Skip to main content

Advertisement

Log in

Spinal Disorders as a Cause of Locomotive Syndrome: The Influence on Functional Mobility and Activities of Daily Living

  • Locomotive Syndrome
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Spinal disorders are one of the most common causes of locomotive syndrome because the spine plays an important role as the locomotive organs which provide the three functions: body frames, junction sites, and motors/regulators. Previous reports have shown that low back pain or leg pain and/or intermittent claudication due to spinal stenosis in lumbar spine disorders, gait abnormality due to degenerative cervical myelopathy in cervical spine disorders, and trunk imbalance due to adult spinal deformity have negative effects on walking speed, walking distance, and movement ability, thereby increasing the risk of falling. Patients for whom conservative managements have failed are considered for surgical treatment. However, degenerative changes on radiographical examinations are sometimes observed in asymptomatic elderly people, which suggests that degenerative changes are not always the cause of pain or disability in the elderly, particularly non-specific low back pain and neck pain. Therefore, the evidence is insufficient regarding how effective surgical treatments can be for improving walking and movement ability and social participation of elderly patients. In addition to better evidence for the efficacy of various treatments, more attention concerning checkups and prevention of locomotive syndrome are urgently needed in aging populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabinet Office. Annual Report on the Aging Society: 2015. http://www8.cao.go.jp/kourei/whitepaper/w-2015/html/zenbun/index.html. Accessed 12 June 2015.

  2. Nakamura K. A “super-aged” society and the “locomotive syndrome”. J Orthop Sci. 2008;13:1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nakamura K. Locomotive syndrome: disability-free life expectancy and locomotive organ health in a “super-aged” society. J Orthop Sci. 2009;14:1–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakamura K. The concept and treatment of locomotive syndrome: its acceptance and spread in Japan. J Orthop Sci. 2011;16:489–91.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kimura A, Seichi A, Konno S, Yabuki S, Hayashi K. Prevalence of locomotive syndrome in Japan: a nationwide, cross-sectional Internet survey. J Orthop Sci. 2014;19:792–7.

    Article  PubMed  Google Scholar 

  6. Talaga S, Magiera Z, Kowalczyk B, Lubińska-Żądło B. Problems of patients with degenerative disease of the spine and their quality of life. Ortop Traumatol Rehabil. 2014;16:617–27.

    Article  PubMed  Google Scholar 

  7. Ministry of Health, Labour and Welfare. http://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa13/index.html. Accessed 15 July 2014.

  8. Hoy D, Brooks P, Blyth F, Buchbinder R. The epidemiology of low back pain. Best Pract Res Clin Rheumatol. 2010;24:769–81.

    Article  CAS  PubMed  Google Scholar 

  9. Hoy D, Bain C, Williams G, March L, Brooks P, Blyth F, Woolf A, Vos T, Buchbinder R. A systematic review of the global prevalence of low back pain. Arthritis Rheumatol. 2012;64:2028–37.

    Article  Google Scholar 

  10. Dionne CE, Dunn KM, Croft PR. Does back pain prevalence really decrease with increasing age? A systematic review. Age Ageing. 2006;35:229–34.

    Article  PubMed  Google Scholar 

  11. Muraki S, Oka H, Akune T, Mabuchi A, En-Yo Y, Yoshida M, Saika A, Suzuki T, Yoshida H, Ishibashi H, Yamamoto S, Nakamura K, Kawaguchi H, Yoshimura N. Prevalence of radiographic lumbar spondylosis and its association with low back pain in elderly subjects of population-based cohorts: the ROAD study. Ann Rheum Dis. 2009;68:1401–6.

    Article  CAS  PubMed  Google Scholar 

  12. Ghanei I, Rosengren BE, Hasserius R, Nilsson JÅ, Mellström D, Ohlsson C, Ljunggren Ö, Karlsson MK. The prevalence and severity of low back pain and associated symptoms in 3009 old men. Eur Spine J. 2014;23:814–20.

    Article  PubMed  Google Scholar 

  13. Kendrick D, Fielding K, Bentley E, Kerslake R, Miller P, Pringle M. Radiography of the lumbar spine in primary care patients with low back pain: randomised controlled trial. BMJ. 2001;322:400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kendrick D, Fielding K, Bentley E, Miller P, Kerslake R, Pringle M. The role of radiography in primary care patients with low back pain of at least 6 weeks duration: a randomised (unblinded) controlled trial. Health Technol Assess. 2001;5:1–69.

    Article  CAS  PubMed  Google Scholar 

  15. van Tulder MW, Assendelft WJ, Koes BW, Bouter LM. Spinal radiographic findings and nonspecific low back pain. A systematic review of observational studies. Spine (Phila, PA 1976). 1997;22:427–34.

    Article  Google Scholar 

  16. Endean A, Palmer KT, Coggon D. Potential of magnetic resonance imaging findings to refine case definition for mechanical low back pain in epidemiological studies: a systematic review. Spine (Phila, PA 1976). 2011;36:160–9.

    Article  Google Scholar 

  17. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am. 1990;72:403–8.

    CAS  PubMed  Google Scholar 

  18. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med. 1994;331:69–73.

    Article  CAS  PubMed  Google Scholar 

  19. Suri P, Boyko EJ, Goldberg J, Forsberg CW, Jarvik JG. Longitudinal associations between incident lumbar spine MRI findings and chronic low back pain or radicular symptoms: retrospective analysis of data from the longitudinal assessment of imaging and disability of the back (LAIDBACK). BMC Musculoskelet Disord. 2014;15:152.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Carragee EJ, Paragioudakis SJ, Khurana S. Lumbar high-intensity zone and discography in subjects without low back problems. Spine (Phila, PA 1976). 2000;25:2987–92.

    Article  CAS  Google Scholar 

  21. Carragee EJ, Hannibal M. Diagnostic evaluation of low back pain. Orthop Clin North Am. 2004;35:7–16.

    Article  PubMed  Google Scholar 

  22. Raastad J, Reiman M, Coeytaux R, Ledbetter L, Goode AP. The association between lumbar spine radiographic features and low back pain: a systematic review and meta-analysis. Semin Arthritis Rheum. 2015;44:571–85.

    Article  PubMed  Google Scholar 

  23. Rubinstein SM, van Tulder M. A best-evidence review of diagnostic procedures for neck and low-back pain. Best Pract Res Clin Rheumatol. 2008;22:471–82.

    Article  PubMed  Google Scholar 

  24. Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001;344:363–70.

    Article  CAS  PubMed  Google Scholar 

  25. Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Minamide A, Oka H, Ishimoto Y, Nagata K, Kagotani R, Takiguchi N, Akune T, Kawaguchi H, Nakamura K, Yoshida M. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthritis Cartilage. 2014;22:104–10.

    Article  CAS  PubMed  Google Scholar 

  26. Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Oka H, Minamide A, Nakagawa H, Ishimoto Y, Nagata K, Kagotani R, Tanaka S, Kawaguchi H, Nakamura K, Akune T, Yoshida M. The association of combination of disc degeneration, end plate signal change, and Schmorl node with low back pain in a large population study: the Wakayama Spine Study. Spine J. 2015;15:622–8.

    Article  PubMed  Google Scholar 

  27. Hirano K, Imagama S, Hasegawa Y, Ito Z, Muramoto A, Ishiguro N. Impact of low back pain, knee pain, and timed up-and-go test on quality of life in community-living people. J Orthop Sci. 2014;19:164–71.

    Article  PubMed  Google Scholar 

  28. Sions JM, Hicks GE. Fear-avoidance beliefs are associated with disability in older American adults with low back pain. Phys Ther. 2011;91:525–34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vincent HK, Seay AN, Montero C, Conrad BP, Hurley RW, Vincent KR. Kinesiophobia and fear-avoidance beliefs in overweight older adults with chronic low-back pain: relationship to walking endurance—part II. Am J Phys Med Rehabil. 2013;92:439–45.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vincent HK, Seay AN, Montero C, Conrad BP, Hurley RW, Vincent KR. Functional pain severity and mobility in overweight older men and women with chronic low-back pain—part I. Am J Phys Med Rehabil. 2013;92:430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ono R, Yamazaki S, Takegami M, Otani K, Sekiguchi M, Onishi Y, Hayashino Y, Kikuchi S, Konno S, Fukuhara S. Gender difference in association between low back pain and metabolic syndrome: locomotive syndrome and health outcome in Aizu cohort study (LOHAS). Spine (Phila, PA 1976). 2012;37:1130–7.

    Article  Google Scholar 

  32. Peul WC, Bredenoord AL, Jacobs WC. Avoid surgery as first line treatment for non-specific low back pain. BMJ. 2014;349:g4214.

    Article  PubMed  Google Scholar 

  33. Kamper SJ, Apeldoorn AT, Chiarotto A, Smeets RJ, Ostelo RW, Guzman J, van Tulder MW. Multidisciplinary biopsychosocial rehabilitation for chronic low back pain. Cochrane Database Syst Rev. 2014;9:CD000963.

    PubMed  Google Scholar 

  34. Monticone M, Ambrosini E, Rocca B, Magni S, Brivio F, Ferrante S. A multidisciplinary rehabilitation programme improves disability, kinesiophobia and walking ability in subjects with chronic low back pain: results of a randomised controlled pilot study. Eur Spine J. 2014;23:2105–13.

    Article  PubMed  Google Scholar 

  35. Searle A, Spink M, Ho A, Chuter V. Exercise interventions for the treatment of chronic low back pain: a systematic review and meta-analysis of randomised controlled trials. Clin Rehabil. 2015;29:1155–67.

    Article  PubMed  Google Scholar 

  36. Richmond H, Hall AM, Copsey B, Hansen Z, Williamson E, Hoxey-Thomas N, Cooper Z, Lamb SE. The effectiveness of cognitive behavioural treatment for non-specific low back pain: a systematic review and meta-analysis. PLoS One. 2015;10:e0134192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kuss K, Becker A, Quint S, Leonhardt C. Activating therapy modalities in older individuals with chronic non-specific low back pain: a systematic review. Physiotherapy. 2015;101:310–8.

    Article  CAS  PubMed  Google Scholar 

  38. Schild von Spannenberg S, Jones GT, Macfarlane GJ. The evidence base for managing older persons with low back pain. Br J Pain. 2012;6:166–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishimoto Y, Yoshimura N, Muraki S, Yamada H, Nagata K, Hashizume H, Takiguchi N, Minamide A, Oka H, Kawaguchi H, Nakamura K, Akune T, Yoshida M. Associations between radiographic lumbar spinal stenosis and clinical symptoms in the general population: the Wakayama Spine Study. Osteoarthritis Cartilage. 2013;21:783–8.

    Article  CAS  PubMed  Google Scholar 

  40. Ishimoto Y, Yoshimura N, Muraki S, Yamada H, Nagata K, Hashizume H, Takiguchi N, Minamide A, Oka H, Kawaguchi H, Nakamura K, Akune T, Yoshida M. Prevalence of symptomatic lumbar spinal stenosis and its association with physical performance in a population-based cohort in Japan: the Wakayama Spine Study. Osteoarthritis Cartilage. 2012;20:1103–8.

    Article  CAS  PubMed  Google Scholar 

  41. Yabuki S, Fukumori N, Takegami M, Onishi Y, Otani K, Sekiguchi M, Wakita T, Kikuchi S, Fukuhara S, Konno S. Prevalence of lumbar spinal stenosis, using the diagnostic support tool, and correlated factors in Japan: a population-based study. J Orthop Sci. 2013;18:893–900.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Waldrop R, Cheng J, Devin C, McGirt M, Fehlings M, Berven S. The burden of spinal disorders in the elderly. Neurosurgery. 2015;77(Suppl 4):S46–50.

    Article  PubMed  Google Scholar 

  43. Sigmundsson FG, Kang XP, Jönsson B, Strömqvist B. Correlation between disability and MRI findings in lumbar spinal stenosis: a prospective study of 109 patients operated on by decompression. Acta Orthop. 2011;82:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim HJ, Chun HJ, Han CD, Moon SH, Kang KT, Kim HS, Park JO, Moon ES, Kim BR, Sohn JS, Shin SY, Jang JW, Lee KI, Lee HM. The risk assessment of a fall in patients with lumbar spinal stenosis. Spine (Phila, PA 1976). 2011;36:E588–92.

    Article  Google Scholar 

  45. Winter CC, Brandes M, Müller C, Schubert T, Ringling M, Hillmann A, Rosenbaum D, Schulte TL. Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskelet Disord. 2010;11:233.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tomkins-Lane CC, Holz SC, Yamakawa KS, Phalke VV, Quint DJ, Miner J, Haig AJ. Predictors of walking performance and walking capacity in people with lumbar spinal stenosis, low back pain, and asymptomatic controls. Arch Phys Med Rehabil. 2012;93:647–53.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kongsted A, Kent P, Albert H, Jensen TS, Manniche C. Patients with low back pain differ from those who also have leg pain or signs of nerve root involvement—a cross-sectional study. BMC Musculoskelet Disord. 2012;13:236.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tong HC, Haig AJ, Geisser ME, Yamakawa KS, Miner JA. Comparing pain severity and functional status of older adults without spinal symptoms, with lumbar spinal stenosis, and with axial low back pain. Gerontology. 2007;53:111–5.

    Article  PubMed  Google Scholar 

  49. Amundsen T, Weber H, Nordal HJ, Magnaes B, Abdelnoor M, Lilleâs F. Lumbar spinal stenosis: conservative or surgical management? A prospective 10-year study. Spine (Phila, PA 1976). 2000;25:1424–35.

    Article  CAS  Google Scholar 

  50. Johnsson KE, Udén A, Rosén I. The effect of decompression on the natural course of spinal stenosis. A comparison of surgically treated and untreated patients. Spine (Phila, PA 1976). 1991;16:615–9.

    Article  CAS  Google Scholar 

  51. Miyamoto H, Sumi M, Uno K, Tadokoro K, Mizuno K. Clinical outcome of nonoperative treatment for lumbar spinal stenosis, and predictive factors relating to prognosis, in a 5-year minimum follow-up. J Spinal Disord Tech. 2008;21:563–8.

    Article  PubMed  Google Scholar 

  52. Haig AJ, Tong HC, Yamakawa KS, Parres C, Quint DJ, Chiodo A, Miner JA, Phalke VC, Hoff JT, Geisser ME. Predictors of pain and function in persons with spinal stenosis, low back pain, and no back pain. Spine (Phila, PA 1976). 2006;31:2950–7.

    Article  Google Scholar 

  53. Ammendolia C, Stuber K, de Bruin LK, Furlan AD, Kennedy CA, Rampersaud YR, Steenstra IA, Pennick V. Nonoperative treatment of lumbar spinal stenosis with neurogenic claudication: a systematic review. Spine (Phila, PA 1976). 2012;37:E609–16.

    Article  Google Scholar 

  54. Shamji MF, Mroz T, Hsu W, Chutkan N. Management of degenerative lumbar spinal stenosis in the elderly. Neurosurgery. 2015;77(Suppl 4):S68–74.

    Article  PubMed  Google Scholar 

  55. Shabat S, Arinzon Z, Folman Y, Leitner J, David R, Pevzner E, Gepstein R, Pekarsky I, Shuval I. Long-term outcome of decompressive surgery for lumbar spinal stenosis in octogenarians. Eur Spine J. 2008;17:193–8.

    Article  PubMed  Google Scholar 

  56. Ammendolia C, Stuber K, Tomkins-Lane C, Schneider M, Rampersaud YR, Furlan AD, Kennedy CA. What interventions improve walking ability in neurogenic claudication with lumbar spinal stenosis? A systematic review. Eur Spine J. 2014;23:1282–301.

    Article  PubMed  Google Scholar 

  57. March LM, Brnabic AJ, Skinner JC, Schwarz JM, Finnegan T, Druce J, Brooks PM. Musculoskeletal disability among elderly people in the community. Med J Aust. 1998;168:439–42.

    CAS  PubMed  Google Scholar 

  58. Palazzo C, Ravaud JF, Papelard A, Ravaud P, Poiraudeau S. The burden of musculoskeletal conditions. PLoS One. 2014;9:e90633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Palacios-Ceña D, Alonso-Blanco C, Hernández-Barrera V, Carrasco-Garrido P, Jiménez-García R, Fernández-de-las-Peñas C. Prevalence of neck and low back pain in community-dwelling adults in Spain: an updated population-based national study (2009/10–2011/12). Eur Spine J. 2015;24:482–92.

    Article  PubMed  Google Scholar 

  60. Gore DR, Sepic SB, Gardner GM. Roentgenographic findings of the cervical spine in asymptomatic people. J Bone Joint Surg Br. 1998;80:19–24.

    Article  Google Scholar 

  61. Nakashima H, Yukawa Y, Suda K, Yamagata M, Ueta T, Kato F. Abnormal findings on magnetic resonance images of the cervical spines in 1211 asymptomatic subjects. Spine (Phila, PA 1976). 2015;40:392–8.

    Article  Google Scholar 

  62. Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, Shiga H. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br. 1998;80:19–24.

    Article  CAS  PubMed  Google Scholar 

  63. Kumagai G, Ono A, Numasawa T, Wada K, Inoue R, Iwasaki H, Iwane K, Matsuzaka M, Takahashi I, Umeda T, Nakaji S, Ishibashi Y. Association between roentgenographic findings of the cervical spine and neck symptoms in a Japanese community population. J Orthop Sci. 2014;19:390–7.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Matsumoto M, Okada E, Ichihara D, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Takahata T. Modic changes in the cervical spine: prospective 10-year follow-up study in asymptomatic subjects. J Bone Joint Surg Br. 2012;94:678–83.

    Article  CAS  PubMed  Google Scholar 

  65. Sheng-yun L, Letu S, Jian C, Mamuti M, Jun-hui L, Zhi S, Chong-yan W, Shunwu F, Zhao F. Comparison of modic changes in the lumbar and cervical spine, in 3167 patients with and without spinal pain. PLoS One. 2014;9:e114993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Monticone M, Iovine R, de Sena G, Rovere G, Uliano D, Arioli G, Bonaiuti D, Brugnoni G, Ceravolo G, Cerri C, Dalla Toffola E, Fiore P, Foti C, Italian Society of Physical and Rehabilitation Medicine (SIMFER). The Italian Society of Physical and Rehabilitation Medicine (SIMFER) recommendations for neck pain. G Ital Med Lav Ergon. 2013;35:36–50.

    PubMed  Google Scholar 

  67. Nolet PS, Côté P, Kristman VL, Rezai M, Carroll LJ, Cassidy JD. Is neck pain associated with worse health-related quality of life 6 months later? A population-based cohort study. Spine J. 2015;15:675–84.

    Article  PubMed  Google Scholar 

  68. Rezai M, Côté P, Cassidy JD, Carroll L. The association between prevalent neck pain and health-related quality of life: a cross-sectional analysis. Eur Spine J. 2009;18:371–81.

    Article  PubMed  Google Scholar 

  69. Poole E, Treleaven J, Jull G. The influence of neck pain on balance and gait parameters in community-dwelling elders. Man Ther. 2008;13:317–24.

    Article  PubMed  Google Scholar 

  70. Uthaikhup S, Jull G, Sungkarat S, Treleaven J. The influence of neck pain on sensorimotor function in the elderly. Arch Gerontol Geriatr. 2012;55:667–72.

    Article  PubMed  Google Scholar 

  71. Cuesta-Vargas AI, González-Sánchez M. Changes in disability, physical/mental health states and quality of life during an 8-week multimodal physiotherapy programme in patients with chronic non-specific neck pain: a prospective cohort study. PLoS One. 2015;10:e0118395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila, PA 1976). 2015;40:E675–93.

    Article  Google Scholar 

  73. Chen IH, Liao KK, Shen WY. Measurement of cervical canal sagittal diameter in Chinese males with cervical spondylotic myelopathy. Zhonghua Yi Xue Za Zhi (Taipei). 1994;54:105–10.

    CAS  Google Scholar 

  74. Yue WM, Tan SB, Tan MH, Koh DC, Tan CT. The Torg-Pavlov ratio in cervical spondylotic myelopathy: a comparative study between patients with cervical spondylotic myelopathy and a nonspondylotic, nonmyelopathic population. Spine (Phila, PA 1976). 2001;26:1760–4.

    Article  CAS  Google Scholar 

  75. Taitz C. Anatomical observations of the developmental and spondylotic cervical spinal canal in South African blacks and whites. Clin Anat. 1996;9:395–400.

    Article  CAS  PubMed  Google Scholar 

  76. Hayashi H, Okada K, Hashimoto J, Tada K, Ueno R. Cervical spondylotic myelopathy in the aged patient. A radiographic evaluation of the aging changes in the cervical spine and etiologic factors of myelopathy. Spine (Phila, PA 1976). 1988;13:618–25.

    Article  CAS  Google Scholar 

  77. Karadimas SK, Erwin WM, Ely CG, Dettori JR, Fehlings MG. Pathophysiology and natural history of cervical spondylotic myelopathy. Spine (Phila, PA 1976). 2013;38:S21–36.

    Article  Google Scholar 

  78. New PW, Cripps RA, Bonne Lee B. Global maps of non-traumatic spinal cord injury epidemiology: towards a living data repository. Spinal Cord. 2014;52:97–109.

    Article  CAS  PubMed  Google Scholar 

  79. Nagata K, Yoshimura N, Hashizume H, Muraki S, Ishimoto Y, Yamada H, Takiguchi N, Nakagawa Y, Minamide A, Oka H, Kawaguchi H, Nakamura K, Akune T, Yoshida M. The prevalence of cervical myelopathy among subjects with narrow cervical spinal canal in a population-based magnetic resonance imaging study: the Wakayama Spine Study. Spine J. 2014;14:2811–7.

    Article  PubMed  Google Scholar 

  80. Takao T, Morishita Y, Okada S, Maeda T, Katoh F, Ueta T, Mori E, Yugue I, Kawano O, Shiba K. Clinical relationship between cervical spinal canal stenosis and traumatic cervical spinal cord injury without major fracture or dislocation. Eur Spine J. 2013;22:2228–31.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kato S, Ueda T, Shiba K. Epidemiology and prevention of cervical spinal cord injury without vertebral injury among Japanese elderly. Spine Spinal Cord. 2013;26:90–4 (in Japanese).

    Google Scholar 

  82. Nishimura H, Endo K, Suzuki H, Tanaka H, Shishido T, Yamamoto K. Gait analysis in cervical spondylotic myelopathy. Asian Spine J. 2015;9:321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Malone A, Meldrum D, Bolger C. Gait impairment in cervical spondylotic myelopathy: comparison with age- and gender-matched healthy controls. Eur Spine J. 2012;21:2456–66.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Malone A, Meldrum D, Gleeson J, Bolger C. Electromyographic characteristics of gait impairment in cervical spondylotic myelopathy. Eur Spine J. 2013;22:2538–44.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nagata K, Yoshimura N, Muraki S, Hashizume H, Ishimoto Y, Yamada H, Takiguchi N, Nakagawa Y, Oka H, Kawaguchi H, Nakamura K, Akune T, Yoshida M. Prevalence of cervical cord compression and its association with physical performance in a population-based cohort in Japan: the Wakayama Spine Study. Spine (Phila, PA 1976). 2012;37:1892–8.

    Article  Google Scholar 

  86. Tetreault L, Goldstein CL, Arnold P, Harrop J, Hilibrand A, Nouri A, Fehlings MG. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery. 2015;77(Suppl 4):S51–67.

    Article  PubMed  Google Scholar 

  87. Matz PG, Anderson PA, Holly LT, Groff MW, Heary RF, Kaiser MG, Mummaneni PV, Ryken TC, Choudhri TF, Vresilovic EJ, Resnick DK, Joint Section on Disorders of the Spine and Peripheral Nerves of the American Association of Neurological Surgeons and Congress of Neurological Surgeons. The natural history of cervical spondylotic myelopathy. J Neurosurg Spine. 2009;11:104–11.

    Article  PubMed  Google Scholar 

  88. Nakamura K, Kurokawa T, Hoshino Y, Saita K, Takeshita K, Kawaguchi H. Conservative treatment for cervical spondylotic myelopathy: achievement and sustainability of a level of “no disability”. J Spinal Disord. 1998;11:175–9.

    Article  CAS  PubMed  Google Scholar 

  89. Yoshimatsu H, Nagata K, Goto H, Sonoda K, Ando N, Imoto H, Mashima T, Takamiya Y. Conservative treatment for cervical spondylotic myelopathy. Prediction of treatment effects by multivariate analysis. Spine J. 2001;1:269–73.

    Article  CAS  PubMed  Google Scholar 

  90. Sumi M, Miyamoto H, Suzuki T, Kaneyama S, Kanatani T, Uno K. Prospective cohort study of mild cervical spondylotic myelopathy without surgical treatment. J Neurosurg Spine. 2012;16:8–14.

    Article  PubMed  Google Scholar 

  91. Oshima Y, Seichi A, Takeshita K, Chikuda H, Ono T, Baba S, Morii J, Oka H, Kawaguchi H, Nakamura K, Tanaka S. Natural course and prognostic factors in patients with mild cervical spondylotic myelopathy with increased signal intensity on T2-weighted magnetic resonance imaging. Spine (Phila, PA 1976). 2012;37:1909–13.

    Article  Google Scholar 

  92. Singh A, Crockard HA. Quantitative assessment of cervical spondylotic myelopathy by a simple walking test. Lancet. 1999;354:370–3.

    Article  CAS  PubMed  Google Scholar 

  93. Singh A, Choi D, Crockard A. Use of walking data in assessing operative results for cervical spondylotic myelopathy: long-term follow-up and comparison with controls. Spine (Phila, PA 1976). 2009;34:1296–300.

    Article  Google Scholar 

  94. Moorthy RK, Bhattacharji S, Thayumanasamy G, Rajshekhar V. Quantitative changes in gait parameters after central corpectomy for cervical spondylotic myelopathy. J Neurosurg Spine. 2005;2:418–24.

    Article  PubMed  Google Scholar 

  95. Yoshida G, Kanemura T, Ishikawa Y, Matsumoto A, Ito Z, Tauchi R, Muramoto A, Matsuyama Y, Ishiguro N. The effects of surgery on locomotion in elderly patients with cervical spondylotic myelopathy. Eur Spine J. 2013;22:2545–51.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Karpova A, Arun R, Kalsi-Ryan S, Massicotte EM, Kopjar B, Fehlings MG. Do quantitative magnetic resonance imaging parameters correlate with the clinical presentation and functional outcomes after surgery in cervical spondylotic myelopathy? A prospective multicenter study. Spine (Phila, PA 1976). 2014;39:1488–97.

    Article  Google Scholar 

  97. Kadaňka Z, Bednařík J, Novotný O, Urbánek I, Dušek L. Cervical spondylotic myelopathy: conservative versus surgical treatment after 10 years. Eur Spine J. 2011;20:1533–8.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ailon T, Smith JS, Shaffrey CI, Lenke LG, Brodke D, Harrop JS, Fehlings M, Ames CP. Degenerative spinal deformity. Neurosurgery. 2015;77(Suppl 4):S75–91.

    Article  PubMed  Google Scholar 

  99. Schwab F, Lafage V, Patel A, Farcy JP. Sagittal plane considerations and the pelvis in the adult patient. Spine (Phila, PA 1976). 2009;34:1828–33.

    Article  Google Scholar 

  100. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V. Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine (Phila, PA 1976). 2010;35:2224–31.

    Article  Google Scholar 

  101. Schwab FJ, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS, Boachie-Adjei O, Burton DC, Akbarnia BA, Mundis GM, Ames CP, Kebaish K, Hart RA, Farcy JP, Lafage V, International Spine Study Group (ISSG). Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine (Phila, PA 1976). 2013;38:E803–12.

    Article  Google Scholar 

  102. Kebaish KM, Neubauer PR, Voros GD, Khoshnevisan MA, Skolasky RL. Scoliosis in adults aged forty years and older: prevalence and relationship to age, race, and gender. Spine (Phila, PA 1976). 2011;36:731–6.

    Article  Google Scholar 

  103. Schwab F, Dubey A, Gamez L, El Fegoun AB, Hwang K, Pagala M, Farcy JP. Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila, PA 1976). 2005;30:1082–5.

    Article  Google Scholar 

  104. Kado DM, Prenovost K, Crandall C. Narrative review: hyperkyphosis in older persons. Ann Intern Med. 2007;147:330–8.

    Article  PubMed  Google Scholar 

  105. Dubousset J. Three-dimensional analysis of the scoliotic deformity. In: Weinstein S, editor. The pediatric spine: principle and practice. New York, NY: Raven Press; 1994.

    Google Scholar 

  106. Garbossa D, Pejrona M, Damilano M, Sansone V, Ducati A, Berjano P. Pelvic parameters and global spine balance for spine degenerative disease: the importance of containing for the well being of content. Eur Spine J. 2014;23(Suppl 6):616–27.

    Article  PubMed  Google Scholar 

  107. Hirano K, Imagama S, Hasegawa Y, Wakao N, Muramoto A, Ishiguro N. Impact of spinal imbalance and back muscle strength on locomotive syndrome in community-living elderly people. J Orthop Sci. 2012;17:532–7.

    Article  PubMed  Google Scholar 

  108. Takahashi T, Ishida K, Hirose D, Nagano Y, Okumiya K, Nishinaga M, Matsubayashi K, Doi Y, Tani T, Yamamoto H. Trunk deformity is associated with a reduction in outdoor activities of daily living and life satisfaction in community-dwelling older people. Osteoporos Int. 2005;16:273–9.

    Article  PubMed  Google Scholar 

  109. Miyazaki J, Murata S, Horie J, Uematsu A, Hortobágyi T, Suzuki S. Lumbar lordosis angle (LLA) and leg strength predict walking ability in elderly males. Arch Gerontol Geriatr. 2013;56:141–7.

    Article  PubMed  Google Scholar 

  110. Imagama S, Ito Z, Wakao N, Seki T, Hirano K, Muramoto A, Sakai Y, Matsuyama Y, Hamajima N, Ishiguro N, Hasegawa Y. Influence of spinal sagittal alignment, body balance, muscle strength, and physical ability on falling of middle-aged and elderly males. Eur Spine J. 2013;22:1346–53.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cho KJ, Suk SI, Park SR, Kim JH, Kim SS, Choi WK, Lee KY, Lee SR. Complications in posterior fusion and instrumentation for degenerative lumbar scoliosis. Spine (Phila, PA 1976). 2007;32:2232–7.

    Article  Google Scholar 

  112. Smith JS, Shaffrey CI, Glassman SD, Berven SH, Schwab FJ, Hamill CL, Horton WC, Ondra SL, Sansur CA, Bridwell KH, Spinal Deformity Study Group. Risk-benefit assessment of surgery for adult scoliosis: an analysis based on patient age. Spine (Phila, PA 1976). 2011;36:817–24.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Yusuke Sakai (Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine) for help with review of related literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Makino.

Ethics declarations

Conflict of interest

Takahiro Makino, Takashi Kaito, and Kazuo Yonenobu declare that they have no conflict of interest.

Human/Animal Studies

This article does not include any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makino, T., Kaito, T. & Yonenobu, K. Spinal Disorders as a Cause of Locomotive Syndrome: The Influence on Functional Mobility and Activities of Daily Living. Clinic Rev Bone Miner Metab 14, 105–115 (2016). https://doi.org/10.1007/s12018-016-9213-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-016-9213-5

Keywords

Navigation