Skip to main content

Advertisement

Log in

Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration

  • Fracture healing and bone regeneration
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

The regeneration of bone in segmental defects has historically been a challenge in the orthopedic field. In particular, a lack of vascular supply often leads to nonunion and avascular necrosis. While the gold standard of clinical care remains the autograft, this approach is limited for large bone defects. Therefore, allograft bone is often required for defects of critical size though a high complication rate is directly attributable to their limited ability to revitalize, revascularize, and remodel resulting in necrosis and re-fracture. However, emerging insights into the mechanisms of bone healing continue to expand treatment options for bony defects to include synthetic materials, growth factors, and cells. The success of such strategies hinges on fabricating an environment that can mimic the body’s natural healing process, allowing for vascularization, bridging, and remodeling of bone. Biological, chemical, and engineering techniques have been explored to determine the appropriate materials and factors for potential use. This review will serve to highlight some of the historical and present uses of allografts and autografts and current strategies in bone tissue engineering for the treatment for bony defects, with particular emphasis on vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Donati D, Zolezzi C, Tomba P, Vigano A. Bone grafting: historical and conceptual review, starting with an old manuscript by Vittorio Putti. Acta Orthop. 2007;78(1):19–25.

    Article  PubMed  Google Scholar 

  2. de Boer HH. The history of bone grafts. Clin Orthop Relat Res. 1988;226:292–8.

    PubMed  Google Scholar 

  3. Ng VY. Risk of disease transmission with bone allograft. Orthopedics. 2012;35(8):679–81.

    Article  PubMed  Google Scholar 

  4. Kinaci A, Neuhaus V, Ring DC. Trends in bone graft use in the United States. Orthopedics. 2014;37(9):e783–8.

    Article  PubMed  Google Scholar 

  5. Campbell W. Transference of the fibula as an adjunct to a free bone graft. J Orthop Surg. 1919;1:625–31.

    Google Scholar 

  6. Stone JS. Partial loss of the tibia replaced by transfer of the fibula, with maintenance of both malleoli of the ankle. Ann Surg. 1907;46(4):628–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Flierl MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, et al. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res. 2013;8:33.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Shafiei Z, Bigham AS, Dehghani SN, Nezhad ST. Fresh cortical autograft versus fresh cortical allograft effects on experimental bone healing in rabbits: radiological, histopathological and biomechanical evaluation. Cell Tissue Bank. 2009;10(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Kienapfel H, Sumner DR, Turner TM, Urban RM, Galante JO. Efficacy of autograft and freeze-dried allograft to enhance fixation of porous coated implants in the presence of interface gaps. J Orthop Res. 1992;10(3):423–33.

    Article  CAS  PubMed  Google Scholar 

  10. Johnson AL, Stein LE. Morphologic comparison of healing patterns in ethylene oxide-sterilized cortical allografts and untreated cortical autografts in the dog. Am J Vet Res. 1988;49(1):101–5.

    CAS  PubMed  Google Scholar 

  11. Gross TP, Jinnah RH, Clarke HJ, Cox QG. The biology of bone grafting. Orthopedics. 1991;14(5):563–8.

    CAS  PubMed  Google Scholar 

  12. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop Relat Res. 1987;225:7–16.

    PubMed  Google Scholar 

  13. Friedlaender GE. Bone grafts. The basic science rationale for clinical applications. J Bone Joint Surg Am. 1987;69(5):786–90.

    CAS  PubMed  Google Scholar 

  14. Burchardt H. Biology of bone transplantation. Orthop Clin North Am. 1987;18(2):187–96.

    CAS  PubMed  Google Scholar 

  15. Blokhuis TJ, Lindner T. Allograft and bone morphogenetic proteins: an overview. Injury. 2008;39(Suppl 2):S33–6.

    Article  PubMed  Google Scholar 

  16. Giannoudis PV, Kanakaris NK, Dimitriou R, Gill I, Kolimarala V, Montgomery RJ. The synergistic effect of autograft and BMP-7 in the treatment of atrophic nonunions. Clin Orthop Relat Res. 2009;467(12):3239–48.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Breitbart EA, Meade S, Azad V, Yeh S, Al-Zube L, Lee YS, et al. Mesenchymal stem cells accelerate bone allograft incorporation in the presence of diabetes mellitus. J Orthop Res. 2010;28(7):942–9.

    PubMed  Google Scholar 

  18. Pernaa K, Koski I, Mattila K, Gullichsen E, Heikkila J, Aho A, et al. Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures—a prospective randomized 11-year follow-up. J Long Term Eff Med Implants. 2011;21(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  19. Wei LC, Lei GH, Sheng PY, Gao SG, Xu M, Jiang W, et al. Efficacy of platelet-rich plasma combined with allograft bone in the management of displaced intra-articular calcaneal fractures: a prospective cohort study. J Orthop Res. 2012;30(10):1570–6.

    Article  PubMed  Google Scholar 

  20. Bosemark P, Isaksson H, McDonald MM, Little DG, Tagil M. Augmentation of autologous bone graft by a combination of bone morphogenic protein and bisphosphonate increased both callus volume and strength. Acta Orthop. 2013;84(1):106–11.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Giannoudis PV, Dinopoulos HT. BMPs: Options, indications, and effectiveness. J Orthop Trauma. 2010;24(Suppl 1):S9–16.

    Article  PubMed  Google Scholar 

  22. Kanakaris NK, Paliobeis C, Nlanidakis N, Giannoudis PV. Biological enhancement of tibial diaphyseal aseptic non-unions: the efficacy of autologous bone grafting, BMPs and reaming by-products. Injury. 2007;38(Suppl 2):S65–75.

    Article  PubMed  Google Scholar 

  23. Sen MK, Miclau T. Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury. 2007;38(Suppl 1):S75–80.

    Article  PubMed  Google Scholar 

  24. Mathavan N, Bosemark P, Isaksson H, Tagil M. Investigating the synergistic efficacy of BMP-7 and zoledronate on bone allografts using an open rat osteotomy model. Bone. 2013;56(2):440–8.

    Article  CAS  PubMed  Google Scholar 

  25. Lysaght MJ, Jaklenec A, Deweerd E. Great expectations: private sector activity in tissue engineering, regenerative medicine, and stem cell therapeutics. Tissue Eng Part A. 2008;14(2):305–15.

    Article  PubMed  Google Scholar 

  26. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96–101.

    PubMed Central  PubMed  Google Scholar 

  27. Miron RJ, Zhang YF. Osteoinduction: a review of old concepts with new standards. J Dent Res. 2012;91(8):736–44.

    Article  CAS  PubMed  Google Scholar 

  28. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury. 2005;36(Suppl 3):S20–7.

    Article  PubMed  Google Scholar 

  29. Gebhardt MC, Flugstad DI, Springfield DS, Mankin HJ. The use of bone allografts for limb salvage in high-grade extremity osteosarcoma. Clin Orthop Relat Res. 1991;270:181–96.

    PubMed  Google Scholar 

  30. Mankin HJ, Fogelson FS, Thrasher AZ, Jaffer F. Massive resection and allograft transplantation in the treatment of malignant bone tumors. N Engl J Med. 1976;294(23):1247–55.

    Article  CAS  PubMed  Google Scholar 

  31. Burchardt H, Busbee GA 3rd, Enneking WF. Repair of experimental autologous grafts of cortical bone. J Bone Joint Surg Am. 1975;57(6):814–9.

    CAS  PubMed  Google Scholar 

  32. Mohler DG, Yaszay B, Hong R, Wera G. Intercalary tibial allografts following tumor resection: the role of fibular centralization. Orthopedics. 2003;26(6):631–7.

    PubMed  Google Scholar 

  33. Allan DG, Lavoie GJ, McDonald S, Oakeshott R, Gross AE. Proximal femoral allografts in revision hip arthroplasty. J Bone Joint Surg Br. 1991;73(2):235–40.

    CAS  PubMed  Google Scholar 

  34. Bos GD, Goldberg VM, Powell AE, Heiple KG, Zika JM. The effect of histocompatibility matching on canine frozen bone allografts. J Bone Joint Surg Am. 1983;65(1):89–96.

    CAS  PubMed  Google Scholar 

  35. Horowitz MC, Friedlaender GE. Immunologic aspects of bone transplantation. A rationale for future studies. Orthop Clin North Am. 1987;18(2):227–33.

    CAS  PubMed  Google Scholar 

  36. Stevenson S, Emery SE, Goldberg VM. Factors affecting bone graft incorporation. Clin Orthop Relat Res. 1996;324:66–74.

    Article  PubMed  Google Scholar 

  37. Strong DM, Friedlaender GE, Tomford WW, Springfield DS, Shives TC, Burchardt H, et al. Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop Relat Res. 1996;326:107–14.

    Article  PubMed  Google Scholar 

  38. Ward WG, Heise E, Boles C, Kiger D, Gautreaux M, Rushing J, et al. Human leukocyte antigen sensitization after structural cortical allograft implantations. Clin Orthop Relat Res. 2005;435:31–5.

    Article  PubMed  Google Scholar 

  39. Gornet MF, Randolph MA, Schofield BH, Yaremchuk MJ, Weiland AJ. Immunologic and ultrastructural changes during early rejection of vascularized bone allografts. Plast Reconstr Surg. 1991;88(5):860–8.

    Article  CAS  PubMed  Google Scholar 

  40. Moore JR, Phillips TW, Weiland AJ, Randolph MA. Allogenic transplants of bone revascularized by microvascular anastomoses: a preliminary study. J Orthop Res. 1984;1(4):352–60.

    Article  CAS  PubMed  Google Scholar 

  41. Paskert JP, Yaremchuk MJ, Randolph MA, Weiland AJ. The role of cyclosporin in prolonging survival in vascularized bone allografts. Plast Reconstr Surg. 1987;80(2):240–7.

    Article  CAS  PubMed  Google Scholar 

  42. Shigetomi M, Doi K, Kuwata N, Muramatsu K, Yamamoto H, Kawai S. Experimental study on vascularized bone allografts for reconstruction of massive bone defects. Microsurgery. 1994;15(9):663–70.

    Article  CAS  PubMed  Google Scholar 

  43. Yaremchuk MJ, Nettelblad H, Randolph MA, Weiland AJ. Vascularized bone allograft transplantation in a genetically defined rat model. Plast Reconstr Surg. 1985;75(3):355–62.

    Article  CAS  PubMed  Google Scholar 

  44. Stevenson S, Shaffer JW, Goldberg VM. The humoral response to vascular and nonvascular allografts of bone. Clin Orthop Relat Res. 1996;326:86–95.

    Article  PubMed  Google Scholar 

  45. DePaula CA, Truncale KG, Gertzman AA, Sunwoo MH, Dunn MG. Effects of hydrogen peroxide cleaning procedures on bone graft osteoinductivity and mechanical properties. Cell Tissue Bank. 2005;6(4):287–98.

    Article  CAS  PubMed  Google Scholar 

  46. Beebe KS, Benevenia J, Tuy BE, DePaula CA, Harten RD, Enneking WF. Effects of a new allograft processing procedure on graft healing in a canine model: a preliminary study. Clin Orthop Relat Res. 2009;467(1):273–80.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Hornicek FJ, Gebhardt MC, Tomford WW, Sorger JI, Zavatta M, Menzner JP, et al. Factors affecting nonunion of the allograft-host junction. Clin Orthop Relat Res. 2001;382:87–98.

    Article  PubMed  Google Scholar 

  48. Sorger JI, Hornicek FJ, Zavatta M, Menzner JP, Gebhardt MC, Tomford WW, et al. Allograft fractures revisited. Clin Orthop Relat Res. 2001;382:66–74.

    Article  PubMed  Google Scholar 

  49. Mankin HJ, Hornicek FJ, Raskin KA. Infection in massive bone allografts. Clin Orthop Relat Res. 2005;432:210–6.

    Article  PubMed  Google Scholar 

  50. Dick HM, Strauch RJ. Infection of massive bone allografts. Clin Orthop Relat Res. 1994;306:46–53.

    PubMed  Google Scholar 

  51. Myeroff C, Archdeacon M. Autogenous bone graft: donor sites and techniques. J Bone Joint Surg Am. 2011;93(23):2227–36.

    Article  PubMed  Google Scholar 

  52. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg. 1996;35(5):413–7.

    Article  CAS  PubMed  Google Scholar 

  53. Triplett RG, Schow SR. Autologous bone grafts and endosseous implants: complementary techniques. J Oral Maxillofac Surg. 1996;54(4):486–94.

    Article  CAS  PubMed  Google Scholar 

  54. Lu C, Marcucio R, Miclau T. Assessing angiogenesis during fracture healing. Iowa Orthop J. 2006;26:17–26.

    PubMed Central  PubMed  Google Scholar 

  55. Carano RA, Filvaroff EH. Angiogenesis and bone repair. Drug Discov Today. 2003;8(21):980–9.

    Article  CAS  PubMed  Google Scholar 

  56. Street J, Bao M, deGuzman L, Bunting S, Peale FV Jr, Ferrara N, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002;99(15):9656–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Yin G, Sheu TJ, Menon P, Pang J, Ho HC, Shi S, et al. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1) knock out mice. PLoS ONE. 2014;9(2):e89127.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Tete S, Vinci R, Zara S, Zizzari V, De Carlo A, Falco G, et al. Long-term evaluation of maxillary reconstruction by iliac bone graft. J Craniofac Surg. 2011;22(5):1702–7.

    Article  PubMed  Google Scholar 

  59. Faria PE, Okamoto R, Bonilha-Neto RM, Xavier SP, Santos AC, Salata LA. Immunohistochemical, tomographic and histological study on onlay iliac grafts remodeling. Clin Oral Implants Res. 2008;19(4):393–401.

    Article  PubMed  Google Scholar 

  60. Khan SN, Cammisa FP Jr, Sandhu HS, Diwan AD, Girardi FP, Lane JM. The biology of bone grafting. J Am Acad Orthop Surg. 2005;13(1):77–86.

    PubMed  Google Scholar 

  61. Arrington ED, Smith WJ, Chambers HG, Bucknell AL, Davino NA. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329:300–9.

    Article  PubMed  Google Scholar 

  62. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br. 1989;71(4):677–80.

    CAS  PubMed  Google Scholar 

  63. Ross N, Tacconi L, Miles JB. Heterotopic bone formation causing recurrent donor site pain following iliac crest bone harvesting. Br J Neurosurg. 2000;14(5):476–9.

    Article  CAS  PubMed  Google Scholar 

  64. Seiler JG 3rd, Johnson J. Iliac crest autogenous bone grafting: donor site complications. J South Orthop Assoc. 2000;9(2):91–7.

    PubMed  Google Scholar 

  65. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976). 1995;20(9):1055–60.

    Article  CAS  Google Scholar 

  66. Yazar S, Lin CH, Wei FC. One-stage reconstruction of composite bone and soft-tissue defects in traumatic lower extremities. Plast Reconstr Surg. 2004;114(6):1457–66.

    Article  PubMed  Google Scholar 

  67. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192–5.

    Article  CAS  PubMed  Google Scholar 

  68. Goulet JA, Senunas LE, DeSilva GL, Greenfield ML. Autogenous iliac crest bone graft. Complications and functional assessment. Clin Orthop Relat Res. 1997;339:76–81.

    Article  PubMed  Google Scholar 

  69. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  70. Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res. 2001;54(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  71. Pangborn CA, Athanasiou KA. Growth factors and fibrochondrocytes in scaffolds. J Orthop Res. 2005;23(5):1184–90.

    Article  CAS  PubMed  Google Scholar 

  72. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  73. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Article  CAS  Google Scholar 

  74. Bailey JL, Critser PJ, Whittington C, Kuske JL, Yoder MC, Voytik-Harbin SL. Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices. Biopolymers. 2011;95(2):77–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Haugh MG, Jaasma MJ, O’Brien FJ. The effect of dehydrothermal treatment on the mechanical and structural properties of collagen-GAG scaffolds. J Biomed Mater Res A. 2009;89(2):363–9.

    Article  PubMed  CAS  Google Scholar 

  76. Tierney CM, Haugh MG, Liedl J, Mulcahy F, Hayes B, O’Brien FJ. The effects of collagen concentration and crosslink density on the biological, structural and mechanical properties of collagen-GAG scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2009;2(2):202–9.

    Article  PubMed  Google Scholar 

  77. Tierney CM, Jaasma MJ, O’Brien FJ. Osteoblast activity on collagen-GAG scaffolds is affected by collagen and GAG concentrations. J Biomed Mater Res A. 2009;91(1):92–101.

    Article  PubMed  CAS  Google Scholar 

  78. Sun J, Tan H. Alginate-based biomaterials for regenerative medicine applications. Materials. 2013;6(4):1285–309.

    Article  CAS  Google Scholar 

  79. Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res. 2001;80(11):2025–9.

    Article  CAS  PubMed  Google Scholar 

  80. Quinlan E, López-Noriega A, Thompson EM, Hibbitts A, Cryan SA, O’Brien FJ. Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. J Tissue Eng Regen Med. 2015. doi:10.1002/term.2013.

    PubMed  Google Scholar 

  81. Bouhadir KH, Mooney D. Synthesis of hydrogels: alginate hydrogels. In: Atala A, Lanza RP, editors. Methods of tissue engineering. New York: Academic Press; 2002. p. 653–62.

    Google Scholar 

  82. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919–28.

    Article  CAS  PubMed  Google Scholar 

  83. Turco G, Marsich E, Bellomo F, Semeraro S, Donati I, Brun F, et al. Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules. 2009;10(6):1575–83.

    Article  CAS  PubMed  Google Scholar 

  84. Nguyen TP, Lee BT. Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration. J Biomater Appl. 2012;27(3):311–21.

    Article  PubMed  Google Scholar 

  85. He X, Dziak R, Mao K, Genco R, Swihart M, Li C, et al. Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Eng Part A. 2013;19(3–4):508–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. De la Riva B, Nowak C, Sanchez E, Hernandez A, Schulz-Siegmund M, Pec MK, et al. VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. Eur J Pharm Biopharm. 2009;73(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  87. Yang C, Frei H, Rossi FM, Burt HM. The differential in vitro and in vivo responses of bone marrow stromal cells on novel porous gelatin-alginate scaffolds. J Tissue Eng Regen Med. 2009;3(8):601–14.

    Article  CAS  PubMed  Google Scholar 

  88. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011;32(1):65–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Boerckel JD, Kolambkar YM, Dupont KM, Uhrig BA, Phelps EA, Stevens HY, et al. Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials. 2011;32(22):5241–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Freeman I, Cohen S. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials. 2009;30(11):2122–31.

    Article  CAS  PubMed  Google Scholar 

  91. Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release. 2011;154(3):258–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Swann DA, Radin EL. The molecular basis of articular lubrication. I. Purification and properties of a lubricating fraction from bovine synovial fluid. J Biol Chem. 1972;247(24):8069–73.

    CAS  PubMed  Google Scholar 

  93. Swann DA, Radin EL, Nazimiec M, Weisser PA, Curran N, Lewinnek G. Role of hyaluronic acid in joint lubrication. Ann Rheum Dis. 1974;33(4):318–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. de Brito Bezerra B, Mendes Brazao MA, de Campos ML, Casati MZ, Sallum EA, Sallum AW. Association of hyaluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects. Clin Oral Implants Res. 2012;3(8):938–42.

    Article  Google Scholar 

  95. Mathews S, Bhonde R, Gupta PK, Totey S. Novel biomimetic tripolymer scaffolds consisting of chitosan, collagen type 1, and hyaluronic acid for bone marrow-derived human mesenchymal stem cells-based bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2014;102(8):1825–34.

    Article  PubMed  CAS  Google Scholar 

  96. Nguyen TB, Lee BT. A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A. 2014;20(13–14):1993–2004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Kang SW, Kim JS, Park KS, Cha BH, Shim JH, Kim JY, et al. Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone. 2011;48(2):298–306.

    Article  CAS  PubMed  Google Scholar 

  98. Smith JD, Melhem ME, Magge KT, Waggoner AS, Campbell PG. Improved growth factor directed vascularization into fibrin constructs through inclusion of additional extracellular molecules. Microvasc Res. 2007;73(2):84–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Yee D, Hanjaya-Putra D, Bose V, Luong E, Gerecht S. Hyaluronic Acid hydrogels support cord-like structures from endothelial colony-forming cells. Tissue Eng Part A. 2011;17(9–10):1351–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Hern DL, Hubbell JA. Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. J Biomed Mater Res. 1998;39(2):266–76.

    Article  CAS  PubMed  Google Scholar 

  101. Shekaran A, Garcia JR, Clark AY, Kavanaugh TE, Lin AS, Guldberg RE, et al. Bone regeneration using an alpha 2 beta 1 integrin-specific hydrogel as a BMP-2 delivery vehicle. Biomaterials. 2014;35(21):5453–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Pratt AB, Weber FE, Schmoekel HG, Muller R, Hubbell JA. Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng. 2004;86(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  103. Rizzi SC, Ehrbar M, Halstenberg S, Raeber GP, Schmoekel HG, Hagenmuller H, et al. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules. 2006;7(11):3019–29.

    Article  CAS  PubMed  Google Scholar 

  104. Francis GE, Fisher D, Delgado C, Malik F, Gardiner A, Neale D. PEGylation of cytokines and other therapeutic proteins and peptides: the importance of biological optimisation of coupling techniques. Int J Hematol. 1998;68(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  105. Cipitria A, Reichert JC, Epari DR, Saifzadeh S, Berner A, Schell H, et al. Polycaprolactone scaffold and reduced rhBMP-7 dose for the regeneration of critical-sized defects in sheep tibiae. Biomaterials. 2013;34(38):9960–8.

    Article  CAS  PubMed  Google Scholar 

  106. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW. The three-dimensional vascularization of growth factor-releasing hybrid scaffold of poly (epsilon-caprolactone)/collagen fibers and hyaluronic acid hydrogel. Biomaterials. 2011;32(32):8108–17.

    Article  CAS  PubMed  Google Scholar 

  107. Kamath MS, Ahmed SS, Dhanasekaran M, Santosh SW. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomed. 2014;9:183–95.

    Google Scholar 

  108. Mitsak AG, Kemppainen JM, Harris MT, Hollister SJ. Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Eng Part A. 2011;17(13–14):1831–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  109. Rai B, Oest ME, Dupont KM, Ho KH, Teoh SH, Guldberg RE. Combination of platelet-rich plasma with polycaprolactone-tricalcium phosphate scaffolds for segmental bone defect repair. J Biomed Mater Res A. 2007;81(4):888–99.

    Article  PubMed  CAS  Google Scholar 

  110. Kyriakidou K, Lucarini G, Zizzi A, Salvolini E, Mattioli Belmonte M, Mollica F, et al. Dynamic co-seeding of osteoblast and endothelial cells on 3D polycaprolactone scaffolds for enhanced bone tissue engineering. J Bioact Compat Polym. 2008;23(3):227–43.

    Article  CAS  Google Scholar 

  111. Jones JR, Hench LL. Factors affecting the structure and properties of bioactive foam scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater. 2004;68(1):36–44.

    Article  PubMed  CAS  Google Scholar 

  112. Yun HS, Kim SE, Hyun YT, Heo SJ, Shin JW. Hierarchically mesoporous-macroporous bioactive glasses scaffolds for bone tissue regeneration. J Biomed Mater Res B Appl Biomater. 2008;87(2):374–80.

    Article  PubMed  CAS  Google Scholar 

  113. Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011;7(6):2644–50.

    Article  CAS  PubMed  Google Scholar 

  114. Seyedjafari E, Soleimani M, Ghaemi N, Shabani I. Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules. 2010;11(11):3118–25.

    Article  CAS  PubMed  Google Scholar 

  115. Ardeshirylajimi A, Farhadian S, Jamshidi Adegani F, Mirzaei S, Soufi Zomorrod M, Langroudi L, et al. Enhanced osteoconductivity of polyethersulphone nanofibres loaded with bioactive glass nanoparticles in in vitro and in vivo models. Cell Prolif. 2015;48(4):455–64.

    Article  CAS  PubMed  Google Scholar 

  116. Chen S, Jian Z, Huang L, Xu W, Liu S, Song D, et al. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Int J Nanomed. 2015;10:3815–27.

    CAS  Google Scholar 

  117. Chen X, Zhao Y, Geng S, Miron RJ, Zhang Q, Wu C, et al. In vivo experimental study on bone regeneration in critical bone defects using PIB nanogels/boron-containing mesoporous bioactive glass composite scaffold. Int J Nanomed. 2015;10:839–46.

    CAS  Google Scholar 

  118. Ardeshirylajimi A, Hosseinkhani S, Parivar K, Yaghmaie P, Soleimani M. Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Mol Biol Rep. 2013;40(7):4287–94.

    Article  CAS  PubMed  Google Scholar 

  119. Gabbai-Armelin PR, Souza MT, Kido HW, Tim CR, Bossini PS, Magri AM, et al. Effect of a new bioactive fibrous glassy scaffold on bone repair. J Mater Sci Mater Med. 2015;26(5):177.

    Article  CAS  PubMed  Google Scholar 

  120. Kim BS, Kang HJ, Yang SS, Lee J. Comparison of in vitro and in vivo bioactivity: cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed Mater. 2014;9(2):025004.

    Article  PubMed  CAS  Google Scholar 

  121. Cardoso GB, Maniglio D, Volpato FZ, Tondon A, Migliaresi C, Kaunas RR, et al. Oleic acid surfactant in polycaprolactone/hydroxyapatite-composites for bone tissue engineering. J Biomed Mater Res B Appl Biomater. 2015. doi:10.1002/jbm.b.33457.

    PubMed  Google Scholar 

  122. Tanner KE. Bioactive ceramic-reinforced composites for bone augmentation. J R Soc Interface. 2010;7(Suppl 5):S541–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Feng P, Niu M, Gao C, Peng S, Shuai C. A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering. Sci Rep. 2014;4:5599.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Leukers B, Gulkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16(12):1121–4.

    Article  CAS  PubMed  Google Scholar 

  125. Di Alberti L, Rossetto A, Albanese M, D’Agostino A, De Santis D, Bertossi D, et al. Expression of Vascular Endothelial Growth Factor (VEGF) mRNA in healthy bone tissue around implants and in peri-implantitis. Minerva Stomatol. 2013 [Epub ahead of print].

  126. Lamalice L, Le Boeuf F, Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100(6):782–94.

    Article  CAS  PubMed  Google Scholar 

  127. Shah P, Keppler L, Rutkowski J. A review of platelet derived growth factor playing pivotal role in bone regeneration. J Oral Implantol. 2014;40(3):330–40.

    Article  PubMed  Google Scholar 

  128. Rao RR, Peterson AW, Ceccarelli J, Putnam AJ, Stegemann JP. Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials. Angiogenesis. 2012;15(2):253–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  129. Ohata Y, Ozono K. Bone and Stem Cells. The mechanism of osteogenic differentiation from mesenchymal stem cell. Clin Calcium. 2014;24(4):501–8.

    CAS  PubMed  Google Scholar 

  130. Zelzer E, Olsen BR. Multiple roles of vascular endothelial growth factor (VEGF) in skeletal development, growth, and repair. Curr Top Dev Biol. 2005;65:169–87.

    Article  CAS  PubMed  Google Scholar 

  131. Koc A, Finkenzeller G, Elcin AE, Stark GB, Elcin YM. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. J Biomater Appl. 2014;29(5):748–60.

    Article  CAS  PubMed  Google Scholar 

  132. Liu Y, Moller B, Wiltfang J, Warnke PH, Terheyden H. Tissue engineering of a vascularized bone graft of critical size with an osteogenic and angiogenic factor-based in vivo bioreactor. Tissue Eng Part A. 2014;20(23–24):3189–97.

    Article  CAS  PubMed  Google Scholar 

  133. Kampmann A, Lindhorst D, Schumann P, Zimmerer R, Kokemuller H, Rucker M, et al. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Microvasc Res. 2013;90:71–9.

    Article  CAS  PubMed  Google Scholar 

  134. Kaipel M, Schutzenberger S, Schultz A, Ferguson J, Slezak P, Morton TJ, et al. BMP-2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed-union rat model. J Orthop Res. 2012;30(10):1563–9.

    Article  CAS  PubMed  Google Scholar 

  135. Zigdon-Giladi H, Bick T, Lewinson D, Machtei EE. Co-transplantation of endothelial progenitor cells and mesenchymal stem cells promote neovascularization and bone regeneration. Clin Implant Dent Relat Res. 2013;17(2):353–9.

    Article  PubMed  Google Scholar 

  136. Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J, et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 2005;11(3):291–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med. 2011;22(3):683–92.

    Article  CAS  PubMed  Google Scholar 

  138. Farokhi M, Mottaghitalab F, Ai J, Shokrgozar MA. Sustained release of platelet-derived growth factor and vascular endothelial growth factor from silk/calcium phosphate/PLGA based nanocomposite scaffold. Int J Pharm. 2013;454(1):216–25.

    Article  CAS  PubMed  Google Scholar 

  139. Poldervaart MT, Gremmels H, van Deventer K, Fledderus JO, Oner FC, Verhaar MC, et al. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release. 2014;184:58–66.

    Article  CAS  PubMed  Google Scholar 

  140. Helmrich U, Di Maggio N, Guven S, Groppa E, Melly L, Largo RD, et al. Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials. 2013;34(21):5025–35.

    Article  CAS  PubMed  Google Scholar 

  141. Nicosia RF, Nicosia SV, Smith M. Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol. 1994;145(5):1023–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Risau W, Drexler H, Mironov V, Smits A, Siegbahn A, Funa K, et al. Platelet-derived growth factor is angiogenic in vivo. Growth Factors. 1992;7(4):261–6.

    Article  CAS  PubMed  Google Scholar 

  143. Sato N, Beitz JG, Kato J, Yamamoto M, Clark JW, Calabresi P, et al. Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol. 1993;142(4):1119–30.

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M. PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol. 1994;125(4):917–28.

    Article  CAS  PubMed  Google Scholar 

  145. Pierce GF, Vande Berg J, Rudolph R, Tarpley J, Mustoe TA. Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds. Am J Pathol. 1991;138(3):629–46.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Pierce GF, Mustoe TA, Altrock BW, Deuel TF, Thomason A. Role of platelet-derived growth factor in wound healing. J Cell Biochem. 1991;45(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  147. Mustoe TA, Pierce GF, Morishima C, Deuel TF. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest. 1991;87(2):694–703.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  148. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol. 2007;177(3):489–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  149. Sun B, Chen B, Zhao Y, Sun W, Chen K, Zhang J, et al. Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J Biomed Mater Res B Appl Biomater. 2009;91(1):366–72.

    Article  PubMed  CAS  Google Scholar 

  150. Sarment DP, Cooke JW, Miller SE, Jin Q, McGuire MK, Kao RT, et al. Effect of rhPDGF-BB on bone turnover during periodontal repair. J Clin Periodontol. 2006;33(2):135–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Ronga M, Fagetti A, Canton G, Paiusco E, Surace MF, Cherubino P. Clinical applications of growth factors in bone injuries: experience with BMPs. Injury. 2013;44(Suppl 1):S34–9.

    Article  PubMed  Google Scholar 

  152. Carreira AC, Lojudice FH, Halcsik E, Navarro RD, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res. 2014;93(4):335–45.

    Article  CAS  PubMed  Google Scholar 

  153. Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am. 2013;95(17):1537–45.

    Article  PubMed  Google Scholar 

  154. Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res. 2005;20(12):2124–37.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Liu Y, Yu J, Bai J, Gu JS, Cai B, Zhou X. Effects of cuttlefish bone-bone morphogenetic protein composite material on osteogenesis and revascularization of bone defect in rats. Chin J Burns. 2013;29(6):548–53.

    CAS  Google Scholar 

  156. Cao L, Wang J, Hou J, Xing W, Liu C. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials. 2014;35(2):684–98.

    Article  CAS  PubMed  Google Scholar 

  157. Long T, Zhu Z, Awad HA, Schwarz EM, Hilton MJ, Dong Y. The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials. 2014;35(9):2752–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  158. McFadden TM, Duffy GP, Allen AB, Stevens HY, Schwarzmaier SM, Plesnila N, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater. 2013;9(12):9303–16.

    Article  CAS  PubMed  Google Scholar 

  159. Pirraco RP, Iwata T, Yoshida T, Marques AP, Yamato M, Reis RL, et al. Endothelial cells enhance the in vivo bone-forming ability of osteogenic cell sheets. Lab Invest. 2014;94(6):663–73.

    Article  CAS  PubMed  Google Scholar 

  160. Wang P, Zhao L, Chen W, Liu X, Weir MD, Xu HH. Stem cells and calcium phosphate cement scaffolds for bone regeneration. J Dent Res. 2014;93(7):618–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Fan H, Zeng X, Wang X, Zhu R, Pei G. Efficacy of prevascularization for segmental bone defect repair using beta-tricalcium phosphate scaffold in rhesus monkey. Biomaterials. 2014;35(26):7407–15.

    Article  CAS  PubMed  Google Scholar 

  162. Hokugo A, Kubo Y, Takahashi Y, Fukuda A, Horiuchi K, Mushimoto K, et al. Prefabrication of vascularized bone graft using guided bone regeneration. Tissue Eng. 2004;10(7–8):978–86.

    Article  CAS  PubMed  Google Scholar 

  163. Kneser U, Polykandriotis E, Ohnolz J, Heidner K, Grabinger L, Euler S, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006;12(7):1721–31.

    Article  CAS  PubMed  Google Scholar 

  164. Arkudas A, Beier JP, Heidner K, Tjiawi J, Polykandriotis E, Srour S, et al. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007;13(7):1549–60.

    Article  CAS  PubMed  Google Scholar 

  165. Fan J, Bi L, Jin D, Wei K, Chen B, Zhang Z, et al. Microsurgical techniques used to construct the vascularized and neurotized tissue engineered bone. Biomed Res Int. 2014;2014:281872.

    PubMed Central  PubMed  Google Scholar 

  166. Kang Y, Ren L, Yang Y. Engineering vascularized bone grafts by integrating a biomimetic periosteum and beta-TCP scaffold. ACS Appl Mater Interfaces. 2014;6(12):9622–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  167. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  168. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, et al. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104(9):2752–60.

    Article  CAS  PubMed  Google Scholar 

  169. Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis? J Mol Cell Cardiol. 2011;50(2):266–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Chandrasekhar KS, Zhou H, Zeng P, Alge D, Li W, Finney BA, et al. Blood vessel wall-derived endothelial colony-forming cells enhance fracture repair and bone regeneration. Calcif Tissue Int. 2011;89(5):347–57.

    Article  PubMed  CAS  Google Scholar 

  171. Levengood SK, Poellmann MJ, Clark SG, Ingram DA, Yoder MC, Johnson AJ. Human endothelial colony forming cells undergo vasculogenesis within biphasic calcium phosphate bone tissue engineering constructs. Acta Biomater. 2011;7(12):4222–8.

    Article  PubMed  CAS  Google Scholar 

  172. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  173. Chaudhuri O, Gu L, Darnell M, Klumpers D, Bencherif SA, Weaver JC, et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6:6364.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  174. Vernon RB, Sage EH. Between molecules and morphology. extracellular matrix and creation of vascular form. Am J Pathol. 1995;147(4):873–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Sieminski AL, Hebbel RP, Gooch KJ. The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in vitro. Exp Cell Res. 2004;297(2):574–84.

    Article  CAS  PubMed  Google Scholar 

  176. Kuzuya M, Satake S, Miura H, Hayashi T, Iguchi A. Inhibition of endothelial cell differentiation on a glycosylated reconstituted basement membrane complex. Exp Cell Res. 1996;226(2):336–45.

    Article  CAS  PubMed  Google Scholar 

  177. Deroanne CF, Lapiere CM, Nusgens BV. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res. 2001;49(3):647–58.

    Article  CAS  PubMed  Google Scholar 

  178. Terella A, Mariner P, Brown N, Anseth K, Streubel SO. Repair of a calvarial defect with biofactor and stem cell-embedded polyethylene glycol scaffold. Arch Facial Plast Surg. 2010;12(3):166–71.

    Article  PubMed Central  PubMed  Google Scholar 

  179. Aimetti AA, Machen AJ, Anseth KS. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Biomaterials. 2009;30(30):6048–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  180. Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ. Engineering growing tissues. Proc Natl Acad Sci USA. 2002;99(19):12025–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials. 2013;34(2):331–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  182. Roy R, Boskey AL, Bonassar LJ. Non-enzymatic glycation of chondrocyte-seeded collagen gels for cartilage tissue engineering. J Orthop Res. 2008;26(11):1434–9.

    Article  CAS  PubMed  Google Scholar 

  183. Francis-Sedlak ME, Moya ML, Huang JJ, Lucas SA, Chandrasekharan N, Larson JC, et al. Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res. 2010;80(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  184. Mason BN, Starchenko A, Williams RM, Bonassar LJ, Reinhart-King CA. Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater. 2013;9(1):4635–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Wolff J. The law of bone remodeling [translated from 1892 original, Das Gesetz der Transformation der Knochen, by Maquet, P. & Furlong, R.]. Berlin: Springer-Verlag; 1986.

    Google Scholar 

  186. Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br. 1985;67(4):650–5.

    CAS  PubMed  Google Scholar 

  187. Palomares KT, Gleason RE, Mason ZD, Cullinane DM, Einhorn TA, Gerstenfeld LC, et al. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J Orthop Res. 2009;27(9):1123–32.

    Article  PubMed Central  PubMed  Google Scholar 

  188. Carter DR, Blenman PR, Beaupre GS. Correlations between mechanical stress history and tissue differentiation in initial fracture healing. J Orthop Res. 1988;6(5):736–48.

    Article  CAS  PubMed  Google Scholar 

  189. Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D. Bioreactor cultivation of osteochondral grafts. Orthod Craniofac Res. 2005;8(3):209–18.

    Article  CAS  PubMed  Google Scholar 

  190. Kluge JA, Leisk GG, Cardwell RD, Fernandes AP, House M, Ward A, et al. Bioreactor system using noninvasive imaging and mechanical stretch for biomaterial screening. Ann Biomed Eng. 2011;39(5):1390–402.

    Article  PubMed Central  PubMed  Google Scholar 

  191. Boerckel JD, Dupont KM, Kolambkar YM, Lin AS, Guldberg RE. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair. J Biomech Eng. 2009;131(8):084502.

    Article  PubMed  Google Scholar 

  192. Boerckel JD, Uhrig BA, Willett NJ, Huebsch N, Guldberg RE. Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci USA. 2011;108(37):E674–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Boerckel JD, Kolambkar YM, Stevens HY, Lin AS, Dupont KM, Guldberg RE. Effects of in vivo mechanical loading on large bone defect regeneration. J Orthop Res. 2012;30(7):1067–75.

    Article  PubMed Central  PubMed  Google Scholar 

  194. Glatt V, Miller M, Ivkovic A, Liu F, Parry N, Griffin D, et al. Improved healing of large segmental defects in the rat femur by reverse dynamization in the presence of bone morphogenetic protein-2. J Bone Joint Surg Am. 2012;94(22):2063–73.

    Article  PubMed Central  PubMed  Google Scholar 

  195. Krishnan L, Underwood CJ, Maas S, Ellis BJ, Kode TC, Hoying JB, et al. Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res. 2008;78(2):324–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Song JW, Munn LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci USA. 2011;108(37):15342–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Galie PA, Nguyen DH, Choi CK, Cohen DM, Janmey PA, Chen CS. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci USA. 2014;111(22):7968–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  198. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA. Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 2001;20(17):4639–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Kwak BR, Silacci P, Stergiopulos N, Hayoz D, Meda P. Shear stress and cyclic circumferential stretch, but not pressure, alter connexin43 expression in endothelial cells. Cell Commun Adhes. 2005;12(5–6):261–70.

    Article  CAS  PubMed  Google Scholar 

  200. Edgar LT, Underwood CJ, Guilkey JE, Hoying JB, Weiss JA. Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS ONE. 2014;9(1):e85178.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Medical Student Affairs Summer Research Program in Academic Medicine, Indiana University School of Medicine, funded in part by NIH Grant HL110854 (KMD) and the Department of Orthopaedic Surgery, Indiana University School of Medicine (MAK, TOM, JOA). In addition, research reported in this publication was supported in part by the following Grants: NIH NIAMS R01 AR060863 (MAK), USAMRMC OR120080 (MAK, T-MGC, TOM, JOA), an Indiana University Health Values Grant (MAK), Indiana Clinical and Translational Sciences Institute Grants partially supported by NIH UL1TR001108 (MAK, T-MGC, JDB), Indiana Advanced Diagnostics and Therapeutics Initiative (JDB), and an Indiana University Collaborative Research Grant (MAK, T-MGC). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joel D. Boerckel or Melissa A. Kacena.

Ethics declarations

Conflict of interest

Kaitlyn S. Griffin, Korbin M. Davis, Jeffrey O. Anglen, Tien-Min G. Chu, Joel D. Boerckel, and Melissa A. Kacena declare they have no conflict of interest. Todd O. McKinley is a consultant for Bioventus.

Animal/Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Additional information

Kaitlyn S. Griffin and Korbin M. Davis have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griffin, K.S., Davis, K.M., McKinley, T.O. et al. Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clinic Rev Bone Miner Metab 13, 232–244 (2015). https://doi.org/10.1007/s12018-015-9194-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-015-9194-9

Keywords

Navigation