Skip to main content

Advertisement

Log in

Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The cerebral ischemia is one of the most common diseases in the central nervous system that causes progressive disability or even death. In this connection, the inflammatory response mediated by the activated microglia is believed to play a central role in this pathogenesis. In the event of brain injury, activated microglia can clear the cellular debris and invading pathogens, release neurotrophic factors, etc., but in chronic activation microglia may cause neuronal death through the release of excessive inflammatory mediators. Therefore, suppression of microglial over-reaction and microglia-mediated neuroinflammation is deemed to be a therapeutic strategy of choice for cerebral ischemic damage. In the search for potential herbal extracts that are endowed with the property in suppressing the microglial activation and amelioration of neuroinflammation, attention has recently been drawn to scutellarin, a Chinese herbal extract. Here, we review the roles of activated microglia and the effects of scutellarin on activated microglia in pathological conditions especially in ischemic stroke. We have further extended the investigation with special reference to the effects of scutellarin on Notch signaling, one of the several signaling pathways known to be involved in microglial activation. Furthermore, in light of our recent experimental evidence that activated microglia can regulate astrogliosis, an interglial “cross-talk” that was amplified by scutellarin, it is suggested that in designing of a more effective therapeutic strategy for clinical management of cerebral ischemia both glial types should be considered collectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid peptide

AD:

Alzheimer’s disease

BBB:

Blood–brain barrier

CNS:

Central nervous system

DAPT:

N-[N-(3,5-difluorophenacetyl)-1-alany1]-S-phenyglycine t-butyl ester

GFAP:

Glial fibrillary acidic protein

Hes-1:

Transcription factor hairy and enhancer of split-1

IL-1β:

Interleukin-1β

Inos:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

MCAO:

Middle cerebral artery occlusion

NF-κB:

Nuclear factor κ-light-chain-enhancer of activated B cells

NICD:

Notch intracellular domain

NO:

Nitric oxide

RBP-JK:

Recombining binding protein suppressor of hairless

ROS:

Reactive oxygen species

TNF-α:

Tumor necrosis factor-α

References

  • Amantea, D., Nappi, G., Bernardi, G., Bagetta, G., & Corasaniti, M. T. (2009). Post-ischemic brain damage: Pathophysiology and role of inflammatory mediators. FEBS Journal, 276(1), 13–26. doi:10.1111/j.1742-4658.2008.06766.x.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, M. F., Blomstrand, F., Blomstrand, C., Eriksson, P. S., & Nilsson, M. (2003). Astrocytes and stroke: Networking for survival? Neurochemical Research, 28(2), 293–305.

    Article  CAS  PubMed  Google Scholar 

  • Ang, H. L., & Tergaonkar, V. (2007). Notch and NFκB signaling pathways: Do they collaborate in normal vertebrate brain development and function? BioEssays, 29(10), 1039–1047. doi:10.1002/bies.20647.

    Article  CAS  PubMed  Google Scholar 

  • Arumugam, T. V., Chan, S. L., Jo, D. G., Yilmaz, G., Tang, S. C., Cheng, A., et al. (2006). Gamma secretase-mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke. Nature Medicin, 12(6), 621–623. doi:10.1038/nm1403.

    Article  CAS  Google Scholar 

  • Beckman, J. S., & Koppenol, W. H. (1996). Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. The American Journal of Physiology, 271(5 Pt 1), C1424–C1437.

    CAS  PubMed  Google Scholar 

  • Brabers, N. A., & Nottet, H. S. (2006). Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. European Journal of Clinical Investigation, 36(7), 447–458. doi:10.1111/j.1365-2362.2006.01657.x.

    Article  CAS  PubMed  Google Scholar 

  • Candelario-Jalil, E. (2009). Injury and repair mechanisms in ischemic stroke: Considerations for the development of novel neurotherapeutics. Current Opinion in Investigational Drugs, 10(7), 644–654.

    CAS  PubMed  Google Scholar 

  • Cao, Q., Li, P., Lu, J., Dheen, S. T., Kaur, C., & Ling, E. A. (2010). Nuclear factor-κB/p65 responds to changes in the Notch signaling pathway in murine BV-2 cells and in amoeboid microglia in postnatal rats treated with the gamma-secretase complex blocker DAPT. Journal of Neuroscience Research, 88(12), 2701–2714. doi:10.1002/jnr.22429.

    CAS  PubMed  Google Scholar 

  • Cao, Q., Lu, J., Kaur, C., Sivakumar, V., Li, F., Cheah, P. S., et al. (2008). Expression of Notch-1 receptor and its ligands Jagged-1 and Delta-1 in amoeboid microglia in postnatal rat brain and murine BV-2 cells. Glia, 56(11), 1224–1237. doi:10.1002/glia.20692.

    Article  PubMed  Google Scholar 

  • Chai, L., Guo, H., Li, H., Wang, S., Wang, Y. L., Shi, F., et al. (2013). Scutellarin and caffeic acid ester fraction, active components of Dengzhanxixin injection, upregulate neurotrophins synthesis and release in hypoxia/reoxygenation rat astrocytes. Journal of Ethnopharmacology, 150(1), 100–107. doi:10.1016/j.jep.2013.08.011.

    Article  CAS  PubMed  Google Scholar 

  • Chan, J. Y., Tan, B. K., & Lee, S. C. (2009). Scutellarin sensitizes drug-evoked colon cancer cell apoptosis through enhanced caspase-6 activation. Anticancer Research, 29(8), 3043–3047.

    CAS  PubMed  Google Scholar 

  • Chen, X., Shi, X., Zhang, X., Lei, H., Long, S., Su, H., et al. (2013). Scutellarin attenuates hypertension-induced expression of brain toll-like receptor 4/nuclear factor kappa B. Mediators of Inflammation, 2013, 432623. doi:10.1155/2013/432623.

    PubMed  PubMed Central  Google Scholar 

  • Christov, A., Ottman, J. T., & Grammas, P. (2004). Vascular inflammatory, oxidative and protease-based processes: implications for neuronal cell death in Alzheimer’s disease. Neurological Research, 26(5), 540–546. doi:10.1179/016164104225016218.

    Article  CAS  PubMed  Google Scholar 

  • Czeh, M., Gressens, P., & Kaindl, A. M. (2011). The yin and yang of microglia. Developmental Neuroscience, 33(3–4), 199–209. doi:10.1159/000328989.

    Article  CAS  PubMed  Google Scholar 

  • D’Acquisto, F., May, M. J., & Ghosh, S. (2002). Inhibition of nuclear factor kappa B (NF-B): an emerging theme in anti-inflammatory therapies. Molecular Interventions, 2(1), 22–35. doi:10.1124/mi.2.1.22.

    Article  PubMed  Google Scholar 

  • del Zoppo, G. J., Sharp, F. R., Heiss, W. D., & Albers, G. W. (2011). Heterogeneity in the penumbra. Journal of Cerebral Blood Flow and Metabolism, 31(9), 1836–1851. doi:10.1038/jcbfm.2011.93.

    Article  PubMed  PubMed Central  Google Scholar 

  • Denes, A., Vidyasagar, R., Feng, J., Narvainen, J., McColl, B. W., Kauppinen, R. A., et al. (2007). Proliferating resident microglia after focal cerebral ischaemia in mice. Journal of Cerebral Blood Flow and Metabolism, 27(12), 1941–1953. doi:10.1038/sj.jcbfm.9600495.

    Article  CAS  PubMed  Google Scholar 

  • Dheen, S. T., Kaur, C., & Ling, E. A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14(11), 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  • Durukan, A., & Tatlisumak, T. (2007). Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacology, Biochemistry and Behavior, 87(1), 179–197. doi:10.1016/j.pbb.2007.04.015.

    Article  CAS  PubMed  Google Scholar 

  • Ekdahl, C. T., Kokaia, Z., & Lindvall, O. (2009). Brain inflammation and adult neurogenesis: The dual role of microglia. Neuroscience, 158(3), 1021–1029. doi:10.1016/j.neuroscience.2008.06.052.

    Article  CAS  PubMed  Google Scholar 

  • Fang, M., Yuan, Y., Rangarajan, P., Lu, J., Wu, Y., Wang, H., et al. (2015). Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neuroscience, 16(1), 84. doi:10.1186/s12868-015-0219-6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng, Y., Zhang, S., Tu, J., Cao, Z., Pan, Y., Shang, B., et al. (2012). Novel function of scutellarin in inhibiting cell proliferation and inducing cell apoptosis of human Burkitt lymphoma Namalwa cells. Leukemia & Lymphoma, 53(12), 2456–2464. doi:10.3109/10428194.2012.693177.

    Article  CAS  Google Scholar 

  • Gregersen, R., Lambertsen, K., & Finsen, B. (2000). Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. Journal of Cerebral Blood Flow and Metabolism, 20(1), 53–65. doi:10.1097/00004647-200001000-00009.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L. L., Guan, Z. Z., Huang, Y., Wang, Y. L., & Shi, J. S. (2013). The neurotoxicity of beta-amyloid peptide toward rat brain is associated with enhanced oxidative stress, inflammation and apoptosis, all of which can be attenuated by scutellarin. Experimental and Toxicologic Pathology, 65(5), 579–584. doi:10.1016/j.etp.2012.05.003.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L. L., Guan, Z. Z., & Wang, Y. L. (2011a). Scutellarin protects against Abeta-induced learning and memory deficits in rats: Involvement of nicotinic acetylcholine receptors and cholinesterase. Acta Pharmacologica Sinica, 32(12), 1446–1453. doi:10.1038/aps.2011.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, H., Hu, L. M., Wang, S. X., Wang, Y. L., Shi, F., Li, H., et al. (2011b). Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of antioxidant defense capacity. The Chinese Journal of Physiology, 54(6), 399–405. doi:10.4077/CJP.2011.AMM059.

    CAS  PubMed  Google Scholar 

  • Han, Y. L., Li, D., Yang, Q. J., Zhou, Z. Y., Liu, L. Y., Li, B., et al. (2014). In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules, 19(5), 5748–5760. doi:10.3390/molecules19055748.

    Article  PubMed  Google Scholar 

  • Hong, H., & Liu, G. Q. (2004). Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sciences, 74(24), 2959–2973. doi:10.1016/j.lfs.2003.09.074.

    Article  CAS  PubMed  Google Scholar 

  • Hosomi, N., Ban, C. R., Naya, T., Takahashi, T., Guo, P., Song, X. Y., et al. (2005). Tumor necrosis factor-alpha neutralization reduced cerebral edema through inhibition of matrix metalloproteinase production after transient focal cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 25(8), 959–967. doi:10.1038/sj.jcbfm.9600086.

    Article  CAS  PubMed  Google Scholar 

  • Hossmann, K. A. (2006). Pathophysiology and therapy of experimental stroke. Cellular and Molecular Neurobiology, 26(7–8), 1057–1083. doi:10.1007/s10571-006-9008-1.

    PubMed  Google Scholar 

  • Huang, J., Li, N., Yu, Y., Weng, W., & Huang, X. (2006a). Determination of aglycone conjugated metabolites of scutellarin in rat plasma by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 40(2), 465–471. doi:10.1016/j.jpba.2005.07.051.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Upadhyay, U. M., & Tamargo, R. J. (2006b). Inflammation in stroke and focal cerebral ischemia. Surgical Neurology, 66(3), 232–245. doi:10.1016/j.surneu.2005.12.028.

    Article  PubMed  Google Scholar 

  • Iadecola, C., Zhang, F., & Xu, X. (1995). Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. The American Journal of Physiology, 268(1 Pt 2), R286–R292.

    CAS  PubMed  Google Scholar 

  • Jin, R., Yang, G., & Li, G. (2010). Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. Journal of Leukocyte Biology, 87(5), 779–789. doi:10.1189/jlb.1109766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur, C., Ling, E. A., & Wong, W. C. (1985). Transformation of amoeboid microglial cells into microglia in the corpus callosum of the postnatal rat brain. An electron microscopical study. Archivum Histologicum Japonicum, 48(1), 17–25.

    CAS  PubMed  Google Scholar 

  • Komitova, M., Perfilieva, E., Mattsson, B., Eriksson, P. S., & Johansson, B. B. (2002). Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. Journal of Cerebral Blood Flow and Metabolism, 22(7), 852–860. doi:10.1097/00004647-200207000-00010.

    Article  PubMed  Google Scholar 

  • Kowalska, A. (2004). The beta-amyloid cascade hypothesis: A sequence of events leading to neurodegeneration in Alzheimer’s disease. Neurologia i Neurochirurgia Polska, 38(5), 405–411.

    PubMed  Google Scholar 

  • Lai, A. Y., & Todd, K. G. (2006). Microglia in cerebral ischemia: Molecular actions and interactions. Canadian Journal of Physiology and Pharmacology, 84(1), 49–59. doi:10.1139/Y05-143.

    Article  CAS  PubMed  Google Scholar 

  • Lalancette-Hebert, M., Gowing, G., Simard, A., Weng, Y. C., & Kriz, J. (2007). Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. Journal of Neuroscience, 27(10), 2596–2605. doi:10.1523/JNEUROSCI.5360-06.2007.

    Article  CAS  PubMed  Google Scholar 

  • Lambertsen, K. L., Clausen, B. H., Babcock, A. A., Gregersen, R., Fenger, C., Nielsen, H. H., et al. (2009). Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. Journal of Neuroscience, 29(5), 1319–1330. doi:10.1523/JNEUROSCI.5505-08.2009.

    Article  CAS  PubMed  Google Scholar 

  • Legos, J. J., Whitmore, R. G., Erhardt, J. A., Parsons, A. A., Tuma, R. F., & Barone, F. C. (2000). Quantitative changes in interleukin proteins following focal stroke in the rat. Neuroscience Letters, 282(3), 189–192.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Huang, D., Gao, Z., Chen, Y., Zhang, L., & Zheng, J. (2013a). Scutellarin inhibits the growth and invasion of human tongue squamous carcinoma through the inhibition of matrix metalloproteinase-2 and -9 and αvβ6 integrin. International Journal of Oncology, 42(5), 1674–1681. doi:10.3892/ijo.2013.1873.

    CAS  PubMed  Google Scholar 

  • Li, L., Li, L., Chen, C., Yang, J., Li, J., Hu, N., et al. (2015). Scutellarin’s cardiovascular endothelium protective mechanism: Important role of PKG-Iα. PLoS one, 10(10), e0139570. doi:10.1371/journal.pone.0139570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J. H., Lu, J., & Zhang, H. (2013b). Functional recovery after scutellarin treatment in transient cerebral ischemic rats: A pilot study with (18) F-fluorodeoxyglucose MicroPET. Evidence Based Complementary and Alternative Medicine, 2013, 507091. doi:10.1155/2013/507091.

    PubMed  PubMed Central  Google Scholar 

  • Li, X., Wang, L., Li, Y., Bai, L., & Xue, M. (2011). Acute and subacute toxicological evaluation of scutellarin in rodents. Regulatory Toxicology and Pharmacology, 60(1), 106–111. doi:10.1016/j.yrtph.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Wu, J. H., Guo, D. J., Cheng, H. L., Chen, S. L., & Chan, S. W. (2009). Suppression of diet-induced hypercholesterolemia by scutellarin in rats. Planta Medica, 75(11), 1203–1208. doi:10.1055/s-0029-1185539.

    Article  CAS  PubMed  Google Scholar 

  • Ling, E. A., & Wong, W. C. (1993). The origin and nature of ramified and amoeboid microglia: A historical review and current concepts. Glia, 7(1), 9–18. doi:10.1002/glia.440070105.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Yang, X., Tang, R., Liu, J., & Xu, H. (2005). Effect of scutellarin on nitric oxide production in early stages of neuron damage induced by hydrogen peroxide. Pharmacological Research, 51(3), 205–210. doi:10.1016/j.phrs.2004.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. C., Zheng, M. H., Du, Y. L., Wang, L., Kuang, F., Qin, H. Y., et al. (2012). N9 microglial cells polarized by LPS and IL4 show differential responses to secondary environmental stimuli. Cellular Immunology, 278(1–2), 84–90. doi:10.1016/j.cellimm.2012.06.001.

    Article  CAS  PubMed  Google Scholar 

  • Long, L., Wang, J., Lu, X., Xu, Y., Zheng, S., Luo, C., et al. (2015). Protective effects of scutellarin on type II diabetes mellitus-induced testicular damages related to reactive oxygen species/Bcl-2/Bax and reactive oxygen species/microcirculation/staving pathway in diabetic rat. Journal of Diabetes Research, 2015, 252530. doi:10.1155/2015/252530.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCoy, M. K., & Tansey, M. G. (2008). TNF signaling inhibition in the CNS: Implications for normal brain function and neurodegenerative disease. Journal of Neuroinflammation, 5, 45. doi:10.1186/1742-2094-5-45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison, H. W., & Filosa, J. A. (2013). A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. Journal of Neuroinflammation, 10, 4. doi:10.1186/1742-2094-10-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher, J. J., Emmrich, J. V., Fricker, M., Mander, P. K., Thery, C., & Brown, G. C. (2013). Phagocytosis executes delayed neuronal death after focal brain ischemia. Proceedings of the National Academy of Sciences of the United States of America, 110(43), E4098–E4107. doi:10.1073/pnas.1308679110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neumann, H., Kotter, M. R., & Franklin, R. J. (2009). Debris clearance by microglia: an essential link between degeneration and regeneration. Brain, 132(Pt 2), 288–295. doi:10.1093/brain/awn109.

    CAS  PubMed  Google Scholar 

  • Northington, F. J., Zelaya, M. E., O’Riordan, D. P., Blomgren, K., Flock, D. L., Hagberg, H., et al. (2007). Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience, 149(4), 822–833. doi:10.1016/j.neuroscience.2007.06.060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, Z. W., Zhang, Y., Mei, D. H., Zhang, R., Wang, J. H., Zhang, X. Y., et al. (2010). Scutellarin exerts its anti-hypertrophic effects via suppressing the Ca2+-mediated calcineurin and CaMKII signaling pathways. Naunyn-Schmiedeberg’s Archives of Pharmacology, 381(2), 137–145. doi:10.1007/s00210-009-0484-y.

    Article  CAS  PubMed  Google Scholar 

  • Park, K. M., Yule, D. I., & Bowers, W. J. (2008). Tumor necrosis factor-alpha potentiates intraneuronal Ca2+ signaling via regulation of the inositol 1,4,5-trisphosphate receptor. Journal of Biological Chemistry, 283(48), 33069–33079. doi:10.1074/jbc.M802209200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettigrew, L. C., Kindy, M. S., Scheff, S., Springer, J. E., Kryscio, R. J., Li, Y., et al. (2008). Focal cerebral ischemia in the TNFα-transgenic rat. Journal of Neuroinflammation, 5, 47. doi:10.1186/1742-2094-5-47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponomarev, E. D., Veremeyko, T., & Weiner, H. L. (2013). MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 61(1), 91–103. doi:10.1002/glia.22363.

    Article  PubMed  Google Scholar 

  • Regenhardt, R. W., Desland, F., Mecca, A. P., Pioquinto, D. J., Afzal, A., Mocco, J., et al. (2013). Anti-inflammatory effects of angiotensin-(1-7) in ischemic stroke. Neuropharmacology, 71, 154–163. doi:10.1016/j.neuropharm.2013.03.025.

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer, R., Dorken, B., & Jundt, F. (2012). Notch is an essential upstream regulator of NF-κB and is relevant for survival of Hodgkin and Reed-Sternberg cells. Leukemia, 26(4), 806–813. doi:10.1038/leu.2011.265.

    Article  CAS  PubMed  Google Scholar 

  • Shin, W. H., Lee, D. Y., Park, K. W., Kim, S. U., Yang, M. S., Joe, E. H., et al. (2004). Microglia expressing interleukin-13 undergo cell death and contribute to neuronal survival in vivo. Glia, 46(2), 142–152. doi:10.1002/glia.10357.

    Article  PubMed  Google Scholar 

  • Simi, A., Tsakiri, N., Wang, P., & Rothwell, N. J. (2007). Interleukin-1 and inflammatory neurodegeneration. Biochemical Society Transactions, 35(Pt 5), 1122–1126. doi:10.1042/BST0351122.

    Article  CAS  PubMed  Google Scholar 

  • Spooren, A., Kolmus, K., Laureys, G., Clinckers, R., De Keyser, J., Haegeman, G., et al. (2011). Interleukin-6, a mental cytokine. Brain Research Reviews, 67(1–2), 157–183. doi:10.1016/j.brainresrev.2011.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Sriram, K., & O’Callaghan, J. P. (2007). Divergent roles for tumor necrosis factor-alpha in the brain. Journal of Neuroimmune Pharmacology, 2(2), 140–153. doi:10.1007/s11481-007-9070-6.

    Article  PubMed  Google Scholar 

  • Stidworthy, M. F., Genoud, S., Li, W. W., Leone, D. P., Mantei, N., Suter, U., et al. (2004). Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain, 127(Pt 9), 1928–1941. doi:10.1093/brain/awh217.

    Article  PubMed  Google Scholar 

  • Stone, B. S., Zhang, J., Mack, D. W., Mori, S., Martin, L. J., & Northington, F. J. (2008). Delayed neural network degeneration after neonatal hypoxia-ischemia. Annals of Neurology, 64(5), 535–546. doi:10.1002/ana.21517.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi, H., Jin, S., Suzuki, H., Doi, Y., Liang, J., Kawanokuchi, J., et al. (2008). Blockade of microglial glutamate release protects against ischemic brain injury. Experimental Neurology, 214(1), 144–146. doi:10.1016/j.expneurol.2008.08.001.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Tang, Y., Li, N. G., Lin, H., Li, W., Shi, Q., et al. (2015). Comparative metabolomic analysis of the neuroprotective effects of scutellarin and scutellarein against ischemic insult. PLoS ONE, 10(7), e0131569. doi:10.1371/journal.pone.0131569.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang, H., Tang, Y., Li, N., Shi, Q., Guo, J., Shang, E., et al. (2014). Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacology, Biochemistry and Behavior, 118, 51–59. doi:10.1016/j.pbb.2014.01.003.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C. P., & Meldrum, B. S. (1995). Na+ channels as targets for neuroprotective drugs. Trends in Pharmacological Sciences, 16(9), 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, W. E. (1992). Brain macrophages: Evaluation of microglia and their functions. Brain Research Reviews, 17(1), 61–74.

    Article  CAS  PubMed  Google Scholar 

  • Utagawa, A., Truettner, J. S., Dietrich, W. D., & Bramlett, H. M. (2008). Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Experimental Neurology, 211(1), 283–291. doi:10.1016/j.expneurol.2008.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Tang, X. N., & Yenari, M. A. (2007a). The inflammatory response in stroke. Journal of Neuroimmunology, 184(1–2), 53–68. doi:10.1016/j.jneuroim.2006.11.014.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., Wang, L., Gu, J., Yang, H., Liu, N., Lin, Y., et al. (2014). Scutellarin inhibits high glucose-induced and hypoxia-mimetic agent-induced angiogenic effects in human retinal endothelial cells through reactive oxygen species/hypoxia-inducible factor-1α/vascular endothelial growth factor pathway. Journal of Cardiovascular Pharmacology, 64(3), 218–227. doi:10.1097/FJC.0000000000000109.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Wang, H., Guo, H., Kang, L., Gao, X., & Hu, L. (2011). Neuroprotection of Scutellarin is mediated by inhibition of microglial inflammatory activation. Neuroscience, 185, 150–160. doi:10.1016/j.neuroscience.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L. X., Zeng, J. P., Wei, X. B., Wang, F. W., Liu, Z. P., & Zhang, X. M. (2007b). Effects of scutellarin on apoptosis induced by cobalt chloride in PC12 cells. The Chinese journal of Physiology, 50(6), 301–307.

    CAS  PubMed  Google Scholar 

  • Wei, Z., Chigurupati, S., Arumugam, T. V., Jo, D. G., Li, H., & Chan, S. L. (2011). Notch activation enhances the microglia-mediated inflammatory response associated with focal cerebral ischemia. Stroke, 42(9), 2589–2594. doi:10.1161/STROKEAHA.111.614834.

    Article  CAS  PubMed  Google Scholar 

  • Wiart, M., Davoust, N., Pialat, J. B., Desestret, V., Moucharrafie, S., Cho, T. H., et al. (2007). MRI monitoring of neuroinflammation in mouse focal ischemia. Stroke, 38(1), 131–137. doi:10.1161/01.STR.0000252159.05702.00.

    Article  PubMed  Google Scholar 

  • Xu, H., & Zhang, S. (2013). Scutellarin-induced apoptosis in HepG2 hepatocellular carcinoma cells via a STAT3 pathway. Phytotherapy Research, 27(10), 1524–1528. doi:10.1002/ptr.4892.

    CAS  PubMed  Google Scholar 

  • Yao, L., Cao, Q., Wu, C., Kaur, C., Hao, A., & Ling, E. A. (2013a). Notch signaling in the central nervous system with special reference to its expression in microglia. CNS & Neurological Disorders: Drug Targets, 12(6), 807–814.

    Article  CAS  Google Scholar 

  • Yao, L., Kan, E. M., Kaur, C., Dheen, S. T., Hao, A., Lu, J., et al. (2013b). Notch-1 signaling regulates microglia activation via NF-κB pathway after hypoxic exposure in vivo and in vitro. PLoS one, 8(11), e78439. doi:10.1371/journal.pone.0078439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Rangarajan, P., Kan, E., Wu, Y., Wu, C., & Ling, E. A. (2015). Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. Journal of Neuroinflammation, 12(1), 11. doi:10.1186/s12974-014-0226-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Zha, H., Rangarajan, P., Ling, E. A., & Wu, C. (2014). Anti-inflammatory effects of Edaravone and Scutellarin in activated microglia in experimentally induced ischemia injury in rats and in BV-2 microglia. BMC Neuroscience, 15(1), 125. doi:10.1186/s12868-014-0125-3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Dong, Z. X., Gu, T., Li, N. G., Zhang, P. X., Wu, W. Y., et al. (2015). A new and efficient synthesis of 6-O-methylscutellarein, the major metabolite of the natural medicine scutellarin. Molecules, 20(6), 10184–10191. doi:10.3390/molecules200610184.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. F., Hu, X. M., Wang, L. X., Xu, S. Q., & Zeng, F. D. (2009). Protective effects of scutellarin against cerebral ischemia in rats: Evidence for inhibition of the apoptosis-inducing factor pathway. Planta Medica, 75(2), 121–126. doi:10.1055/s-0028-1088368.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Qiu, S., & Wei, H. (2011). Scutellarin blocks sodium current in freshly isolated mouse hippocampal CA1 neurons. Neurochemical Research, 36(6), 947–954. doi:10.1007/s11064-011-0426-1.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Spittau, B., & Krieglstein, K. (2012). TGFβ signalling plays an important role in IL4-induced alternative activation of microglia. Journal of Neuroinflammation, 9, 210. doi:10.1186/1742-2094-9-210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, M., Wang, C. M., Yang, W. L., & Wang, P. (2013). Microglial CD14 activated by iNOS contributes to neuroinflammation in cerebral ischemia. Brain Research, 1506, 105–114. doi:10.1016/j.brainres.2013.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, J. T., Choi, R. C., Li, J., Xie, H. Q., Bi, C. W., Cheung, A. W., et al. (2009). Estrogenic and neuroprotective properties of scutellarin from Erigeron breviscapus: A drug against postmenopausal symptoms and Alzheimer’s disease. Planta Medica, 75(14), 1489–1493. doi:10.1055/s-0029-1185776.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Project Number 31260254, C-Y Wu), Applied Basic Research Program Key Projects of Yunnan Province (Project Number 2015FA020, C-Y Wu), and National University of Singapore (NUS R181-000-140-592, E-A Ling).

Author’s contributions

Eng-Ang Ling and Chunyun Wu conceptualized this review. Yun Yuan and Ming Fang conducted the experiments mentioned in this review. Yun Yuan led to write the manuscript, and Ming Fang was responsible for submitting the final manuscript. All authors read, discussed, and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Yun Wu or Eng-Ang Ling.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. All authors have read and approved the manuscript.

Additional information

Yun Yuan and Ming Fang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Fang, M., Wu, CY. et al. Scutellarin as a Potential Therapeutic Agent for Microglia-Mediated Neuroinflammation in Cerebral Ischemia. Neuromol Med 18, 264–273 (2016). https://doi.org/10.1007/s12017-016-8394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-016-8394-x

Keywords

Navigation