Skip to main content

Advertisement

Log in

Identification of Novel SCIRR69-Interacting Proteins During ER Stress Using SILAC-Immunoprecipitation Quantitative Proteomics Approach

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Spinal cord injury and regeneration-related protein #69 (SCIRR69),also known as cAMP-responsive element-binding protein 3-like 2, belongs to the CREB/ATF family, some members of which play significant roles in ER stress. However, it is still not fully elucidated whether SCIRR69 involves in ER stress and its biochemical and functional roles during ER stress. In this study, we firstly treated fetal rat spinal cord neuron cells (SCN) and PC12 cells with ER stress activator thapsigargin (TG) or tunicamycin (TM) and then detected the expression pattern of SCIRR69 in response to ER stress at mRNA and protein levels using real-time PCR assay and immunoblotting. Results showed that the expression pattern of SCIRR69 was largely consistent with those of ER stress marker (ATF6, BIP and CHOP) at either mRNA level or protein level, implying that SCIRR69 may play important roles in ER stress. Subsequently, we used stable isotope labeling by amino acids in cell culture (SILAC)-immunoprecipitation quantitative proteomics to identify interaction partners of SCIRR69 during TG-induced ER stress in PC12 cells and found that transitional endoplasmic reticulum ATPase (TERA) and sideroflexin-1 (SFXN1) were potential SCIRR69-interacting proteins. The interaction between SCIRR69 and TERA or SFXN1 was validated using co-immunoprecipitation. Those results provide some clues for novel signaling nexuses that made by interactions between SCIRR69 and TERA or SFXN1. Our findings may facilitate a better understanding of the fundamental functions of SCIRR69 during ER stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acs, K., Luijsterburg, M. S., Ackermann, L., Salomons, F. A., Hoppe, T., & Dantuma, N. P. (2011). The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks. Nature Structural & Molecular Biology, 18(12), 1345–1350.

    Article  CAS  Google Scholar 

  • Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology, 26(12), 1367–1372.

    Article  CAS  PubMed  Google Scholar 

  • Emmott, E., Munday, D., Bickerton, E., Britton, P., Rodgers, M. A., Whitehouse, A., et al. (2013). The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology. Journal of Virology, 87(17), 9486–9500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engin, F., & Hotamisligil, G. S. (2010). Restoring endoplasmic reticulum function by chemical chaperones: an emerging therapeutic approach for metabolic diseases. Diabetes, Obesity & Metabolism, 12(Suppl 2), 108–115.

    Article  CAS  Google Scholar 

  • Fleming, M. D., Campagna, D. R., Haslett, J. N., Trenor, C. C, 3rd, & Andrews, N. C. (2001). A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of flexed-tail (f/f) mice. Genes & Development, 15(6), 652–657.

    Article  CAS  Google Scholar 

  • Fowler, S. L., Akins, M., Zhou, H., Figeys, D., & Bennett, S. A. (2013). The liver connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. Journal of Proteome Research, 12(6), 2597–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, K., Nakamura, Y., Oka, T., Ito, H., Tamura, T., Tagawa, K., et al. (2013). A functional deficiency of TERA/VCP/p97 contributes to impaired DNA repair in multiple polyglutamine diseases. Nat Commun, 4, 1816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kehat, I., Hasin, T., & Aronheim, A. (2006). The role of basic leucine zipper protein-mediated transcription in physiological and pathological myocardial hypertrophy. Annals of the New York Academy of Sciences, 1080, 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry, 74(20), 5383–5392.

    Article  CAS  PubMed  Google Scholar 

  • Kittler, R., Putz, G., Pelletier, L., Poser, I., Heninger, A. K., Drechsel, D., et al. (2004). An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature, 432(7020), 1036–1040.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Han, D., Kin Ting Kam, R., Guo, X., Chen, M., Yang, Y., et al. (2010). Developmental expression of sideroflexin family genes in Xenopus embryos. Developmental Dynamics, 239(10), 2742–2747.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Que, H., Ma, Z., Yang, S., Ni, Y., Luo, Z., et al. (2013). Transcription factor SCIRR69 involved in the activation of brain-derived neurotrophic factor gene promoter II in mechanically injured neurons. Neuromolecular Med, 15(3), 605–622.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Z., Que, H., Ni, Y., Huang, H., Liu, Y., Liu, T., et al. (2012). Cloning and characterization of SCIRR69: a novel transcriptional factor belonging to the CREB/ATF family. Molecular Biology Reports, 39(7), 7665–7672.

    Article  CAS  PubMed  Google Scholar 

  • Meerang, M., Ritz, D., Paliwal, S., Garajova, Z., Bosshard, M., Mailand, N., et al. (2011). The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nature Cell Biology, 13(11), 1376–1382.

    Article  CAS  PubMed  Google Scholar 

  • Miotto, G., Tessaro, S., Rotta, G. A., & Bonatto, D. (2007). In silico analyses of Fsf1 sequences, a new group of fungal proteins orthologous to the metazoan sideroblastic anemia-related sideroflexin family. Fungal Genetics and Biology, 44(8), 740–753.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, T., Kondo, S., Ogata, M., Kanemoto, S., Saito, A., Wanaka, A., et al. (2006). Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. Journal of Neurochemistry, 96(4), 1090–1100.

    Article  CAS  PubMed  Google Scholar 

  • Nesvizhskii, A. I., Keller, A., Kolker, E., & Aebersold, R. (2003). A statistical model for identifying proteins by tandem mass spectrometry. Analytical Chemistry, 75(17), 4646–4658.

    Article  CAS  PubMed  Google Scholar 

  • Omori, Y., Imai, J., Watanabe, M., Komatsu, T., Suzuki, Y., Kataoka, K., et al. (2001). CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression. Nucleic Acids Research, 29(10), 2154–2162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro, A., Brown, A., & Lee, K. A. (1994). An in vivo assay for members of the cAMP response element-binding protein family of transcription factors. Journal of Biological Chemistry, 269(49), 31124–31128.

    CAS  PubMed  Google Scholar 

  • Roy, B., & Lee, A. S. (1999). The mammalian endoplasmic reticulum stress response element consists of an evolutionarily conserved tripartite structure and interacts with a novel stress-inducible complex. Nucleic Acids Research, 27(6), 1437–1443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, J., & Prywes, R. (2005). ER stress signaling by regulated proteolysis of ATF6. Methods, 35(4), 382–389.

    Article  CAS  PubMed  Google Scholar 

  • Trinkle-Mulcahy, L. (2012). Resolving protein interactions and complexes by affinity purification followed by label-based quantitative mass spectrometry. Proteomics, 12(10), 1623–1638.

    Article  CAS  PubMed  Google Scholar 

  • Trinkle-Mulcahy, L., Boulon, S., Lam, Y. W., Urcia, R., Boisvert, F. M., Vandermoere, F., et al. (2008). Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. Journal of Cell Biology, 183(2), 223–239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter, P., & Ron, D. (2011). The unfolded protein response: from stress pathway to homeostatic regulation. Science, 334(6059), 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., & Kaufman, R. J. (2012). The impact of the unfolded protein response on human disease. Journal of Cell Biology, 197(7), 857–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson, M. P., & Sutcliffe, M. J. (2010). Protein-protein interactions. Biochemical Society Transactions, 38(4), 875–878.

    Article  CAS  PubMed  Google Scholar 

  • Woodman, P. G. (2003). p97, a protein coping with multiple identities. Journal of Cell Science, 116(Pt 21), 4283–4290.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Y., Meyer, H. H., & Rapoport, T. A. (2001). The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature, 414(6864), 652–656.

    Article  CAS  PubMed  Google Scholar 

  • Ye, Y., Shibata, Y., Yun, C., Ron, D., & Rapoport, T. A. (2004). A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 429(6994), 841–847.

    Article  CAS  PubMed  Google Scholar 

  • Ye, X., Xu, J., Cheng, C., Yin, G., Zeng, L., Ji, C., et al. (2003). Isolation and characterization of a novel human putative anemia-related gene homologous to mouse sideroflexin. Biochemical Genetics, 41(3–4), 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273(50), 33741–33749.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., et al. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Molecular and Cellular Biology, 20(18), 6755–6767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, X., Shen, Y., Ballar, P., Apostolou, A., Agami, R., & Fang, S. (2004). AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. Journal of Biological Chemistry, 279(44), 45676–45684.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Chinese National Natural Science Foundation (81471155 and 81370051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Shaojun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Yujiang Chen and Yong Liu and Shide Lin contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, Y., Lin, S. et al. Identification of Novel SCIRR69-Interacting Proteins During ER Stress Using SILAC-Immunoprecipitation Quantitative Proteomics Approach. Neuromol Med 19, 81–93 (2017). https://doi.org/10.1007/s12017-016-8431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8431-9

Keywords

Navigation