Skip to main content

Advertisement

Log in

Biochemical Interaction Between Muscle and Bone: A Physiological Reality?

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

In elderly with a sedentary lifestyle, often suffering from sarcopenia to osteopenia, a training intervention could be an effective countermeasure for bone as well as muscle. Both bone and muscle adapt their mass and strength in response to mechanical loading in part via similar signaling pathways. Bone as well as muscle produces a wide variety of growth factors and cytokines in response to mechanical loading, which are important for their adaptations. It has been hypothesized that in addition to mechanical stimuli, muscle and bone communicate by these factors. Whether such biochemical interaction between both tissues is physiological is a still subject of debate. Here, we provide an overview of a range of biological factors possibly involved in the biochemical cross talk between bone and muscle. In addition, we discuss the plausibility that such interactions are involved in non-pathological adaptation of both tissues, either in paracrine or in endocrine fashion. As yet, convincing experimental evidence for biochemical cross talk between muscle and bone is very limited. Several studies have shown that muscle-derived factors are involved in bone fracture healing as well as in bone adaptation in case of muscle pathology. For involvement of cross talk between muscle and bone in physiological adaptation, there is no definite proof yet. Detailed knowledge of the biochemical interactions between muscle and bone is of clinical importance. It can help to discover pharmacological treatment to be used alone or in parallel with exercise training, thereby reducing the need for high-impact exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerber Y, Melton III LJ, McNallan SM, Jiang R, Weston SA, Roger VL. Cardiovascular and noncardiovascular disease associations with hip fractures. Am J Med. 2013;126(2):169 e19–26.

    PubMed Central  PubMed  Google Scholar 

  2. Lustberg MB, Reinbolt RE, Shapiro CL. Bone health in adult cancer survivorship. J Clin Oncol. 2012;30(30):3665–74.

    CAS  PubMed  Google Scholar 

  3. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338:37–49.

    CAS  PubMed  Google Scholar 

  4. Jaspers RT, van Beek-Harmsen BJ, Blankenstein MA, Goldspink G, Huijing PA, van der Laarse WJ. Hypertrophy of mature Xenopus muscle fibres in culture induced by synergy of albumin and insulin. Pflugers Arch. 2008;457(1):161–70.

    CAS  PubMed  Google Scholar 

  5. Antonio J, Gonyea WJ. Skeletal muscle fiber hyperplasia. Med Sci Sports Exerc. 1993;25(12):1333–45.

    CAS  PubMed  Google Scholar 

  6. van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol. 2010;110:665–94.

    PubMed Central  PubMed  Google Scholar 

  7. Van der Meer SF, Jaspers RT, Degens H. Is the myonuclear domain size fixed? J Musculoskelet Neuronal Interact. 2011;11(4):286–97.

    PubMed  Google Scholar 

  8. Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab. 2000;85(3):1095–8.

    CAS  PubMed  Google Scholar 

  9. Doyle F, Brown J, Lachance C. Relation between bone mass and muscle weight. Lancet. 1970;1(7643):391–3.

    CAS  PubMed  Google Scholar 

  10. Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2(2):73–85.

    CAS  PubMed  Google Scholar 

  11. Kaufman H, Reznick A, Stein H, Barak M, Maor G. The biological basis of the bone-muscle inter-relationship in the algorithm of fracture healing. Orthopedics. 2008;31(8):751.

    CAS  PubMed  Google Scholar 

  12. Hamrick MW. A role for myokines in muscle-bone interactions. Exerc Sport Sci Rev. 2011;39(1):43–7.

    PubMed Central  PubMed  Google Scholar 

  13. Juffer P, Jaspers RT, Lips P, Bakker AD, Klein-Nulend J. Expression of muscle anabolic and metabolic factors in mechanically loaded MLO-Y4 osteocytes. Am J Physiol Endocrinol Metab. 2012;302(4):E389–95.

    CAS  PubMed  Google Scholar 

  14. Alzghoul MB, Gerrard D, Watkins BA, Hannon K. Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo. FASEB J. 2004;18(1):221–3.

    CAS  PubMed  Google Scholar 

  15. Janssen I, Heymsfield SB, Wang ZM, Ross R. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol. 2000;89(1):81–8.

    CAS  PubMed  Google Scholar 

  16. Rico H, Revilla M, Gonzalez-Riola J, Villa LF, Alvarez de Buergo M. Bone mineral content and anthropometric variables in men: a cross-sectional study in 324 normal subjects. Clin Rheumatol. 1993;12(4):485–9.

    CAS  PubMed  Google Scholar 

  17. Forwood MR, Turner CH. The response of rat tibiae to incremental bouts of mechanical loading: a quantum concept for bone formation. Bone. 1994;15(6):603–9.

    CAS  PubMed  Google Scholar 

  18. Reijnders CM, Bravenboer N, Tromp AM, Blankenstein MA, Lips P. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia. J Endocrinol. 2007;192(1):131–40.

    CAS  PubMed  Google Scholar 

  19. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A. 2011;108(4):1585–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Hah YS, Jun JS, Lee SG, Park BW, Kim DR, Kim UK, et al. Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors. Mol Biol Rep. 2011;38(2):1443–50.

    CAS  PubMed  Google Scholar 

  21. Walker KS, Kambadur R, Sharma M, Smith HK. Resistance training alters plasma myostatin but not IGF-1 in healthy men. Med Sci Sports Exerc. 2004;36(5):787–93.

    CAS  PubMed  Google Scholar 

  22. Eliakim A, Moromisato M, Moromisato D, Brasel JA, Roberts C Jr, Cooper DM. Increase in muscle IGF-I protein but not IGF-I mRNA after 5 days of endurance training in young rats. Am J Physiol. 1997;273(4 Pt 2):R1557–61.

    CAS  PubMed  Google Scholar 

  23. Yeo NH, Woo J, Shin KO, Park JY, Kang S. The effects of different exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness. 2012;52(4):448–54.

    CAS  PubMed  Google Scholar 

  24. Ardawi MS, Rouzi AA, Qari MH. Physical activity in relation to serum sclerostin, insulin-like growth factor-1, and bone turnover markers in healthy premenopausal women: a cross-sectional and a longitudinal study. J Clin Endocrinol Metab. 2012;97(10):3691–9.

    CAS  PubMed  Google Scholar 

  25. Tahimic CG, Wang Y, Bikle DD. Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol (Lausanne). 2013;4:6.

    Google Scholar 

  26. Huijing PA, Jaspers RT. Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports. 2005;15(6):349–80.

    CAS  PubMed  Google Scholar 

  27. Clemmons DR. Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol Metab. 2009;20(7):349–56.

    CAS  PubMed  Google Scholar 

  28. Goldspink G. Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology (Bethesda, Md). 2005;20:232–8.

    CAS  Google Scholar 

  29. Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, et al. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol. 2007;102(2):573–81.

    CAS  PubMed  Google Scholar 

  30. Yang S, Alnaqeeb M, Simpson H, Goldspink G. Changes in muscle fibre type, muscle mass and IGF-I gene expression in rabbit skeletal muscle subjected to stretch. J Anat. 1997;190:613–22.

    PubMed  Google Scholar 

  31. Tang LL, Xian CY, Wang YL. The MGF expression of osteoblasts in response to mechanical overload. Arch Oral Biol. 2006;51(12):1080–5.

    CAS  PubMed  Google Scholar 

  32. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, et al. The IGF-1/PI3 K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.

    CAS  PubMed  Google Scholar 

  33. Yang SY, Goldspink G. Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett. 2002;522(1–3):156–60.

    CAS  PubMed  Google Scholar 

  34. Vandenburgh HH, Karlisch P, Shansky J, Feldstein R. Insulin and IGF-I induce pronounced hypertrophy of skeletal myofibers in tissue culture. Am J Physiol. 1991;260(3 Pt 1):C475–84.

    CAS  PubMed  Google Scholar 

  35. Ates K, Yang SY, Orrell RW, Sinanan AC, Simons P, Solomon A, et al. The IGF-I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle. FEBS Lett. 2007;581(14):2727–32.

    CAS  PubMed  Google Scholar 

  36. Deng M, Zhang B, Wang K, Liu F, Xiao H, Zhao J, et al. Mechano growth factor E peptide promotes osteoblasts proliferation and bone-defect healing in rabbits. Int Orthop. 2011;35(7):1099–106.

    PubMed Central  PubMed  Google Scholar 

  37. Hill PA, Tumber A, Meikle MC. Multiple extracellular signals promote osteoblast survival and apoptosis. Endocrinology. 1997;138(9):3849–58.

    CAS  PubMed  Google Scholar 

  38. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology. 2000;141(7):2674–82.

    CAS  PubMed  Google Scholar 

  39. Hock JM, Centrella M, Canalis E. Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology. 1988;122(1):254–60.

    CAS  PubMed  Google Scholar 

  40. Hill PA, Reynolds JJ, Meikle MC. Osteoblasts mediate insulin-like growth factor-I and -II stimulation of osteoclast formation and function. Endocrinology. 1995;136(1):124–31.

    CAS  PubMed  Google Scholar 

  41. Wang Y, Nishida S, Sakata T, Elalieh HZ, Chang W, Halloran BP, et al. Insulin-like growth factor-I is essential for embryonic bone development. Endocrinology. 2006;147(10):4753–61.

    CAS  PubMed  Google Scholar 

  42. Bravenboer N, Engelbregt MJ, Visser NA, Popp-Snijders C, Lips P. The effect of exercise on systemic and bone concentrations of growth factors in rats. J Orthop Res. 2001;19(5):945–9.

    CAS  PubMed  Google Scholar 

  43. Copeland JL, Heggie L. IGF-I and IGFBP-3 during continuous and interval exercise. Int J Sports Med. 2008;29(3):182–7.

    CAS  PubMed  Google Scholar 

  44. Parkhouse WS, Coupland DC, Li C, Vanderhoek KJ. IGF-1 bioavailability is increased by resistance training in older women with low bone mineral density. Mech Ageing Dev. 2000;113(2):75–83.

    CAS  PubMed  Google Scholar 

  45. Bermon S, Ferrari P, Bernard P, Altare S, Dolisi C. Responses of total and free insulin-like growth factor-I and insulin-like growth factor binding protein-3 after resistance exercise and training in elderly subjects. Acta Physiol Scand. 1999;165(1):51–6.

    CAS  PubMed  Google Scholar 

  46. Nindl BC, Alemany JA, Tuckow AP, Kellogg MD, Sharp MA, Patton JF. Effects of exercise mode and duration on 24-h IGF-I system recovery responses. Med Sci Sports Exerc. 2009;41(6):1261–70.

    CAS  PubMed  Google Scholar 

  47. Stewart CE, Rotwein P. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev. 1996;76(4):1005–26.

    CAS  PubMed  Google Scholar 

  48. Nakamura T, Sakai K, Matsumoto K. Hepatocyte growth factor twenty years on: much more than a growth factor. J Gastroenterol Hepatol. 2011;26(Suppl 1):188–202.

    CAS  PubMed  Google Scholar 

  49. Tanaka Y, Yamaguchi A, Fujikawa T, Sakuma K, Morita I, Ishii K. Expression of mRNA for specific fibroblast growth factors associates with that of the myogenic markers MyoD and proliferating cell nuclear antigen in regenerating and overloaded rat plantaris muscle. Acta Physiol (Oxf). 2008;194(2):149–59.

    CAS  Google Scholar 

  50. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res. 2001;267(1):107–14.

    CAS  PubMed  Google Scholar 

  51. Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z, Greenway S, Craven S, Scott E, et al. C-Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem. 2003;51(11):1437–45.

    CAS  PubMed  Google Scholar 

  52. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol. 1998;194(1):114–28.

    CAS  PubMed  Google Scholar 

  53. Hossain M, Irwin R, Baumann MJ, McCabe LR. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces. Biomaterials. 2005;26(15):2595–602.

    CAS  PubMed  Google Scholar 

  54. Standal T, Abildgaard N, Fagerli UM, Stordal B, Hjertner O, Borset M, et al. HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood. 2007;109(7):3024–30.

    CAS  PubMed  Google Scholar 

  55. Adamopoulos IE, Xia Z, Lau YS, Athanasou NA. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem Biophys Res Commun. 2006;350(2):478–83.

    CAS  PubMed  Google Scholar 

  56. Grano M, Galimi F, Zambonin G, Colucci S, Cottone E, Zallone AZ, et al. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. Proc Natl Acad Sci U S A. 1996;93(15):7644–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Cui Q, Wang Z, Jiang D, Qu L, Guo J, Li Z. HGF inhibits TGF-beta1-induced myofibroblast differentiation and ECM deposition via MMP-2 in achilles tendon in rat. Eur J Appl Physiol. 2011;111(7):1457–63.

    CAS  PubMed  Google Scholar 

  58. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H, et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng. 2010;2010:218142.

    PubMed Central  PubMed  Google Scholar 

  59. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2000;103(2):211–25.

    CAS  PubMed  Google Scholar 

  60. Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS Lett. 2008;582(27):3805–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lamothe B, Yamada M, Schaeper U, Birchmeier W, Lax I, Schlessinger J. The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol Cell Biol. 2004;24(13):5657–66.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Yamaguchi A, Ishii H, Morita I, Oota I, Takeda H. mRNA expression of fibroblast growth factors and hepatocyte growth factor in rat plantaris muscle following denervation and compensatory overload. Pflugers Arch. 2004;448(5):539–46.

    CAS  PubMed  Google Scholar 

  63. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z. Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem. 2000;48(8):1079–96.

    CAS  PubMed  Google Scholar 

  64. Fox JC, Swain JL. Auto and transactivation of FGF expression: potential mechanism for regulation of myogenic differentiation. Vitro Cell Dev Biol. 1993;29A(3 Pt 1):228–30.

    CAS  Google Scholar 

  65. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev. 2005;16(2):205–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Li H, Martin A, David V, Quarles LD. Compound deletion of Fgfr3 and Fgfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab. 2011;300(3):E508–17.

    CAS  PubMed  Google Scholar 

  67. Haussler MR, Whitfield GK, Kaneko I, Forster R, Saini R, Hsieh JC, et al. The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis. Rev Endocr Metab Disord. 2012;13(1):57–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    CAS  PubMed  Google Scholar 

  69. Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, et al. Circulating FGF-21 levels in normal subjects and in newly diagnose patients with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes. 2008;116(1):65–8.

    CAS  PubMed  Google Scholar 

  70. Devaraj S, Duncan-Staley C, Jialal I. Evaluation of a method for fibroblast growth factor-23: a novel biomarker of adverse outcomes in patients with renal disease. Metab Syndr Relat Disord. 2010;8(6):477–82.

    CAS  PubMed  Google Scholar 

  71. Nessler M, Puchala J, Wood FM, Wallace HJ, Fear MW, Nessler K, et al. Changes in the plasma cytokine and growth factor profile are associated with impaired healing in pediatric patients treated with INTEGRA((R)) for reconstructive procedures. Burns. 2013;39(4):667–73.

    PubMed  Google Scholar 

  72. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.

    CAS  PubMed  Google Scholar 

  73. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147(1):35–51.

    CAS  PubMed  Google Scholar 

  74. Nam J, Perera P, Rath B, Agarwal S. Dynamic regulation of bone morphogenetic proteins in engineered osteochondral constructs by biomechanical stimulation. Tissue Eng Part A. 2013;19(5–6):783–92.

    CAS  PubMed  Google Scholar 

  75. Santos A, Bakker AD, Willems HM, Bravenboer N, Bronckers AL, Klein-Nulend J. Mechanical loading stimulates BMP7, but not BMP2, production by osteocytes. Calcif Tissue Int. 2011;89(4):318–26.

    CAS  PubMed  Google Scholar 

  76. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Umemoto T, Furutani Y, Murakami M, Matsui T, Funaba M. Endogenous Bmp4 in myoblasts is required for myotube formation in C2C12 cells. Biochim Biophys Acta. 2011;1810(12):1127–35.

    CAS  PubMed  Google Scholar 

  78. Watt KI, Jaspers RT, Atherton P, Smith K, Rennie MJ, Ratkevicius A, et al. SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force. Muscle Nerve. 2010;41(5):624–9.

    CAS  PubMed  Google Scholar 

  79. Katagiri T, Akiyama S, Namiki M, Komaki M, Yamaguchi A, Rosen V, et al. Bone morphogenetic protein-2 inhibits terminal differentiation of myogenic cells by suppressing the transcriptional activity of MyoD and myogenin. Exp Cell Res. 1997;230(2):342–51.

    CAS  PubMed  Google Scholar 

  80. Shi S, Hoogaars WM, de Gorter DJ, van Heiningen SH, Lin HY, Hong CC, et al. BMP antagonists enhance myogenic differentiation and ameliorate the dystrophic phenotype in a DMD mouse model. Neurobiol Dis. 2011;41(2):353–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Ono Y, Calhabeu F, Morgan JE, Katagiri T, Amthor H, Zammit PS. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ. 2011;18(2):222–34.

    CAS  PubMed  Google Scholar 

  82. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009;30(3):379–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, t Hoen PA. Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genom. 2005;6:98.

    CAS  Google Scholar 

  84. Kohno T, Ishibashi Y, Tsuda E, Kusumi T, Tanaka M, Toh S. Immunohistochemical demonstration of growth factors at the tendon-bone interface in anterior cruciate ligament reconstruction using a rabbit model. J Orthop Sci. 2007;12(1):67–73.

    CAS  PubMed  Google Scholar 

  85. Fu SC, Wong YP, Chan BP, Pau HM, Cheuk YC, Lee KM, et al. The roles of bone morphogenetic protein (BMP) 12 in stimulating the proliferation and matrix production of human patellar tendon fibroblasts. Life Sci. 2003;72(26):2965–74.

    CAS  PubMed  Google Scholar 

  86. Ruschke K, Hiepen C, Becker J, Knaus P. BMPs are mediators in tissue crosstalk of the regenerating musculoskeletal system. Cell Tissue Res. 2012;347(3):521–44.

    CAS  PubMed  Google Scholar 

  87. Choi YJ, Kim ST, Park KH, Oh SC, Seo JH, Shin SW, et al. The serum bone morphogenetic protein-2 level in non-small-cell lung cancer patients. Med Oncol. 2012;29(2):582–8.

    CAS  PubMed  Google Scholar 

  88. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19–39.

    CAS  PubMed  Google Scholar 

  89. Yoon JK, Lee JS. Cellular signaling and biological functions of R-spondins. Cell Signal. 2012;24(2):369–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

    CAS  PubMed  Google Scholar 

  91. von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA. Wnt signaling in myogenesis. Trends Cell Biol. 2012;22(11):602–9.

    Google Scholar 

  92. Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4(6):535–47.

    PubMed Central  PubMed  Google Scholar 

  93. von Maltzahn J, Bentzinger CF, Rudnicki MA. Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat Cell Biol. 2012;14(2):186–91.

    Google Scholar 

  94. Armstrong DD, Esser KA. Wnt/beta-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy. Am J Physiol Cell Physiol. 2005;289(4):C853–9.

    CAS  PubMed  Google Scholar 

  95. Goliasch G, Wiesbauer F, Kastl SP, Katsaros KM, Blessberger H, Maurer G, et al. Premature myocardial infarction is associated with low serum levels of Wnt-1. Atherosclerosis. 2012;222(1):251–6.

    CAS  PubMed  Google Scholar 

  96. Denhardt DT, Giachelli CM, Rittling SR. Role of osteopontin in cellular signaling and toxicant injury. Annu Rev Pharmacol Toxicol. 2001;41:723–49.

    CAS  PubMed  Google Scholar 

  97. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3(3–4):311–22.

    PubMed Central  PubMed  Google Scholar 

  98. Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, et al. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry. Biochemistry. 2005;44(18):6990–7003.

    CAS  PubMed  Google Scholar 

  99. Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S, et al. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem. 1999;274(51):36328–34.

    CAS  PubMed  Google Scholar 

  100. Wang KX, Denhardt DT. Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev. 2008;19(5–6):333–45.

    CAS  PubMed  Google Scholar 

  101. Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin—a possible anchor of osteoclasts to bone. Proc Natl Acad Sci U S A. 1990;87(12):4473–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med. 2005;201(11):1781–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Hoggatt J, Pelus LM. Mobilization of hematopoietic stem cells from the bone marrow niche to the blood compartment. Stem Cell Res Ther. 2011;2(2):13.

    PubMed Central  PubMed  Google Scholar 

  104. Hoffman EP, Gordish-Dressman H, McLane VD, Devaney JM, Thompson PD, Visich P, et al. Alterations in osteopontin modify muscle size in females in both humans and mice. Med Sci Sports Exerc. 2013;45(6):1060–8.

    CAS  PubMed  Google Scholar 

  105. Pegoraro E, Hoffman EP, Piva L, Gavassini BF, Cagnin S, Ermani M, et al. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology. 2011;76(3):219–26.

    CAS  PubMed  Google Scholar 

  106. Lim AM, Rischin D, Fisher R, Cao H, Kwok K, Truong D, et al. Prognostic significance of plasma osteopontin in patients with locoregionally advanced head and neck squamous cell carcinoma treated on TROG 02.02 phase III trial. Clin Cancer Res. 2012;18(1):301–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Georgiadou P, Iliodromitis EK, Kolokathis F, Varounis C, Gizas V, Mavroidis M, et al. Osteopontin as a novel prognostic marker in stable ischaemic heart disease: a 3-year follow-up study. Eur J Clin Invest. 2010;40(4):288–93.

    CAS  PubMed  Google Scholar 

  108. Schaefer L, Schaefer RM. Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res. 2010;339(1):237–46.

    CAS  PubMed  Google Scholar 

  109. Tanaka K, Matsumoto E, Higashimaki Y, Katagiri T, Sugimoto T, Seino S, et al. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem. 2012;287(15):11616–28.

    CAS  PubMed  Google Scholar 

  110. Shanahan CM, Cary NR, Osbourn JK, Weissberg PL. Identification of osteoglycin as a component of the vascular matrix. Differential expression by vascular smooth muscle cells during neointima formation and in atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 1997;17(11):2437–47.

    CAS  PubMed  Google Scholar 

  111. Yanga C-H, Culshawa GJ, Liua C-CL, Liu M–M, Frencha AT, Clementsa DN, Corcorana BM. Canine tissue-specific expression of multiple small leucine rich proteoglycans. Vet J. 2012;193:374–80.

    Google Scholar 

  112. Tootle TL. Genetic insights into the in vivo functions of prostaglandin signaling. Int J Biochem Cell Biol. 2013;45(8):1629–32.

    CAS  PubMed  Google Scholar 

  113. Woodiel FN, Fall PM, Raisz LG. Anabolic effects of prostaglandins in cultured fetal rat calvariae: structure-activity relations and signal transduction pathway. J Bone Miner Res. 1996;11(9):1249–55.

    CAS  PubMed  Google Scholar 

  114. Fall PM, Breault DT, Raisz LG. Inhibition of collagen synthesis by prostaglandins in the immortalized rat osteoblastic cell line Py1a: structure-activity relations and signal transduction mechanisms. J Bone Miner Res. 1994;9(12):1935–43.

    CAS  PubMed  Google Scholar 

  115. Westbroek I, Ajubi NE, Alblas MJ, Semeins CM, Klein-Nulend J, Burger EH, et al. Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun. 2000;268(2):414–9.

    CAS  PubMed  Google Scholar 

  116. Watzer B, Zehbe R, Halstenberg S, James Kirkpatrick C, Brochhausen C. Stability of prostaglandin E2 (PGE2) embedded in poly-D, L-lactide-co-glycolide microspheres: a pre-conditioning approach for tissue engineering applications. J Mater Sci Mater Med. 2009;20(6):1357–65.

    CAS  PubMed  Google Scholar 

  117. Rodemann HP, Goldberg AL. Arachidonic acid, prostaglandin E2 and F2 alpha influence rates of protein turnover in skeletal and cardiac muscle. J Biol Chem. 1982;257(4):1632–8.

    CAS  PubMed  Google Scholar 

  118. Shen W, Prisk V, Li Y, Foster W, Huard J. Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol. 2006;101(4):1215–21.

    CAS  PubMed  Google Scholar 

  119. Weinheimer EM, Jemiolo B, Carroll CC, Harber MP, Haus JM, Burd NA, et al. Resistance exercise and cyclooxygenase (COX) expression in human skeletal muscle: implications for COX-inhibiting drugs and protein synthesis. Am J Physiol Regul Integr Comp Physiol. 2007;292(6):R2241–8.

    CAS  PubMed  Google Scholar 

  120. Trappe TA, White F, Lambert CP, Cesar D, Hellerstein M, Evans WJ. Effect of ibuprofen and acetaminophen on postexercise muscle protein synthesis. Am J Physiol Endocrinol Metab. 2002;282(3):E551–6.

    CAS  PubMed  Google Scholar 

  121. Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol. 2012;6(3):223–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, et al. Angiogenic factors in bone local environment. Cytokine Growth Factor Rev. 2013;24(3):297–310.

    CAS  PubMed  Google Scholar 

  123. Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch. 2009;457(5):963–77.

    CAS  PubMed  Google Scholar 

  124. Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol. 2001;91(1):173–82.

    CAS  PubMed  Google Scholar 

  125. Egginton S, Badr I, Williams J, Hauton D, Baan GC, Jaspers RT. Physiological angiogenesis is a graded, not threshold response. J Physiol. 2011;589:195–206.

    CAS  PubMed  Google Scholar 

  126. Gustafsson T, Knutsson A, Puntschart A, Kaijser L, Nordqvist AC, Sundberg CJ, et al. Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflugers Arch. 2002;444(6):752–9.

    CAS  PubMed  Google Scholar 

  127. van der Laarse WJ, des Tombe AL, van Beek-Harmsen BJ, Lee-de Groot MB, Jaspers RT. Krogh’s diffusion coefficient for oxygen in isolated Xenopus skeletal muscle fibers and rat myocardial trabeculae at maximum rates of oxygen consumption. J Appl Physiol. 2005;99(6):2173–80.

    PubMed  Google Scholar 

  128. Richardson RS, Wagner H, Mudaliar SR, Henry R, Noyszewski EA, Wagner PD. Human VEGF gene expression in skeletal muscle: effect of acute normoxic and hypoxic exercise. Am J Physiol. 1999;277(6 Pt 2):H2247–52.

    CAS  PubMed  Google Scholar 

  129. Olfert IM, Howlett RA, Wagner PD, Breen EC. Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol. 2010;299(4):R1059–67.

    CAS  PubMed  Google Scholar 

  130. Goad DL, Rubin J, Wang H, Tashjian AH Jr, Patterson C. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology. 1996;137(6):2262–8.

    CAS  PubMed  Google Scholar 

  131. Trebec-Reynolds DP, Voronov I, Heersche JN, Manolson MF. VEGF-A expression in osteoclasts is regulated by NF-kappaB induction of HIF-1alpha. J Cell Biochem. 2010;110(2):343–51.

    CAS  PubMed  Google Scholar 

  132. Makey KL, Patterson SG, Robinson J, Loftin M, Waddell DE, Miele L, et al. Increased plasma levels of soluble vascular endothelial growth factor receptor 1 (sFlt-1) in women by moderate exercise and increased plasma levels of vascular endothelial growth factor in overweight/obese women. Eur J Cancer Prev. 2013;22(1):83–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol. 1990;145(10):3297–303.

    CAS  PubMed  Google Scholar 

  134. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78.

    CAS  PubMed  Google Scholar 

  135. Jonsdottir IH, Schjerling P, Ostrowski K, Asp S, Richter EA, Pedersen BK. Muscle contractions induce interleukin-6 mRNA production in rat skeletal muscles. J Physiol. 2000;528(Pt 1):157–63.

    CAS  PubMed  Google Scholar 

  136. Cheung WY, Simmons CA, You L. Osteocyte apoptosis regulates osteoclast precursor adhesion via osteocytic IL-6 secretion and endothelial ICAM-1 expression. Bone. 2012;50(1):104–10.

    CAS  PubMed  Google Scholar 

  137. Croisier JL, Camus G, Venneman I, Deby-Dupont G, Juchmes-Ferir A, Lamy M, et al. Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve. 1999;22(2):208–12.

    CAS  PubMed  Google Scholar 

  138. Febbraio MA, Pedersen BK. Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J. 2002;16(11):1335–47.

    CAS  PubMed  Google Scholar 

  139. Steensberg A, van Hall G, Osada T, Sacchetti M, Saltin B, Klarlund Pedersen B. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol. 2000;529(Pt 1):237–42.

    CAS  PubMed  Google Scholar 

  140. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55(10):2688–97.

    CAS  PubMed  Google Scholar 

  141. Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, et al. Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab. 2001;281(6):E1340–6.

    CAS  PubMed  Google Scholar 

  142. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.

    CAS  PubMed  Google Scholar 

  143. White JP, Puppa MJ, Gao S, Sato S, Welle SL, Carson JA. Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am J Physiol Endocrinol Metab. 2013;304(10):E1042–52.

    CAS  PubMed  Google Scholar 

  144. van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88(7):3005–10.

    PubMed  Google Scholar 

  145. Haddad F, Zaldivar F, Cooper DM, Adams GR. IL-6-induced skeletal muscle atrophy. J Appl Physiol. 2005;98(3):911–7.

    CAS  PubMed  Google Scholar 

  146. Washington TA, White JP, Davis JM, Wilson LB, Lowe LL, Sato S, et al. Skeletal muscle mass recovery from atrophy in IL-6 knockout mice. Acta Physiol (Oxf). 2011;202(4):657–69.

    CAS  PubMed Central  Google Scholar 

  147. Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37.

    CAS  PubMed  Google Scholar 

  148. Miyaura C, Kusano K, Masuzawa T, Chaki O, Onoe Y, Aoyagi M, et al. Endogenous bone-resorbing factors in estrogen deficiency: cooperative effects of IL-1 and IL-6. J Bone Miner Res. 1995;10(9):1365–73.

    CAS  PubMed  Google Scholar 

  149. Rufo A, Del Fattore A, Capulli M, Carvello F, De Pasquale L, Ferrari S, et al. Mechanisms inducing low bone density in Duchenne muscular dystrophy in mice and humans. J Bone Miner Res. 2011;26(8):1891–903.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Juffer P, Jaspers RT, Klein-Nulend J, Bakker AD. Mechanically loaded myotubes affect osteoclast formation. Calcif Tissue Int. 2013. doi:10.1007/s00223-013-9813-8.

  151. Tsuchida K, Nakatani M, Uezumi A, Murakami T, Cui X. Signal transduction pathway through activin receptors as a therapeutic target of musculoskeletal diseases and cancer. Endocr J. 2008;55(1):11–21.

    CAS  PubMed  Google Scholar 

  152. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003;162(6):1135–47.

    CAS  PubMed  Google Scholar 

  153. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol. 2006;209(2):501–14.

    CAS  PubMed  Google Scholar 

  154. Kim JS, Cross JM, Bamman MM. Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab. 2005;288(6):E1110–9.

    CAS  PubMed  Google Scholar 

  155. Matsakas A, Friedel A, Hertrampf T, Diel P. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand. 2005;183(3):299–307.

    CAS  PubMed  Google Scholar 

  156. Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol. 2007;103(5):1744–51.

    CAS  PubMed  Google Scholar 

  157. Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, et al. Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone. 2007;40(6):1544–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, et al. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8(5):573–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec. 2003;272(1):388–91.

    Google Scholar 

  160. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.

    CAS  PubMed  Google Scholar 

  161. Kellum E, Starr H, Arounleut P, Immel D, Fulzele S, Wenger K, et al. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 2009;44(1):17–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Elkasrawy M, Immel D, Wen X, Liu X, Liang LF, Hamrick MW. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J Histochem Cytochem. 2012;60(1):22–30.

    CAS  PubMed  Google Scholar 

  163. Carvallo L, Henriquez B, Paredes R, Olate J, Onate S, van Wijnen AJ, et al. 1alpha,25-dihydroxy vitamin D3-enhanced expression of the osteocalcin gene involves increased promoter occupancy of basal transcription regulators and gradual recruitment of the 1alpha,25-dihydroxy vitamin D3 receptor-SRC-1 coactivator complex. J Cell Physiol. 2008;214(3):740–9.

    CAS  PubMed  Google Scholar 

  164. Jung C, Ou YC, Yeung F, Frierson HF Jr, Kao C. Osteocalcin is incompletely spliced in non-osseous tissues. Gene. 2001;271(2):143–50.

    CAS  PubMed  Google Scholar 

  165. Neve A, Corrado A, Cantatore FP. Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol. 2013;228(6):1149–53.

    CAS  PubMed  Google Scholar 

  166. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Civitarese AE, Ukropcova B, Carling S, Hulver M, DeFronzo RA, Mandarino L, et al. Role of adiponectin in human skeletal muscle bioenergetics. Cell Metab. 2006;4(1):75–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  168. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318(9):1040–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Dusterhoft S, Putman CT, Pette D. Changes in FGF and FGF receptor expression in low-frequency-stimulated rat muscles and rat satellite cell cultures. Differentiation. 1999;65(4):203–8.

    CAS  PubMed  Google Scholar 

  170. Murata M, Miwa Y, Sato I. Expression of respiratory chain enzyme mRNA and the morphological properties of mitochondria in the masseter muscles of klotho mutant mice. Okajimas Folia Anat Jpn. 2009;86(3):93–103.

    CAS  PubMed  Google Scholar 

  171. Sogos V, Balaci L, Ennas MG, Dell’era P, Presta M, Gremo F. Developmentally regulated expression and localization of fibroblast growth factor receptors in the human muscle. Dev Dyn. 1998;211(4):362–73.

    CAS  PubMed  Google Scholar 

  172. Eash J, Olsen A, Breur G, Gerrard D, Hannon K. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension. BMC Musculoskelet Disord. 2007;8:32.

    PubMed Central  PubMed  Google Scholar 

  173. Mirza MA, Larsson A, Melhus H, Lind L, Larsson TE. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis. 2009;207(2):546–51.

    CAS  PubMed  Google Scholar 

  174. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  175. van Driel M, Koedam M, Buurman CJ, Hewison M, Chiba H, Uitterlinden AG, et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. FASEB J. 2006;20(13):2417–9.

    PubMed  Google Scholar 

  176. Srikuea R, Zhang X, Park-Sarge OK, Esser KA. VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol. 2012;303(4):C396–405.

    CAS  PubMed  Google Scholar 

  177. Ceglia L, Harris SS. Vitamin D and its role in skeletal muscle. Calcif Tissue Int. 2013;92(2):151–62.

    CAS  PubMed  Google Scholar 

  178. Bikle DD. Vitamin D and bone. Curr Osteoporos Rep. 2012;10(2):151–9.

    PubMed Central  PubMed  Google Scholar 

  179. Bellows CG, Reimers SM, Heersche JN. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res. 1999;297(2):249–59.

    CAS  PubMed  Google Scholar 

  180. Testerink J, Jaspers RT, Rittweger J, de Haan A, Degens H. Effects of alfacalcidol on circulating cytokines and growth factors in rat skeletal muscle. J Physiol Sci. 2011;61(6):525–35.

    CAS  PubMed  Google Scholar 

  181. Wang Y, DeLuca HF. Is the vitamin d receptor found in muscle? Endocrinology. 2011;152(2):354–63.

    CAS  PubMed  Google Scholar 

  182. Jones AN, Hansen KE. Recognizing the musculoskeletal manifestations of vitamin D deficiency. J Musculoskelet Med. 2009;26(10):389–96.

    PubMed Central  PubMed  Google Scholar 

  183. Bischoff-Ferrari HA, Willett WC, Wong JB, Stuck AE, Staehelin HB, Orav EJ, et al. Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med. 2009;169(6):551–61.

    CAS  PubMed  Google Scholar 

  184. Holick MF. Vitamin D: extraskeletal health. Endocrinol Metab Clin North Am. 2010;39(2):381–400.

    CAS  PubMed  Google Scholar 

  185. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN. 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology. 2011;152(8):2976–86.

    CAS  PubMed  Google Scholar 

  186. Buitrago CG, Arango NS, Boland RL. 1alpha,25(OH)2D3-dependent modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J Cell Biochem. 2012;113(4):1170–81.

    CAS  PubMed  Google Scholar 

  187. Campbell GR, Pallack ZT, Spector SA. Vitamin D attenuates nucleoside reverse transcriptase inhibitor induced human skeletal muscle mitochondria DNA depletion. AIDS. 2013;27(9):1397–401.

    Google Scholar 

  188. Chen YH, Wu YW, Yang WS, Wang SS, Lee CM, Chou NK, et al. Relationship between bone mineral density and serum osteoprotegerin in patients with chronic heart failure. PLoS ONE. 2012;7(8):e44242.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Lawrie A, Waterman E, Southwood M, Evans D, Suntharalingam J, Francis S, et al. Evidence of a role for osteoprotegerin in the pathogenesis of pulmonary arterial hypertension. Am J Pathol. 2008;172(1):256–64.

    CAS  PubMed  Google Scholar 

  190. Olesen M, Skov V, Mechta M, Mumm BH, Rasmussen LM. No influence of OPG and its ligands, RANKL and TRAIL, on proliferation and regulation of the calcification process in primary human vascular smooth muscle cells. Mol Cell Endocrinol. 2012;362(1–2):149–56.

    CAS  PubMed  Google Scholar 

  191. Singh S, Vinson C, Gurley CM, Nolen GT, Beggs ML, Nagarajan R, et al. Impaired Wnt signaling in embryonal rhabdomyosarcoma cells from p53/c-fos double mutant mice. Am J Pathol. 2010;177(4):2055–66.

    CAS  PubMed  Google Scholar 

  192. Han XH, Jin YR, Seto M, Yoon JK. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J Biol Chem. 2011;286(12):10649–59.

    CAS  PubMed  Google Scholar 

  193. Alshryda S, Shah A, Odak S, Al-Shryda J, Ilango B, Murali SR. Acute fractures of the scaphoid bone: systematic review and meta-analysis. Surgeon. 2012;10(4):218–29.

    CAS  PubMed  Google Scholar 

  194. Shah K, Majeed Z, Jonason J, O’Keefe RJ. The role of muscle in bone repair: the cells, signals, and tissue responses to injury. Curr Osteoporos Rep. 2013;11(2):130–5.

    PubMed  Google Scholar 

  195. Liu R, Birke O, Morse A, Peacock L, Mikulec K, Little DG, et al. Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet Disord. 2011;12:288.

    PubMed Central  PubMed  Google Scholar 

  196. Hao Y, Ma Y, Wang X, Jin F, Ge S. Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur. J Orthop Res. 2012;30(4):574–80.

    CAS  PubMed  Google Scholar 

  197. Shao C, Liu M, Wu X, Ding F. Time-dependent expression of myostatin RNA transcript and protein in gastrocnemius muscle of mice after sciatic nerve resection. Microsurgery. 2007;27(5):487–93.

    PubMed  Google Scholar 

  198. Gustafsson T, Osterlund T, Flanagan JN, von Walden F, Trappe TA, Linnehan RM, et al. Effects of 3 days unloading on molecular regulators of muscle size in humans. J Appl Physiol. 2010;109(3):721–7.

    CAS  PubMed  Google Scholar 

  199. Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, et al. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol. 2013;48(9):898–904.

    CAS  PubMed  Google Scholar 

  200. Body JJ, Bergmann P, Boonen S, Boutsen Y, Bruyere O, Devogelaer JP, et al. Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporos Int. 2011;22(11):2769–88.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Huib van Essen for technical assistance with the staining and Guus Baan for his help in the imaging and graphical design of the figures.

Disclosures

Conflict of interest

Richard Jaspers and Nathalie Bravenboer declare that they have no conflict of interest.

Animal/Human Studies

This article does not include any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard T. Jaspers.

Additional information

Richard T. Jaspers and Nathalie Bravenboer have contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaspers, R.T., Bravenboer, N. Biochemical Interaction Between Muscle and Bone: A Physiological Reality?. Clinic Rev Bone Miner Metab 12, 27–43 (2014). https://doi.org/10.1007/s12018-014-9156-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-014-9156-7

Keywords

Navigation