Skip to main content

Advertisement

Log in

Fracture Risk Assessment in Clinical Practice: T-scores, FRAX, and Beyond

  • Original Paper
  • Published:
Clinical Reviews in Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Assessment of fracture risk is a key component in the evaluation of skeletal health and a critical step in determining whether to initiate pharmacological therapy to reduce fracture risk. The identification of high risk patients allows clinicians to direct limited healthcare resources to those who are most likely to benefit. Bone mineral density (BMD) and clinical risk factors (CRFs) for fracture predict fracture risk better than BMD or CRFs alone. Dual-energy X-ray absorptiometry (DXA) is a technology for the measurement of BMD to diagnose osteoporosis, assess fracture risk, and monitor the BMD response to therapy. Validated CRFs and femoral neck BMD by DXA, when available, provide the input for the World Health Organization fracture risk assessment tool (FRAX) to estimate the 10-year probability of fracture in untreated patients. Economic models have included FRAX in calculations to estimate when pharmacological intervention is likely to be cost-effective in reducing fracture risk. Cost-effectiveness is one of many factors to consider in making treatment decisions. This is a review of the benefits and limitations of BMD testing, CRFs, and FRAX in the management of patients in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Klibanski A, Adams-Campbell L, Bassford T, Blair SN, Boden SD, Dickersin K, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.

    Google Scholar 

  2. Kanis JA, on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical Report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK: Printed by the University of Sheffield; 2007.

  3. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation; 2008.

    Google Scholar 

  4. US Department of Health and Human Services. Bone health and osteoporosis: a report of the surgeon general. Rockville, MD: US Department of Health and Human Services, Office of the Surgeon General; 2004.

    Google Scholar 

  5. Cooper C, Johnell O, Lips P, Melton LJ, Kanis JA. The global burden of vertebral fractures (abstract). J Bone Miner Res. 2002;17(Suppl 1):S202.

    Google Scholar 

  6. Johnell O, Kanis JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int. 2004;15(11):897–902.

    PubMed  CAS  Google Scholar 

  7. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82.

    PubMed  CAS  Google Scholar 

  8. Cooper C. The crippling consequences of fractures and their impact on quality of life. Am J Med. 1997;103(2A):12S–9S.

    PubMed  CAS  Google Scholar 

  9. Silverman SL. The clinical consequences of vertebral compression fracture. Bone. 1992;13(Suppl 2):S27–31.

    PubMed  Google Scholar 

  10. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    PubMed  Google Scholar 

  11. Kanis JA, Johnell O. Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int. 2005;16(3):229–38.

    PubMed  CAS  Google Scholar 

  12. WHO Study Group on Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Geneva: World Health Organization; 1994.

    Google Scholar 

  13. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, et al. Official Positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom. 2008;11(1):75–91.

    PubMed  Google Scholar 

  14. World Health Organization. FRAX WHO Fracture Risk Assessment Tool. World Health Organization 2008 [cited 2008 Oct 22]. http://www.shef.ac.uk/FRAX/.

  15. McCloskey EV, Johansson H, Oden A, Vasireddy S, Kayan K, Pande K, et al. Ten-year fracture probability identifies women who will benefit from clodronate therapy–additional results from a double-blind, placebo-controlled randomised study. Osteoporos Int. 2009;20(5):811–7.

    PubMed  CAS  Google Scholar 

  16. Kanis JA, Johansson H, Oden A, McCloskey EV. Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX((R)). Bone. 2009;44(6):1049–54.

    PubMed  CAS  Google Scholar 

  17. Liberman UA, Weiss SR, Broll J, Minne H, Quan H, Bell NH, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med. 1995;333:1437–43.

    PubMed  CAS  Google Scholar 

  18. Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet. 1996;348:1535–41.

    PubMed  CAS  Google Scholar 

  19. Cummings SR, Black DM, Thompson DE, Applegate WB, Barrett-Connor E, Musliner TA, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures—results from the fracture intervention trial. JAMA. 1998;280(24):2077–82.

    PubMed  CAS  Google Scholar 

  20. McClung MR, Geusens P, Miller PD, Zippel H, Bensen WG, Roux C, et al. Effect of risedronate on the risk of hip fracture in elderly women. N Engl J Med. 2001;344:333–40.

    PubMed  CAS  Google Scholar 

  21. Reginster J-Y, Minne HW, Sorensen OH, Hooper M, Roux C, Brandi ML, et al. Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Osteoporos Int. 2000;11:83–91.

    PubMed  CAS  Google Scholar 

  22. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T, Keller M, et al. Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral efficacy with risedronate therapy (VERT) Study Group. JAMA. 1999;282(14):1344–52.

    PubMed  CAS  Google Scholar 

  23. Chesnut CH III, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, et al. Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res. 2004;19(8):1241–9.

    CAS  Google Scholar 

  24. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.

    PubMed  CAS  Google Scholar 

  25. Lyles KW, Colon-Emeric CS, Magaziner JS, Adachi JD, Pieper CF, Mautalen C, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med. 2007;357(18):1799–809.

    PubMed  CAS  Google Scholar 

  26. Ettinger B, Black DM, Mitlak BH, Knickerbocker RK, Nickelsen T, Genant HK, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene—results from a 3-year randomized clinical trial. JAMA. 1999;282(7):637–45.

    PubMed  CAS  Google Scholar 

  27. Chesnut CH III, Silverman S, Andriano K, Genant H, Gimona A, Harris S, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000;109(4):267–76.

    PubMed  CAS  Google Scholar 

  28. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    PubMed  CAS  Google Scholar 

  29. Greenspan SL, Bone HG, Ettinger MP, Hanley DA, Lindsay R, Zanchetta JR, et al. Effect of recombinant human parathyroid hormone (1–84) on vertebral fracture and bone mineral density in postmenopausal women with osteoporosis: a randomized trial. Ann Intern Med. 2007;146(5):326–39.

    PubMed  Google Scholar 

  30. Reginster JY, Seeman E, De Vernejoul MC, Adami S, Compston J, Phenekos C, et al. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab. 2005;90(5):2816–22.

    PubMed  CAS  Google Scholar 

  31. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski JE, Spector TD, et al. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med. 2004;350(5):459–68.

    PubMed  CAS  Google Scholar 

  32. Silverman SL, Christiansen C, Genant HK, Vukicevic S, Zanchetta JR, de Villiers TJ, et al. Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis: results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res. 2008;23(12):1923–34.

    PubMed  CAS  Google Scholar 

  33. Cummings SR, Eastell R, Ensrud K, Reid DM, Vukicevic S, Lacroix A, et al. The effects of lasofoxifene on fractures and breast cancer: 3-year results from the PEARL trial. J Bone Miner Res. 2008;23(Suppl 1):S81.

    Google Scholar 

  34. Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women. JAMA. 2002;288:321–33.

    Google Scholar 

  35. Anderson GL, Limacher M, Assaf AR, Bassford T, Beresford SA, Black H, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the women’s health initiative randomized controlled trial. JAMA. 2004;291(14):1701–12.

    PubMed  CAS  Google Scholar 

  36. Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int. 2005;16(2):134–41.

    PubMed  Google Scholar 

  37. Gehlbach SH, Fournier M, Bigelow C. Recognition of osteoporosis by primary care physicians. Am J Public Health. 2002;92(2):271–3.

    PubMed  Google Scholar 

  38. Solomon DH, Finkelstein JS, Katz JN, Mogun H, Avorn J. Underuse of osteoporosis medications in elderly patients with fractures. Am J Med. 2003;115(5):398–400.

    PubMed  Google Scholar 

  39. Kiebzak GM, Beinart GA, Perser K, Ambrose CG, Siff SJ, Heggeness MH. Undertreatment of osteoporosis in men with hip fracture. Arch Intern Med. 2002;162(19):2217–22.

    PubMed  Google Scholar 

  40. Panneman MJ, Lips P, Sen SS, Herings RM. Undertreatment with anti-osteoporotic drugs after hospitalization for fracture. Osteoporos Int. 2004;15(2):120–4.

    PubMed  Google Scholar 

  41. Kamel HK, Hussain MS, Tariq S, Perry HM III, Morley JE. Failure to diagnose and treat osteoporosis in elderly patients hospitalized with hip fracture. Am J Med. 2000;109(4):326–8.

    PubMed  CAS  Google Scholar 

  42. Cramer JA, Gold DT, Silverman SL, Lewiecki EM. A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos Int. 2007;18(8):1023–31.

    PubMed  CAS  Google Scholar 

  43. Siris ES, Harris ST, Rosen CJ, Barr CE, Arvesen JN, Abbott TA, et al. Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: relationship to vertebral and nonvertebral fractures from 2 US claims databases. Mayo Clin Proc. 2006;81(8):1013–22.

    PubMed  Google Scholar 

  44. Lewiecki EM. Clinical applications of bone density testing for osteoporosis. Minerva Med. 2005;96(5):317–30.

    PubMed  CAS  Google Scholar 

  45. Lewiecki EM, Richmond B, Miller PD. Uses and misuses of quantitative ultrasonography in managing osteoporosis. Cleve Clin J Med. 2006;73(8):742–52.

    PubMed  Google Scholar 

  46. Ravn P, Overgaard K, Huang C, Ross PD, Green D, McClung M. Comparison of bone densitometry of the phalanges, distal forearm and axial skeleton in early postmenopausal women participating in the EPIC Study. Osteoporos Int. 1996;4:308–13.

    Google Scholar 

  47. Yang S-O, Hagiwars S, Engelke K, Dhillon MS, Guglielmi G, Bendavid BA, et al. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Radiology. 1994;192:857–9.

    PubMed  CAS  Google Scholar 

  48. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.

    PubMed  CAS  Google Scholar 

  49. Hans DB, Shepherd JA, Schwartz EN, Reid DM, Blake GM, Fordham JN, et al. Peripheral dual-energy X-ray absorptiometry in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):188–206.

    PubMed  Google Scholar 

  50. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):123–62.

    PubMed  Google Scholar 

  51. Krieg MA, Barkmann R, Gonnelli S, Stewart A, Bauer DC, Del Rio BL, et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom. 2008;11(1):163–87.

    PubMed  Google Scholar 

  52. Miller PD, Njeh CF, Jankowski LG, Lenchik L, International Society for Clinical Densitometry Position Development Panel and Scientific Advisory Committee. What are the standards by which bone mass measurement at peripheral skeletal sites should be used in the diagnosis of osteoporosis? J Clin Densitom. 2002;5(Suppl):S39–45.

    PubMed  Google Scholar 

  53. Bonnick SL, Johnston CC Jr, Kleerekoper M, Lindsay R, Miller P, Sherwood L, et al. Importance of precision in bone density measurements. J Clin Densitom. 2001;4(2):105–10.

    PubMed  CAS  Google Scholar 

  54. Lewiecki EM, Laster AJ. Clinical Applications of Vertebral Fracture Assessment by Dual-Energy X-Ray Absorptiometry. J Clin Endocrinol Metab. 2006;91(11):4215–22.

    PubMed  CAS  Google Scholar 

  55. Bouxsein ML, Delmas PD. Considerations for development of surrogate endpoints for antifracture efficacy of new treatments in osteoporosis: a perspective. J Bone Miner Res. 2008;23(8):1155–67.

    PubMed  Google Scholar 

  56. Lotz JC, Cheal EJ, Hayes WC. Fracture prediction for the proximal femur using finite element models: Part I–Linear analysis. J Biomech Eng. 1991;113:353–60.

    PubMed  CAS  Google Scholar 

  57. Cranney A, Tugwell P, Wells G, Guyatt G. Systematic reviews of randomized trials in osteoporosis: Introduction and methodology. Endocr Rev. 2002;23(4):497–507.

    CAS  Google Scholar 

  58. Mazess R, Chesnut CH III, McClung M, Genant H. Enhanced precision with dual-energy X-ray absorptiometry. Calcif Tissue Int. 1992;51(1):14–7.

    PubMed  CAS  Google Scholar 

  59. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res. 1996;11(6):707–30.

    PubMed  CAS  Google Scholar 

  60. Yang L, Peel N, Clowes JA, McCloskey EV, Eastell R. Use of DXA-based structural engineering models of the proximal femur to discriminate hip fracture. J Bone Miner Res. 2009;24(1):33–42.

    PubMed  Google Scholar 

  61. Orwoll ES, Marshall LM, Nielson CM, Cummings SR, Lapidus J, Cauley JA, et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24(3):475–83.

    PubMed  Google Scholar 

  62. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33(4):744–50.

    PubMed  Google Scholar 

  63. Wainwright SA, Marshall LM, Ensrud KE, Cauley JA, Black DM, Hillier TA, et al. Hip fracture in women without osteoporosis. J Clin Endocrinol Metab. 2005;90(5):2787–93.

    PubMed  CAS  Google Scholar 

  64. Sanders KM, Nicholson GC, Watts JJ, Pasco JA, Henry MJ, Kotowicz MA, et al. Half the burden of fragility fractures in the community occur in women without osteoporosis When is fracture prevention cost-effective? Bone. 2006;38(5):694–700.

    PubMed  Google Scholar 

  65. Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD. Low bone mineral density and fracture burden in postmenopausal women. CMAJ. 2007;177(6):575–80.

    PubMed  Google Scholar 

  66. National Osteoporosis Foundation. Physician’s guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation; 2003.

    Google Scholar 

  67. Lewiecki EM. Review of guidelines for bone mineral density testing and treatment of osteoporosis. Curr Osteoporos Rep. 2005;3(3):75–83.

    PubMed  Google Scholar 

  68. Kanis JA, Black D, Cooper C, Dargent P, wson-Hughes B, De Laet C, et al. A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int. 2002;13(7):527–36.

    PubMed  CAS  Google Scholar 

  69. WHO Scientific Group on the Assessment of Osteoporosis at Primary Health Care Level: World Health Organization 2004 [cited 2008 Nov 2]. http://www.nof.org/professionals/WHO_Osteoporosis_Summary.pdf.

  70. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int. 1998;8(5):468–89.

    PubMed  CAS  Google Scholar 

  71. Oregon Osteoporosis Center, National Osteoporosis Foundation, WHO Fracture Risk Task Force. The FRAX Patch. National Osteoporosis Foundation 2008 [cited 2008 Oct 22]. http://www.nof.org/frax_patch.htm.

  72. De Laet C, Oden A, Johansson H, Johnell O, Jonsson B, Kanis JA. The impact of the use of multiple risk indicators for fracture on case-finding strategies: a mathematical approach. Osteoporos Int. 2005;16(3):313–8.

    PubMed  Google Scholar 

  73. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18(8):1033–46.

    PubMed  CAS  Google Scholar 

  74. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA. 2002;288:1889–97.

    PubMed  Google Scholar 

  75. Kanis JA, Johnell O, Oden A, Dawson A, De Laet C, Jonsson B. Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int. 2001;12(12):989–95.

    PubMed  CAS  Google Scholar 

  76. Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA III, Berger M. Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res. 2000;15(4):721–39.

    PubMed  CAS  Google Scholar 

  77. Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285:320–3.

    PubMed  CAS  Google Scholar 

  78. Gallagher JC, Genant HK, Crans GG, Vargas SJ, Krege JH. Teriparatide reduces the fracture risk associated with increasing number and severity of osteoporotic fractures 1. J Clin Endocrinol Metab. 2005;90(3):1583–7.

    PubMed  CAS  Google Scholar 

  79. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral deformities predict hip fractures and new vertebral fractures but not wrist fractures. J Bone Miner Res. 1999;14:821–8.

    PubMed  CAS  Google Scholar 

  80. Kanis JA, Johansson H, Oden A, Johnell O, De Laet C, Eisman JA, et al. A family history of fracture and fracture risk: a meta-analysis. Bone. 2004;35(5):1029–37.

    PubMed  CAS  Google Scholar 

  81. Kanis JA, Johnell O, Oden A, Johansson H, De Laet C, Eisman JA, et al. Smoking and fracture risk: a meta-analysis. Osteoporos Int. 2005;16(2):155–62.

    PubMed  CAS  Google Scholar 

  82. Hoidrup S, Gronbaek M, Gottschau A, Lauritzen JB, Schroll M. Alcohol intake, beverage preference, and risk of hip fracture in men and women. Copenhagen Centre for Prospective Population Studies. Am J Epidemiol. 1999;149(11):993–1001.

    PubMed  CAS  Google Scholar 

  83. Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN. Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol. 1996;144:258–61.

    Google Scholar 

  84. Hoidrup S, Gronbæk M, Pedersen AT, Lauritzen JB, Gottschau A, Schroll M. Hormone replacement therapy and hip fracture risk: Effect modification by tobacco smoking, alcohol intake, physical activity, and body mass index. Am J Epidemiol. 1999;150(10):1085–93.

    PubMed  CAS  Google Scholar 

  85. van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15:993–1000.

    PubMed  Google Scholar 

  86. van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Oral corticosteroids and fracture risk: relationship to daily and cumulative dosing. Rheumatology. 2000;39:1383–9.

    PubMed  Google Scholar 

  87. Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton LJ III, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9.

    PubMed  Google Scholar 

  88. Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332(12):767–73.

    PubMed  CAS  Google Scholar 

  89. De Laet C, Kanis JA, Oden A, Johanson H, Johnell O, Delmas P, et al. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005;16(11):1330–8.

    PubMed  Google Scholar 

  90. Ross PD, Knowlton W. Rapid bone loss is associated with increased levels of biochemical markers. J Bone Miner Res. 1998;13(2):297–302.

    PubMed  CAS  Google Scholar 

  91. Garnero P, Hausherr E, Chapuy M-C, Marcelli C, Grandjean H, Muller C, et al. Markers of bone resorption predict hip fracture in elderly women: The EPIDOS prospective study. J Bone Miner Res. 1996;11:1531–8.

    Article  PubMed  CAS  Google Scholar 

  92. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: The OFELY study. J Bone Miner Res. 2000;15(8):1526–36.

    PubMed  CAS  Google Scholar 

  93. Gerdhem P, Ivaska KK, Alatalo SL, Halleen JM, Hellman J, Isaksson A, et al. Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res. 2004;19(3):386–93.

    PubMed  CAS  Google Scholar 

  94. Chen JS, Seibel MJ, Zochling J, March L, Cameron ID, Cumming RG, et al. Calcaneal ultrasound but not bone turnover predicts fractures in vitamin D deficient frail elderly at high risk of falls. Calcif Tissue Int. 2006;79(1):37–42.

    PubMed  CAS  Google Scholar 

  95. Hannon R, Eastell R. Preanalytical variability of biochemical markers of bone turnover. Osteoporos Int. 2000;11(Suppl 6):S30–44.

    PubMed  Google Scholar 

  96. Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122.

    PubMed  Google Scholar 

  97. Seibel MJ, Lang M, Geilenkeuser WJ. Interlaboratory variation of biochemical markers of bone turnover. Clin Chem. 2001;47(8):1443–50.

    PubMed  CAS  Google Scholar 

  98. Glover SJ, Gall M, Schoenborn-Kellenberger O, Wagener M, Garnero P, Boonen S, et al. Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J Bone Miner Res. 2009;24(3):389–97.

    PubMed  Google Scholar 

  99. Glover SJ, Garnero P, Naylor K, Rogers A, Eastell R. Establishing a reference range for bone turnover markers in young, healthy women. Bone. 2008;42(4):623–30.

    PubMed  CAS  Google Scholar 

  100. Iki M, Akiba T, Matsumoto T, Nishino H, Kagamimori S, Kagawa Y, et al. Reference database of biochemical markers of bone turnover for the Japanese female population Japanese Population-based Osteoporosis (JPOS) Study. Osteoporos Int. 2004;15(12):981–91.

    PubMed  CAS  Google Scholar 

  101. Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX((R)) and its applications to clinical practice. Bone. 2009;44(5):734–43.

    PubMed  Google Scholar 

  102. Ettinger B. A personal perspective on fracture risk assessment tools. Menopause. 2008;15(5):1023–6.

    PubMed  Google Scholar 

  103. Tosteson AN, Melton LJ III, Dawson-Hughes B, Baim S, Favus MJ, Khosla S, et al. Cost-effective osteoporosis treatment thresholds: the United States perspective. Osteoporos Int. 2008;19(4):437–47.

    PubMed  CAS  Google Scholar 

  104. Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008;19(4):399–428.

    PubMed  CAS  Google Scholar 

  105. Siminoski K, Leslie WD, Frame H, Hodsman A, Josse RG, Khan A, et al. Recommendations for bone mineral density reporting in Canada: a shift to absolute fracture risk assessment. J Clin Densitom. 2007;10(2):120–3.

    PubMed  Google Scholar 

  106. Kurth AA, Pfeilschifter J. Diagnosis and treatment of postmenopausal osteoporosis and osteoporosis in men. German Guidelines Update 2006. Orthopade. 2007;36(7):683–90.

    PubMed  CAS  Google Scholar 

  107. Fujiwara S, Nakamura T, Orimo H, Hosoi T, Gorai I, Oden A, et al. Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX). Osteoporos Int. 2008;19(4):429–35.

    PubMed  CAS  Google Scholar 

  108. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A. Case finding for the management of osteoporosis with FRAX–assessment and intervention thresholds for the UK. Osteoporos Int. 2008;19(10):1395–408.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Michael Lewiecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewiecki, E.M. Fracture Risk Assessment in Clinical Practice: T-scores, FRAX, and Beyond. Clinic Rev Bone Miner Metab 8, 101–112 (2010). https://doi.org/10.1007/s12018-009-9054-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12018-009-9054-6

Keywords

Navigation