Marumo K. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int. 2006;17:1514–23.

    Article  CAS  PubMed  Google Scholar 

  80. Saito M, Marumo K. Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int. 2010;21:195–214.

    Article  CAS  PubMed  Google Scholar 

  81. Willett TL, Sutty S, Gaspar A, Avery N, Grynpas M. In vitro non-enzymatic ribation reduces post-yield strain accommodation in cortical bone. Bone. 2013;52:611–22.

    Article  PubMed  Google Scholar 

  82. Gallant KMH, Gallant MA, Brown DM, Sato AY, Williams JN, Burr DB. Raloxifene prevents skeletal fragility in adult female Zucker Diabetic Sprague-Dawley rats. PLoS ONE. 2014;9:e108262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Gallant MA, Brown DM, Hammond M, Wallace JM, Du J, Deymier-Black A, Almer JD, Stock SR, Allen MR, Burr DB. Bone cell-independent benefits of raloxifene on the skeleton: a novel mechanism for improving bone material properties. Bone. 2014;61:191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bivi N, Hu H, Chavali B, Chalmers MJ, Reutter CT, Durst GL, Riley A, Sato M, Allen MR, Burr DB, Dodge JA. Structural features underlying raloxifene’s biophysical interaction with bone matrix. Bioorg Med Chem. 2016;24:759–67.

    Article  CAS  PubMed  Google Scholar 

  85. Allen MR, Territo PR, Lin C, Persohn S, Jiang L, Riley AA, McCarthy BP, Newman CL, Burr DB, Hutchins GD. In vivo UTE-MRI reveals positive effects on raloxifene on skeletal-bound water in skeletally mature beagle dogs. J Bone Miner Res. 2015;30:1441–4.

    Article  CAS  PubMed  Google Scholar 

  86. Bekker PJ, Holloway DL, Rasmussen AS, Murphy R, Martin SW, Leese PT, Holmes GB, Dunstan CR, DePaoli AM. A single-dose placebo-controlled study of AMG 162, a fully human mono-clonal antibody to RANKL, in postmenopausal women. J Bone Miner Res. 2004;19:1059–66.

    Article  CAS  PubMed  Google Scholar 

  87. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Miller PD, Yang YC, Grazette L, San Martin J, Gallagher JC. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96:972–80.

    Article  CAS  PubMed  Google Scholar 

  88. Eastell R, Christiansen C, Grauer A, Kutilek S, Libanati C, McClung MR, Reid IR, Resch H, Siris E, Uebelhart D, Wang A, Weryha G, Cummings SR. Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res. 2011;26:530–7.

    Article  CAS  PubMed  Google Scholar 

  89. Ominsky MS, Stouch B, Schroeder J, Pyrah I, Stolina M, Smith SY, Kostenuik PJ. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2011;49:162–73.

    Article  CAS  PubMed  Google Scholar 

  90. Kosteniuk PJ, Smith SY, Jolette J, Schroeder J, Pyrah I, Ominsky MS. Decreased bone remodeling and porosity are associated with improved bone strength in ovariectomized cynomolgus monkeys treated with denosumab, a fully human RANKL antibody. Bone. 2011;49:151–61.

    Article  CAS  Google Scholar 

  91. Miller PD. Denosumab anti-RANKL antibody. Curr Osteoporos Rep. 2009;7:18–22.

    Article  PubMed  Google Scholar 

  92. Miller PD, Wagman RB, Peacock M, Lewiecki EM, Bolognese MA, Weinstein RL, Ding B, San Martin J, McClung MR. Effect of denosumab on bone mineral density and biochemical markers of bone turnover: six-year results of a phase 2 clinical trial. J Clin Endocrinol Metab. 2011;96:394–402.

    Article  CAS  PubMed  Google Scholar 

  93. Papapoulos S, Lippuner K, Roux C, Lin CJF, Kendler DL, Lewiecki EM, Brandi ML, Czerwiński E, Franek E, Lakatos P, Mautalen C, Minisola S, Reginster JY, Jensen S, Daizadeh NS, Wang A, Gavin M, Livanati C, Wagman RB, Bone HG. The effect of 8 or 5 years of desnosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM Extension study. Osteoporos Int 2015;26:2773–2783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kearns AE, Khosla S, Kostenuik PJ. Receptor Activator of Nuclear Factor κB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29:155–92.

    Article  CAS  PubMed  Google Scholar 

  95. Mosekilde L, Søgaard CH, Danielsen CC, Tørring O, Nilsson MHL. The anabolic effects of human parathyroid hormone (hPTH) on rat vertebral body mass are also reflected in the quality of bone, assessed by biomechanical testing: a comparison study between hPTH-(1-34) and hPTH-(1-84). Endocrinology. 1991;129:421–8.

    Article  CAS  PubMed  Google Scholar 

  96. Hodsman AB, Hanley DA, Ettinger MO, Bolognese MA, Fox J, Metcalfe AJ, Lindsay R. Efficacy and safety of human parathyroid hormone-(1-84) in increasing bone mineral density in postmenopausal osteoporosis. J Clin Endocrinol Metab. 2003;88:5212–20.

    Article  CAS  PubMed  Google Scholar 

  97. Eriksen EF, Brown JP. Commentary: concurrent administration of PTH and antiresorptives: additive effects or DXA cosmetics. Bone. 2016;86:139–42.

    Article  CAS  PubMed  Google Scholar 

  98. Paschalis EP, Burr DB, Mendelsohn R, Hock JM, Boskey AL. Bone mineral and collagen quality in humeri of ovariectomized cynomolgus monkeys given rhPTH (1-34) for 18 months. J Bone Miner Res. 2003;18:769–75.

    Article  CAS  PubMed  Google Scholar 

  99. Delmas PD, Vergnaud P, Arlot ME, Pastoureau P, Meunier PJ, Nilssen MH. The anabolic effect of human PTH (1-34) on bone formation is blunted when bone resorption is inhibited by the bisphosphonate tiludronate—is activated resorption a prerequisite for the in vivo effect of PTH on formation in a remodeling system? Bone. 1995;16:603–10.

    Article  CAS  PubMed  Google Scholar 

  100. Pazianas M. Anabolic effects of PTH and the ‘anabolic window’. Trends Endocrinol Metab. 2015;26:111–3.

    Article  CAS  PubMed  Google Scholar 

  101. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015;22:41–50.

    Article  CAS  PubMed  Google Scholar 

  102. Dempster DW, Zhou H, Recker RR, Brown JP, Bolognese MA, Recknor CP, Kendler DL, Lewiecki EM, Hanley DA, Rao DS, Miller PD, Woodson GC 3rd, Lindsay R, Binkley N, Wan X, Ruff VA, Janos B, Taylor KA. Skeletal histomorphometry in subjects on teriparatide or zoledronic acid therapy (SHOTZ) study: a randomized controlled trial. J Clin Endocrinol Metab. 2012;97:2799–808.

    Article  CAS  PubMed  Google Scholar 

  103. Wronski TJ, Yen C-F. Anabolic effects of parathyroid hormone on cortical bone in ovariectomized rats. Bone. 1994;15:51–8.

    Article  CAS  PubMed  Google Scholar 

  104. Baumann BD, Wronski TJ. Response of cortical bone to antiresorptive agents and parathyroid hormone in aged ovariectomized rats. Bone. 1995;16:247–53.

    Article  CAS  PubMed  Google Scholar 

  105. Hirano T, Burr DB, Turner CH, Sato M, Cain RL, Hock JM. Anabolic effects of human biosynthetic parathyroid hormone fragment (1-34), LY333334, on remodeling and mechanical properties of cortical bone in rabbits. J Bone Miner Res. 1999;14:536–45.

    Article  CAS  PubMed  Google Scholar 

  106. Hirano T, Burr DB, Cain RL, Hock JM. Changes in geometry and cortical porosity in adult, ovary-intact rabbits after 5 months treatment with LY333334 (hPTH 1-34). Calcif Tissue Int. 2000;66:456–60.

    Article  CAS  PubMed  Google Scholar 

  107. Mashiba T, Burr DB, Turner CH, Sato M, Cain RL, Hock JM. Effects of human parathyroid hormone (1-34), LY333334, on bone mass, remodeling, and mechanical properties of cortical bone during the first remodeling cycle in rabbits. Bone. 2001;28:538–47.

    Article  CAS  PubMed  Google Scholar 

  108. Burr DB, Hirano T, Turner CH, Hotchkiss C, Brommage R, Hock JM. Intermittently administered human parathyroid hormone (1-34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2001;16:157–65.

    Article  CAS  PubMed  Google Scholar 

  109. Zanchetti JR, Bogado CE, Ferretti JL, Wang O, Wilson MG, Sato M, Gaich GA, Dalsky GP, Myers SL. Effects of teriparatide (recombinant human parathyroid hormone (1-34)] on cortical bone in postmenopausal women with osteoporosis. N Engl J Med. 2003;349:1215–26.

    Google Scholar 

  110. Uusi-Rasi K, Semanick LM, Zanchetti JR, Bogado CE, Eriksen EF, Sato M, Beck TJ. Effects of teriparatide [rhPTH (1-34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone. 2005;36:948–58.

    Article  CAS  PubMed  Google Scholar 

  111. Lindsay R, Zhou H, Cosman F, Nieves J, Dempster DW, Hodsman AB. Effects of a one-month treatment with PTH (1-34) on bone formation on cancellous, endocortical, and periosteal surfaces of the human ilium. J Bone Miner Res. 2007;22:495–502.

    Article  CAS  PubMed  Google Scholar 

  112. Recker RR, Bare SP, Smith SY, Varela A, Miller MA, Morris SA, Fox J. Cancellous and cortical bone architecture and turnover at the iliac crest of postmenopausal osteoporotic women treated with parathyroid hormone 1-84. Bone. 2009;44:113–9.

    Article  CAS  PubMed  Google Scholar 

  113. Sato M, Westmore M, Ma YL, Schmidt A, Zeng QQ, Glass EV, Vahle J, Brommage R, Jerome CP, Turner CH. Teriparatide [PTH(1-34)] strengthens the proximal femur of ovariectomized nonhuman primates despite increasing porosity. J Bone Miner Res. 2004;19:623–9.

    Article  CAS  PubMed  Google Scholar 

  114. Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R. Treatment with human parathyroid hormone (1-34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 2001;28:150–9.

    Article  CAS  PubMed  Google Scholar 

  115. Turner CH, Burr DB, Hock JM, Brommage R, Sato M. The effects of PTH (1-34) on bone structure and strength in ovariectomized monkeys. Adv Exp Med Biol. 2001;496:165–79.

    Article  CAS  PubMed  Google Scholar 

  116. Meng XW, Liang XG, Birchman R, Wu DD, Dempster DW, Lindsay R, Shen V. Temporal expression of the anabolic action of PTH in cancellous bone of ovariectomized rats. J Bone Miner Res. 1996;11:421–9.

    Article  CAS  PubMed  Google Scholar 

  117. Jerome CP, Johnson CS, Vafai HT, Kaplan KC, Bailey J, Capwell B, Fraser F, Hansen L, Ramsay H, Shadoan M, Lees CJ, Thomsen JS, Mosekilde L. Effect of treatment for 6 months with human parathyroid hormone (1-34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 1999;25:301–9.

    Article  CAS  PubMed  Google Scholar 

  118. Sato M, Ma YL, Hock JM, Westmore MS, Vahle J, Villanueva A, Turner CH. Skeletal efficacy with parathyroid hormone in rats was not entirely beneficial with long-term treatment. J Pharmcol Exp Ther. 2002;302:304–13.

    Article  CAS  Google Scholar 

  119. Misof BM, Roschger P, Cosman F, Kurland ES, Tesch W, Messmer P, Dempster DW, Nieves J, Shane E, Fratzl P, Klaushofer K, Bilezikian J, Lindsay R. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;88:1150–6.

    Article  CAS  PubMed  Google Scholar 

  120. Katsamenis OL, Jenkins T, Thurner PJ. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal level. Bone. 2015;76:158–68.

    Article  PubMed  Google Scholar 

  121. Wang ZX, Lloyd AA, Burket JC, Gourion-Arsiquaud S, Donnelly E. Altered distributions of bone tissue mineral and collagen properties in women with fragility fractures. Bone. 2016;84:237–44.

    Article  CAS  PubMed  Google Scholar 

  122. Martin RB, Burr DB, Sharkey NA, Fyhrie DP. Skeletal tissue mechanics. 2nd ed. New York: Springer; 2016.

  123. Stewart AF, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM. Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1-34, parathyroid hormone-related protein 1-36, and SDZ-parathyroid hormone 893. J Bone Miner Res. 2000;15:1517–25.

    Article  CAS  PubMed  Google Scholar 

  124. Ejersted C, Andreassen TT, Hauge E-M, Melsen F, Oxlund H. Parathyroid hormone (1-34) increases vertebral bone mass, compressive strength, and quality in old rats. Bone. 1995;17:507–11.

    Article  CAS  PubMed  Google Scholar 

  125. Sato M, Zeng GQ, Turner CH. Biosynthetic human parathyroid hormone (1-34) effects on bone quality in aged ovariectomized rats. Endocrinology. 1997;138:4330–7.

    CAS  PubMed  Google Scholar 

  126. Sato M, Vahle J, Schmidt A, Westmore M, Smith S, Rowley E, Ma LY. Abnormal bone architecture and biomechanical properties with near-lifetime treatment of rats with PTH. Endocrinology. 2002;143:3230–42.

    Article  CAS  PubMed  Google Scholar 

  127. Pennypacker BL, Duong LT, Cusick TE, Masarachia PJ, Gentile MA, Gauthier J-Y, Black WC, Scott BB, Samadfam R, Smith SY, Kimmel DB. Cathepsin K inhibitors prevent bone loss in estrogen-deficient rabbits. J Bone Miner Res. 2011;26:252–62.

    Article  CAS  PubMed  Google Scholar 

  128. Jerome C, Miissbach M, Gamse R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int. 2011;22:3001–12.

    Article  CAS  PubMed  Google Scholar 

  129. Cusick T, Chen CM, Pennypacker BL, Pickarski M, Kimmel DB, Scott BB, Duong LT. Odanacatib treatment increases hip bone mass and cortical thickness by preserving endocortical bone formation and stimulating periosteal bone formation in the ovariectomized adult rhesus monkey. J Bone Miner Res. 2012;27:524–37.

    Article  CAS  PubMed  Google Scholar 

  130. Duong LT, Pickarski M, Cusick T, Chen CM, Zhuo Y, Scott K, Ssamadfam R, Smith SY, Pennypacker BL. Effects of long term treatment with high doses of odanacatib on bone mass, bone strength, and remodeling/modeling in newly ovariectomized monkeys. Bone. 2016;88:113–24.

    Article  CAS  PubMed  Google Scholar 

  131. Ochi Y, Yamada H, Mori H, Kawada N, Kayasuga R, Nakanishi Y, Tanaka M, Imagawa A, Ohmoto K, Kawabata K. ONO-5334, a cathepsin K inhibitor, improves bone strength by preferentially increasing cortical bone mass in ovariectomized rats. J Bone Miner Metab. 2014;32:645–52.

    Article  CAS  PubMed  Google Scholar 

  132. Ochi Y, Yamada H, Mori H, Nakanishi Y, Nishikawa S, Kayasuga R, Kawada N, Kunishige A, Hashimoto Y, Tanaka M, Sugitani M, Kawabata K. Effects of eight-month treatment with ONO-5334, a cathepsin K inhibitor, on bone metabolism, strength and microstructure in ovariectomized cynomolgus monkeys. Bone. 2014;65:1–8.

    Article  CAS  PubMed  Google Scholar 

  133. Yamada H, Ochi Y, Mori H, Nishikawa S, Hashimoto Y, Nakanishi Y, Tanaka M, Bruce M, Deacon S, Kawabata K. Effects of 16-month treatment with the cathepsin K inhibitor ONO-5334 on bone markers, mineral density, strength and histomorphometry in ovariectomized cynomolgus monkeys. Bone. 2016;86:43–52.

    Article  CAS  PubMed  Google Scholar 

  134. Cheung AM, Majumdar S, Brizen K, Chapurlat R, Fuerst T, Engelke K, Dardzinski B, Cabal A, Berbruggen N, Ather S, Rosenberg E, dePapp AE. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimate bone strength. J Bone Miner Res. 2014;29:1786–94.

    Article  CAS  PubMed  Google Scholar 

  135. Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB. Duong LeT. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2012;27:509–23.

    Article  CAS  PubMed  Google Scholar 

  136. Papapoulos S, McClung M, Langdahl B, Saag KG, ADami S, Bone H et al. (2014) Safety and tolerability of odanacatib therapy in postmenopausal women with osteoporosis: Results from the Phase III long-term odanacatib frcture trial (LOFT). ASMBR, Houston, Abstract 1148.

  137. Pennypacker BL, Chen CM, Zheng H, Shih M-S, Belfast M, Samadfam R. Duong LeT. Inhibition of cathepsin K increases modeling-based bone formation, improves cortical dimension and strength in adult ovariectomized monkeys. J Bone Miner Res. 2014;29:1847–58.

    Article  CAS  PubMed  Google Scholar 

  138. Sinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kosloff KM. Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int. 2014;25:2097–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li X, Niu Q-T, Warmington KS, Asuncion FJ, Dwyer D, Grisanti M, Han C-Y, Stolina M, Eschenberg MJ, Kostenuik PJ, Simonet WS, Ominsky MS, Ke HZ. Progressive increases in bone mass and bone strength in an ovariectomized rat model of osteoporosis after 26 weeks of treatment with a sclerostin antibody. Endocrinology. 2014;155:4785–97.

    Article  PubMed  CAS  Google Scholar 

  140. Ke HZ, Richards WG, Li X, Ominksy MS. Sclerostin and dickkopf-1 as therapeutic targets in bone diseases. Endocr Rev. 2012;33:747–83.

    Article  CAS  PubMed  Google Scholar 

  141. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu Q-T, Ke HZ, Kosteniuk PJ, Simonet WS, Lacey DL, Paszty C. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res. 2009;24:578–88.

    Article  CAS  PubMed  Google Scholar 

  142. Li X, Warmington KS, Niu Q-T, Asuncion FJ, Barrero M, Grisanti M, Dwyer D, Stouch B, Thway TM, Stolina M, Ominsky MS, Kosteniuk PJ, Simonet WS, Paszty C, Ke HZ. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25:2371–80.

    CAS  Google Scholar 

  143. Li X, Warmington KS, Niu Q-T, Asuncion FJ, Marrero M, Xia X, Grisanti M, Lee E, Wronski T, Ominsky MS, Simonet WS, Paszty C (2010) Sclerostin inhibition by monoclonal antibody reversed trabecular and cortical bone loss in orchiectomized rats with established osteopenia. ASBMR Abstract 1261.

  144. Ominsky MS, Li C, Li X, Tan HL, Lee E, Barrero M, Asuncion FJ, Dwyer D, Han C-Y, Vlasseros F, Samadfam R, Jolette J, Smith SY, Stolina M, Lacey DL, Simonet WS, Pasztyt C, Li G, Ke HZ. Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res. 2011;26:1012–21.

    Article  CAS  PubMed  Google Scholar 

  145. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25:948–59.

    Article  CAS  PubMed  Google Scholar 

  146. Li X, Ominsky MS, Warmington KS, Niu Q-T, Asuncion FJ, Barrero M, Dwyer D, Grisanti M, Stolina M, Kostenuik PJ, Simonet Paszty C, Ke HZ. Increased bone formation and bone mass induced by sclerostin antibody is not affected by pretreatment or cotreatment with alendronate in osteopenic ovariectomized rats. Endocrinology. 2011;152:3312–22.

    Article  CAS  PubMed  Google Scholar 

  147. Sinder BP, Eddy MM, Ominsky MS, Caird MS, Marini JC, Kozloff KM. Sclerostin antibody improves skeletal parameters in a Brtl/+ mouse model of osteogenesis imperfecta. J Bone Miner Res. 2013;28:73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sinder BP, Lloyd WR, Salemi JD, Marini JC, Caird MS, Morris MD, Kozloff KM. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age. Bone. 2016;84:222–9.

    Article  CAS  PubMed  Google Scholar 

  149. Ross RD, Edwards LH, Acerbo AS, Ominsky MS, Virdi AS, Sena K, Miller LM, Sumner DR. Bone matrix quality after sclerostin antibody treatment. J Bone Miner Res. 2014;29:1597–607.

    Article  CAS  PubMed  Google Scholar 

  150. Ominsky MS, Samadfam R, Jolette J, Smith SY, Ke HZ, Boyce RW (2012) Long-term sclerostin antibody treatment in cynomolgus monkeys: Sustained improvements in vertebral microarchitecture and bone strength following a temporal increase in cancellous bone formation. ASMBR Abstract FR0406.

  151. Ominsky MS, Varela A, Smith SY, Jolette J, Lesage E, Buntich S, Boyce RW (2015) Romosozumab (sclerostin antibody) improves bone mass and bone strength in ovariectomized cynomolgus monkeys after 12 months of treatment. ASBMR; Pub ID 056026.

Download references

Acknowledgments

The author wishes to thank Dr. Matthew Allen for reading through a draft of the manuscript and making suggestions to improve clarity and accuracy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Burr.

Ethics declarations

Conflict of interest

The author serves as an expert witness for plaintiffs in litigation surrounding the occurrence of atypical femoral fractures; he has received research funding in the past 3 years from Eli Lilly and Amgen, has served as a consultant for Agnovos and Abt Associates, and is in the speaker bureau for the Japan Implant Practice Society. He receives royalties from Elsevier and Springer, and serves on the Board of Directors of FASEB.

Animal and Human Studies

This article does not contain any original studies with human or animal subjects performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burr, D.B. Bone Biomechanics and Bone Quality: Effects of Pharmaceutical Agents Used to Treat Osteoporosis. Clinic Rev Bone Miner Metab 14, 197–217 (2016). https://doi.org/10.1007/s12018-016-9217-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-016-9217-1

Keywords

Navigation