Skip to main content

Advertisement

Log in

Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases are becoming an ever-increasing problem in aging populations. Low levels of brain-derived neurotrophic factor (BDNF) have previously been associated with the pathogenesis of numerous neurodegenerative diseases. Recently, microRNAs (miRNAs) have been proposed as potential novel therapeutic targets for treating various diseases of the central nervous system (CNS), and interestingly, few studies have reported several miRNAs that downregulate the expression levels of BDNF. However, substantial challenges exist when attempting to translate these findings into practical anti-miRNA therapeutics, especially when the targets remain inside the CNS. Thus, in this review, we summarize the specific molecular mechanisms by which several miRNAs negatively modulate the expressions of BDNF, address the potential clinical difficulties that can be faced during the development of anti-miRNA-based therapeutics and propose strategies to overcome these challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aagaard, L., & Rossi, J. J. (2007). RNAi therapeutics: Principles, prospects and challenges. Advanced Drug Delivery Reviews, 59(2–3), 75–86. doi:10.1016/j.addr.2007.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlskog, J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology, 77(3), 288–294. doi:10.1212/WNL.0b013e318225ab66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Angelucci, F., Piermaria, J., Gelfo, F., Shofany, J., Tramontano, M., Fiore, M., et al. (2016). The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Canadian Journal of Physiology and Pharmacology. doi:10.1139/cjpp-2015-0322.

    PubMed  Google Scholar 

  • Autry, A. E., & Monteggia, L. M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacological Reviews, 64(2), 238–258. doi:10.1124/pr.111.005108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnham, K. J., Masters, C. L., & Bush, A. I. (2004). Neurodegenerative diseases and oxidative stress. Nature Reviews Drug Discovery, 3(3), 205–214. doi:10.1038/nrd1330.

    Article  CAS  PubMed  Google Scholar 

  • Berchtold, N. C., Chinn, G., Chou, M., Kesslak, J. P., & Cotman, C. W. (2005). Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience, 133(3), 853–861. doi:10.1016/j.neuroscience.2005.03.026.

    Article  CAS  PubMed  Google Scholar 

  • Berchtold, N. C., Kesslak, J. P., Pike, C. J., Adlard, P. A., & Cotman, C. W. (2001). Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience, 14(12), 1992–2002.

    Article  CAS  PubMed  Google Scholar 

  • Bibel, M., & Barde, Y.-A. (2000). Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes & Development, 14(23), 2919–2937.

    Article  CAS  Google Scholar 

  • Bredy, T. W., Lin, Q., Wei, W., Baker-Andresen, D., & Mattick, J. S. (2011). MicroRNA regulation of neural plasticity and memory. Neurobiology of Learning and Memory, 96(1), 89–94. doi:10.1016/j.nlm.2011.04.004.

    Article  CAS  PubMed  Google Scholar 

  • Buchman, A. S., Yu, L., Boyle, P. A., Schneider, J. A., De Jager, P. L., & Bennett, D. A. (2016). Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology, 86(8), 735–741. doi:10.1212/wnl.0000000000002387.

    Article  CAS  PubMed  Google Scholar 

  • Bumcrot, D., Manoharan, M., Koteliansky, V., & Sah, D. W. (2006). RNAi therapeutics: A potential new class of pharmaceutical drugs. Nature Chemical Biology, 2(12), 711–719. doi:10.1038/nchembio839.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., Lin, E. J., Cahill, M. C., Wang, C., Liu, X., & During, M. J. (2009). Molecular therapy of obesity and diabetes by a physiological autoregulatory approach. Nature Medicine, 15(4), 447–454. doi:10.1038/nm.1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo, V., Sinibaldi, L., Fiorentino, A., Parisi, C., Catalanotto, C., Pasini, A., et al. (2011). Brain derived neurotrophic factor (BDNF) expression is regulated by microRNAs miR-26a and miR-26b allele-specific binding. PLoS One, 6(12), e28656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew, R. W., & Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Zhu, X., Zhang, X., Liu, B., & Huang, L. (2010). Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Molecular Therapy, 18(9), 1650–1656. doi:10.1038/mt.2010.136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cogswell, J. P., Ward, J., Taylor, I. A., Waters, M., Shi, Y., Cannon, B., et al. (2008). Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease, 14(1), 27–41.

    CAS  PubMed  Google Scholar 

  • Colbert, L. H., Visser, M., Simonsick, E. M., Tracy, R. P., Newman, A. B., Kritchevsky, S. B., et al. (2004). Physical activity, exercise, and inflammatory markers in older adults: Findings from the Health, Aging and Body Composition Study. Journal of the American Geriatrics Society, 52(7), 1098–1104. doi:10.1111/j.1532-5415.2004.52307.x.

    Article  PubMed  Google Scholar 

  • Cruickshank, T. M., Thompson, J. A., Dominguez, D. J., Reyes, A. P., Bynevelt, M., Georgiou-Karistianis, N., et al. (2015). The effect of multidisciplinary rehabilitation on brain structure and cognition in Huntington’s disease: An exploratory study. Brain and Behavior, 5(2), e00312. doi:10.1002/brb3.312.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis, S., Propp, S., Freier, S. M., Jones, L. E., Serra, M. J., Kinberger, G., et al. (2009). Potent inhibition of microRNA in vivo without degradation. Nucleic Acids Research, 37(1), 70–77.

    Article  CAS  PubMed  Google Scholar 

  • de Fougerolles, A., Vornlocher, H. P., Maraganore, J., & Lieberman, J. (2007). Interfering with disease: A progress report on siRNA-based therapeutics. Nature Reviews Drug Discovery, 6(6), 443–453. doi:10.1038/nrd2310.

    Article  CAS  PubMed  Google Scholar 

  • Ding, Q., Vaynman, S., Akhavan, M., Ying, Z., & Gomez-Pinilla, F. (2006). Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function. Neuroscience, 140(3), 823–833. doi:10.1016/j.neuroscience.2006.02.084.

    Article  CAS  PubMed  Google Scholar 

  • Diniz, B. S., & Teixeira, A. L. (2011). Brain-derived neurotrophic factor and Alzheimer’s disease: Physiopathology and beyond. Neuromolecular Medicine, 13(4), 217–222. doi:10.1007/s12017-011-8154-x.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, T., Cavanaugh, J. T., Earhart, G. M., Ford, M. P., Foreman, K. B., Fredman, L., et al. (2011). Factors associated with exercise behavior in people with Parkinson disease. Physical Therapy, 91(12), 1838–1848. doi:10.2522/ptj.20100390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Erickson, K. I., Miller, D. L., & Roecklein, K. A. (2012). The aging hippocampus: Interactions between exercise, depression, and BDNF. Neuroscientist, 18(1), 82–97. doi:10.1177/1073858410397054.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences USA, 108(7), 3017–3022. doi:10.1073/pnas.1015950108.

    Article  CAS  Google Scholar 

  • Ferrer, I., Goutan, E., Marin, C., Rey, M. J., & Ribalta, T. (2000). Brain-derived neurotrophic factor in Huntington disease. Brain Research, 866(1–2), 257–261.

    Article  CAS  PubMed  Google Scholar 

  • Forero, D. A., van der Ven, K., Callaerts, P., & Del-Favero, J. (2010). miRNA genes and the brain: Implications for psychiatric disorders. Human Mutation, 31(11), 1195–1204. doi:10.1002/humu.21344.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda, T., Itoh, M., Ichikawa, T., Washiyama, K., & Goto, Y. (2005). Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice. Journal of Neuropathology and Experimental Neurology, 64(6), 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Wang, W.-Y., Mao, Y.-W., Gräff, J., Guan, J.-S., Pan, L., et al. (2010). A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, 466(7310), 1105–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mesa, Y., Pareja-Galeano, H., Bonet-Costa, V., Revilla, S., Gomez-Cabrera, M. C., Gambini, J., et al. (2014). Physical exercise neuroprotects ovariectomized 3xTg-AD mice through BDNF mechanisms. Psychoneuroendocrinology, 45, 154–166. doi:10.1016/j.psyneuen.2014.03.021.

    Article  CAS  PubMed  Google Scholar 

  • Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: Rationale, strategies and challenges. Nature Reviews Drug Discovery, 9(10), 775–789. doi:10.1038/nrd3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georges, M., Coppieters, W., & Charlier, C. (2007). Polymorphic miRNA-mediated gene regulation: Contribution to phenotypic variation and disease. Current Opinion in Genetics & Development, 17(3), 166–176.

    Article  CAS  Google Scholar 

  • Ghose, J., Sinha, M., Das, E., Jana, N. R., & Bhattacharyya, N. P. (2011). Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington’s disease. PLoS One, 6(8), e23837. doi:10.1371/journal.pone.0023837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pinilla, F., Ying, Z., Roy, R. R., Molteni, R., & Edgerton, V. R. (2002). Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. Journal of Neurophysiology, 88(5), 2187–2195. doi:10.1152/jn.00152.2002.

    Article  CAS  PubMed  Google Scholar 

  • Guidi, M., Muinos-Gimeno, M., Kagerbauer, B., Marti, E., Estivill, X., & Espinosa-Parrilla, Y. (2010). Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SH-SY5Y neuroblastoma cells. BMC Molecular Biology, 11, 95. doi:10.1186/1471-2199-11-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology, 15(8), 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Hass, C. J., Buckley, T. A., Pitsikoulis, C., & Barthelemy, E. J. (2012). Progressive resistance training improves gait initiation in individuals with Parkinson’s disease. Gait Posture, 35(4), 669–673. doi:10.1016/j.gaitpost.2011.12.022.

    Article  PubMed  Google Scholar 

  • Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., et al. (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biology, 7(11), e1000238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman, T., Giladi, N., & Hausdorff, J. M. (2009). Treadmill training for the treatment of gait disturbances in people with Parkinson’s disease: A mini-review. J Neural Transm (Vienna), 116(3), 307–318. doi:10.1007/s00702-008-0139-z.

    Article  CAS  Google Scholar 

  • Hernandez, S. S., Sandreschi, P. F., da Silva, F. C., Arancibia, B. A., da Silva, R., Gutierres, P. J., et al. (2015). What are the benefits of exercise for Alzheimer’s disease? A systematic review of the past 10 years. Journal of Aging, Physical Activity, 23(4), 659–668. doi:10.1123/japa.2014-0180.

    Article  Google Scholar 

  • Hutvágner, G., Simard, M. J., Mello, C. C., & Zamore, P. D. (2004). Sequence-specific inhibition of small RNA function. PLoS Biology, 2(4), e98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Im, H.-I., Hollander, J. A., Bali, P., & Kenny, P. J. (2010). MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai, S., de Lencastre, A., Turner, M., & Slack, F. (2012). Novel microRNAs differentially expressed during aging in the mouse brain. PLoS One, 7(7), e40028. doi:10.1371/journal.pone.0040028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irmady, K., Jackman, K. A., Padow, V. A., Shahani, N., Martin, L. A., Cerchietti, L., et al. (2014). Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. Journal of Neuroscience, 34(9), 3419–3428. doi:10.1523/jneurosci.1982-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimenez-Mateos, E. M., Engel, T., Merino-Serrais, P., McKiernan, R. C., Tanaka, K., Mouri, G., et al. (2012). Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nature Medicine, 18(7), 1087–1094. doi:10.1038/nm.2834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannessen, M., Delghandi, M. P., & Moens, U. (2004). What turns CREB on? Cellular Signalling, 16(11), 1211–1227. doi:10.1016/j.cellsig.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  • Jugloff, D. G., Jung, B. P., Purushotham, D., Logan, R., & Eubanks, J. H. (2005). Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2. Neurobiology of Diseases, 19(1–2), 18–27. doi:10.1016/j.nbd.2004.11.002.

    Article  CAS  Google Scholar 

  • Karege, F., Schwald, M., & Cisse, M. (2002). Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neuroscience Letters, 328(3), 261–264.

    Article  CAS  PubMed  Google Scholar 

  • Keifer, J., Zheng, Z., & Ambigapathy, G. (2015). A MicroRNA-BDNF negative feedback signaling loop in brain: Implications for Alzheimer’s disease. MicroRNA, 4(2), 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514.

    Article  CAS  PubMed  Google Scholar 

  • Kocerha, J., Kauppinen, S., & Wahlestedt, C. (2009). microRNAs in CNS disorders. Neuromolecular Medicine, 11(3), 162–172.

    Article  CAS  PubMed  Google Scholar 

  • Kolbeck, R., Bartke, I., Eberle, W., & Barde, Y. A. (1999). Brain-derived neurotrophic factor levels in the nervous system of wild-type and neurotrophin gene mutant mice. Journal of Neurochemistry, 72(5), 1930–1938.

    Article  CAS  PubMed  Google Scholar 

  • Konopka, W., Kiryk, A., Novak, M., Herwerth, M., Parkitna, J. R., Wawrzyniak, M., et al. (2010). MicroRNA loss enhances learning and memory in mice. The Journal of Neuroscience, 30(44), 14835–14842.

    Article  CAS  PubMed  Google Scholar 

  • Kosik, K. S., & Krichevsky, A. M. (2005). The elegance of the MicroRNAs: A neuronal perspective. Neuron, 47(6), 779–782. doi:10.1016/j.neuron.2005.08.019.

    Article  CAS  PubMed  Google Scholar 

  • Krol, J., Busskamp, V., Markiewicz, I., Stadler, M. B., Ribi, S., Richter, J., et al. (2010). Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell, 141(4), 618–631. doi:10.1016/j.cell.2010.03.039.

    Article  CAS  PubMed  Google Scholar 

  • Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature, 438(7068), 685–689. doi:10.1038/nature04303.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. T., Chu, K., Jung, K. H., Kim, J. H., Huh, J. Y., Yoon, H., et al. (2012). miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Annals of Neurology, 72(2), 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J., Fukumoto, H., Orne, J., Klucken, J., Raju, S., Vanderburg, C. R., et al. (2005). Decreased levels of BDNF protein in Alzheimer temporal cortex are independent of BDNF polymorphisms. Experimental Neurology, 194(1), 91–96. doi:10.1016/j.expneurol.2005.01.026.

    Article  CAS  PubMed  Google Scholar 

  • Lee, R., Kermani, P., Teng, K. K., & Hempstead, B. L. (2001). Regulation of cell survival by secreted proneurotrophins. Science, 294(5548), 1945–1948. doi:10.1126/science.1065057.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H., & Li, W.-H. (2007). MicroRNA regulation of human protein–protein interaction network. RNA, 13(9), 1402–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lima, L. O., Scianni, A., & Rodrigues-de-Paula, F. (2013). Progressive resistance exercise improves strength and physical performance in people with mild to moderate Parkinson’s disease: A systematic review. Journal of Physiotherapy, 59(1), 7–13. doi:10.1016/S1836-9553(13)70141-3.

    Article  PubMed  Google Scholar 

  • Lindvall, O., Kokaia, Z., Bengzon, J., Elmer, E., & Kokaia, M. (1994). Neurotrophins and brain insults. Trends in Neurosciences, 17(11), 490–496.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D.-Y., Shen, X.-M., Yuan, F.-F., Guo, O.-Y., Zhong, Y., Chen, J.-G., et al. (2014). The physiology of BDNF and its relationship with ADHD. Molecular Neurobiology, 52(3), 1467–1476.

    Article  CAS  PubMed  Google Scholar 

  • Lu, B., Nagappan, G., Guan, X., Nathan, P. J., & Wren, P. (2013). BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nature Reviews Neuroscience, 14(6), 401–416.

    Article  CAS  PubMed  Google Scholar 

  • Lu, B., Pang, P. T., & Woo, N. H. (2005). The yin and yang of neurotrophin action. Nature Reviews Neuroscience, 6(8), 603–614.

    Article  CAS  PubMed  Google Scholar 

  • Lukiw, W. J. (2012). NF-small ka, CyrillicB-regulated micro RNAs (miRNAs) in primary human brain cells. Experimental Neurology, 235(2), 484–490. doi:10.1016/j.expneurol.2011.11.022.

    Article  CAS  PubMed  Google Scholar 

  • Maes, O. C., Chertkow, H. M., Wang, E., & Schipper, H. M. (2009). MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Current Genomics, 10(3), 154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., et al. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: Parallel as well as reciprocal patterns of expression. Neuron, 5(4), 501–509.

    Article  CAS  PubMed  Google Scholar 

  • Marti, E., Pantano, L., Banez-Coronel, M., Llorens, F., Minones-Moyano, E., Porta, S., et al. (2010). A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Research, 38(20), 7219–7235. doi:10.1093/nar/gkq575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellios, N., Huang, H.-S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzies, F. M., Fleming, A., & Rubinsztein, D. C. (2015). Compromised autophagy and neurodegenerative diseases. Nature Reviews Neuroscience, 16(6), 345–357. doi:10.1038/nrn3961.

    Article  CAS  PubMed  Google Scholar 

  • Miura, P., Amirouche, A., Clow, C., Belanger, G., & Jasmin, B. J. (2012). Brain-derived neurotrophic factor expression is repressed during myogenic differentiation by miR-206. Journal of Neurochemistry, 120(2), 230–238. doi:10.1111/j.1471-4159.2011.07583.x.

    Article  CAS  PubMed  Google Scholar 

  • Murer, M. G., Yan, Q., & Raisman-Vozari, R. (2001). Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Progress in Neurobiology, 63(1), 71–124.

    Article  CAS  PubMed  Google Scholar 

  • Nagahara, A. H., & Tuszynski, M. H. (2011). Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nature Reviews Drug Discovery, 10(3), 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Narisawa-Saito, M., Wakabayashi, K., Tsuji, S., Takahashi, H., & Nawa, H. (1996). Regional specificity of alterations in NGF, BDNF and NT-3 levels in Alzheimer’s disease. Neuroreport, 7(18), 2925–2928.

    Article  CAS  PubMed  Google Scholar 

  • Ninan, I. (2014). Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology, 76 Pt C, 684–695. doi:10.1016/j.neuropharm.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  • Pang, P. T., Teng, H. K., Zaitsev, E., Woo, N. T., Sakata, K., Zhen, S., et al. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science, 306(5695), 487–491. doi:10.1126/science.1100135.

    Article  CAS  PubMed  Google Scholar 

  • Pareja-Galeano, H., Garatachea, N., & Lucia, A. (2015). Exercise as a polypill for chronic diseases. Progress in Molecular Biology and Translational Science, 135, 497–526. doi:10.1016/bs.pmbts.2015.07.019.

    Article  CAS  PubMed  Google Scholar 

  • Peedicayil, J. (2015). Epigenetic targets for the treatment of neurodegenerative diseases. Clinical Pharmacology and Therapeutics,. doi:10.1002/cpt.323.

    Google Scholar 

  • Peng, S., Wuu, J., Mufson, E. J., & Fahnestock, M. (2005). Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. Journal of Neurochemistry, 93(6), 1412–1421. doi:10.1111/j.1471-4159.2005.03135.x.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, M., Bondensgaard, K., Wengel, J., & Jacobsen, J. P. (2002). Locked nucleic acid (LNA) recognition of RNA: NMR solution structures of LNA: RNA hybrids. Journal of the American Chemical Society, 124(21), 5974–5982.

    Article  CAS  PubMed  Google Scholar 

  • Petersen, M., & Wengel, J. (2003). LNA: A versatile tool for therapeutics and genomics. Trends in Biotechnology, 21(2), 74–81.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, H. S., Hains, J. M., Armanini, M., Laramee, G. R., Johnson, S. A., & Winslow, J. W. (1991). BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron, 7(5), 695–702.

    Article  CAS  PubMed  Google Scholar 

  • Remenyi, J., Hunter, C., Cole, C., Ando, H., Impey, S., Monk, C., et al. (2010). Regulation of the miR-212/132 locus by MSK1 and CREB in response to neurotrophins. Biochemical Journal, 428, 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Salta, E., & De Strooper, B. (2012). Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurology, 11(2), 189–200. doi:10.1016/S1474-4422(11)70286-1.

    Article  CAS  PubMed  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Sethi, P., & Lukiw, W. J. (2009). Micro-RNA abundance and stability in human brain: Specific alterations in Alzheimer’s disease temporal lobe neocortex. Neuroscience Letters, 459(2), 100–104.

    Article  CAS  PubMed  Google Scholar 

  • Sethupathy, P., Borel, C., Gagnebin, M., Grant, G. R., Deutsch, S., Elton, T. S., et al. (2007). Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: A mechanism for functional single-nucleotide polymorphisms related to phenotypes. The American Journal of Human Genetics, 81(2), 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Sheinerman, K. S., Tsivinsky, V. G., Crawford, F., Mullan, M. J., Abdullah, L., & Umansky, S. R. (2012). Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging (Albany NY), 4(9), 590.

    Article  CAS  Google Scholar 

  • Shumaker, S. A., Legault, C., Rapp, S. R., Thal, L., Wallace, R. B., Ockene, J. K., et al. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: The Women’s Health Initiative Memory Study—a randomized controlled trial. JAMA, 289(20), 2651–2662. doi:10.1001/jama.289.20.2651.

    Article  CAS  PubMed  Google Scholar 

  • Silva, A. J., Kogan, J. H., Frankland, P. W., & Kida, S. (1998). CREB and memory. The Annual Review of Neuroscience, 21, 127–148. doi:10.1146/annurev.neuro.21.1.127.

    Article  CAS  PubMed  Google Scholar 

  • Solum, D. T., & Handa, R. J. (2002). Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. Journal of Neuroscience, 22(7), 2650–2659.

    CAS  PubMed  Google Scholar 

  • Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4(1), 49–60. doi:10.1038/nrn1007.

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Arancibia, L., Rage, F., Givalois, L., & Arancibia, S. (2004). Physiology of BDNF: Focus on hypothalamic function. Frontiers in Neuroendocrinology, 25(2), 77–107.

    Article  CAS  PubMed  Google Scholar 

  • Teng, H. K., Teng, K. K., Lee, R., Wright, S., Tevar, S., Almeida, R. D., et al. (2005). ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. Journal of Neuroscience, 25(22), 5455–5463. doi:10.1523/JNEUROSCI.5123-04.2005.

    Article  CAS  PubMed  Google Scholar 

  • Underwood, C. K., & Coulson, E. J. (2008). The p75 neurotrophin receptor. International Journal of Biochemistry & Cell Biology, 40(9), 1664–1668. doi:10.1016/j.biocel.2007.06.010.

    Article  CAS  Google Scholar 

  • Vorhies, J. S., & Nemunaitis, J. (2007). Nonviral delivery vehicles for use in short hairpin RNA-based cancer therapies. Expert Review of Anticancer Therapy, 7(3), 373–382. doi:10.1586/14737140.7.3.373.

    Article  CAS  PubMed  Google Scholar 

  • Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the USA, 105(26), 9093–9098. doi:10.1073/pnas.0803072105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widenfalk, J., Olson, L., & Thoren, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34(3), 125–132.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. W., Du, X., van den Buuse, M., & Hill, R. A. (2015). Analyzing the influence of BDNF heterozygosity on spatial memory response to 17beta-estradiol. Translational Psychiatry, 5, e498. doi:10.1038/tp.2014.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J., & Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biology, 7(9), R85. doi:10.1186/gb-2006-7-9-r85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, B., Goulding, E. H., Zang, K., Cepoi, D., Cone, R. D., Jones, K. R., et al. (2003). Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nature Neuroscience, 6(7), 736–742. doi:10.1038/nn1073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaffe, K., Krueger, K., Cummings, S. R., Blackwell, T., Henderson, V. W., Sarkar, S., et al. (2005). Effect of raloxifene on prevention of dementia and cognitive impairment in older women: The Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. American Journal of Psychiatry, 162(4), 683–690. doi:10.1176/appi.ajp.162.4.683.

    Article  PubMed  Google Scholar 

  • Yamashita, T., Tucker, K. L., & Barde, Y. A. (1999). Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron, 24(3), 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Yang, G., Song, Y., Zhou, X., Deng, Y., Liu, T., Weng, G., et al. (2015). DNA methyltransferase 3, a target of microRNA-29c, contributes to neuronal proliferation by regulating the expression of brain-derived neurotrophic factor. Molecular Medicine Reports, 12(1), 1435–1442. doi:10.3892/mmr.2015.3531.

    CAS  PubMed  Google Scholar 

  • Yarrow, J. F., White, L. J., McCoy, S. C., & Borst, S. E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience Letters, 479(2), 161–165. doi:10.1016/j.neulet.2010.05.058.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, X. B., Jin, M., Xu, X., Song, Y. Q., Wu, C. P., Poo, M. M., et al. (2003). Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nature Cell Biology, 5(1), 38–45. doi:10.1038/ncb895.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y.-N., Li, W.-F., Li, F., Zhang, Z., Dai, Y.-D., Xu, A.-L., et al. (2013). Resveratrol improves learning and memory in normally aged mice through microRNA-CREB pathway. Biochemical and Biophysical Research Communications, 435(4), 597–602. doi:10.1016/j.bbrc.2013.05.025.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Pan, F., Holt, C. M., Lewis, A. L., & Lu, J. R. (2009). Controlled delivery of antisense oligonucleotides: A brief review of current strategies. Expert Opinion on Drug Delivery, 6(7), 673–686. doi:10.1517/17425240902992894.

    Article  CAS  PubMed  Google Scholar 

  • Zuccato, C., & Cattaneo, E. (2007). Role of brain-derived neurotrophic factor in Huntington’s disease. Progress in Neurobiology, 81(5–6), 294–330. doi:10.1016/j.pneurobio.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., Conti, L., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293(5529), 493–498. doi:10.1126/science.1059581.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Il Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Hwa Jeong You and Jae Hyon Park have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, H.J., Park, J.H., Pareja-Galeano, H. et al. Targeting MicroRNAs Involved in the BDNF Signaling Impairment in Neurodegenerative Diseases. Neuromol Med 18, 540–550 (2016). https://doi.org/10.1007/s12017-016-8407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8407-9

Keywords

Navigation