Skip to main content
Log in

Targeted Gene Resequencing (Astrochip) to Explore the Tripartite Synapse in Autism–Epilepsy Phenotype with Macrocephaly

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The frequent co-occurrence of autism spectrum disorders (ASD) and epilepsy, or paroxysmal EEG abnormalities, defines a condition termed autism–epilepsy phenotype (AEP). This condition results, in some cases , from dysfunctions of glial inwardly rectifying potassium channels (Kir), which are mainly expressed in astrocytes where they mediate neuron–glia communication. Macrocephaly is also often comorbid with autism–epilepsy (autism–epilepsy phenotype with macrocephaly, MAEP), and it is tempting to hypothesize that shared pathogenic mechanisms might explain concurrence of these conditions. In the present study, we assessed whether protein pathways involved, along with Kir channels, in astrocyte–neuron interaction at the tripartite synapse play a role in the etiopathogenesis of MAEP. Using a targeted resequencing methodology, we investigated the coding regions of 35 genes in 61 patients and correlated genetic results with clinical features. Variants were subdivided into 12 classes and clustered into four groups. We detected rare or previously unknown predicted deleterious missense changes in GJA1, SLC12A2, SNTA1, EFNA3, CNTNAP2, EPHA4, and STXBP1 in seven patients and two high-frequency variants in DLG1 in six individuals. We also found that a group of variants (predicted deleterious and non-coding), segregating with the comorbid MAEP/AEP subgroups, belong to proteins specifically involved in glutamate transport and metabolism (namely, SLC17A6, GRM8, and GLUL), as well as in potassium conductance (KCNN3). This “endophenotype-oriented” study, performed using a targeted strategy, helped to further delineate part of the complex genetic background of ASD, particularly in the presence of coexisting macrocephaly and/or epilepsy/paroxysmal EEG, and suggests that use of stringent clinical clustering might be an approach worth adopting in order to unravel the complex genomic data in neurodevelopmental disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht, J., Sonnewald, U., Waagepetersen, H. S., & Schousboe, A. (2007). Glutamine in the central nervous system: function and dysfunction. Frontiers in Bioscience, 12, 332–343.

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini, E., Sicca, F., Brignone, M. S., D’Adamo, M. C., Napolitano, C., Servettini, I., et al. (2014). Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism–epilepsy phenotype. Human Molecular Genetics, 23(18), 4875–4886.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amiet, C., Gourfinkel-An, I., Bouzamondo, A., Tordjman, S., Baulac, M., Lechat, P., et al. (2008). Epilepsy in autism is associated with intellectual disability and gender: evidence from a meta-analysis. Biological Psychiatry, 64(7), 577–582.

    Article  PubMed  Google Scholar 

  • Amiry-Moghaddam, M., Otsuka, T., Hurn, P. D., Traystman, R. J., Haug, F. M., Froehner, S. C., et al. (2003). An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proceedings of the National Academy of Sciences USA, 100(4), 2106–2111.

    Article  CAS  Google Scholar 

  • Angeles, D. K. (1981). Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the commission on classification and terminology of the international league against epilepsy. Epilepsia, 22(4), 489–501.

    Article  Google Scholar 

  • Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends in Neurosciences, 22(5), 208–215.

    Article  CAS  PubMed  Google Scholar 

  • Aronica, E., van Vliet, E. A., Mayboroda, O. A., Troost, D., da Silva, F. H., & Gorter, J. A. (2000). Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. European Journal of Neuroscience, 12(7), 2333–2344.

    Article  CAS  PubMed  Google Scholar 

  • Baek, S. T., Gibbs, E. M., Gleeson, J. G., & Mathern, G. W. (2013). Hemimegalencephaly, a paradigm for somatic postzygotic neurodevelopmental disorders. Current Opinion in Neurology, 26(2), 122–127.

    Article  CAS  PubMed  Google Scholar 

  • Bakkaloglu, B., O’Roak, B. J., Louvi, A., Gupta, A. R., Abelson, J. F., Morgan, T. M., et al. (2008). Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. American Journal of Human Genetics, 82(1), 165–173.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benarroch, E. E. (2009). Astrocyte-neuron interactions: implications for epilepsy. Neurology, 73(16), 1323–1327.

    Article  PubMed  Google Scholar 

  • Berg, A. T., Berkovic, S. F., Brodie, M. J., Buchhalter, J., Cross, J. H., van Emde Boas, W., et al. (2010). Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, 51, 676–685.

    Article  PubMed  Google Scholar 

  • Bezzi, P., & Volterra, A. (2014). Identification and staining of distinct populations of secretory organelles in astrocytes. Cold Spring Harbor Protocols, 2014(5). doi:10.1101/pdb.prot081703.

  • Blake, J., Hoyme, H. E., & Crotwell, P. L. (2013). A brief history of autism, the autism/vaccine hypothesis and a review of the genetic basis of autism spectrum disorders (pp. 58–65). Spec no: South Dakota Medcine.

    Google Scholar 

  • Bonnet-Brilhault, F., Alirol, S., Blanc, R., Bazaud, S., Marouillat, S., Thepault, R. A., et al. (2015). GABA/Glutamate synaptic pathways targeted by integrative genomic and electrophysiological explorations distinguish autism from intellectual disability. Molecular Psychiatry,. doi:10.1038/mp.2015.75.

    PubMed  Google Scholar 

  • Buxbaum, J. D., Daly, M. J., Devlin, B., Lehner, T., Roeder, K., & State, M. W. (2012). The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron, 76(6), 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Cacciari, E., Milani, S., Balsamo, A., Spada, E., Bona, G., Cavallo, L., et al. (2006). Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). Journal of Endocrinological Investigation, 29(7), 581–593.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, I. M., Yatsenko, S. A., Hixson, P., Reimschisel, T., Thomas, M., Wilson, W., et al. (2012). Novel 9q34.11 gene deletions encompassing combinations of four Mendelian disease genes: STXBP1, SPTAN1, ENG, and TOR1A. Genetics in Medicine, 14(10), 868–876.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cancedda, L., Fiumelli, H., Chen, K., & Poo, M. M. (2007). Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. Journal of Neuroscience, 27(19), 5224–5235.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J. A., Peñagarikano, O., Belgard, T. G., Swarup, V., & Geschwind, D. H. (2015). The emerging picture of autism spectrum disorder: genetics and pathology. Annual Review of Pathology: Mechanisms of Disease, 10, 111–144.

    Article  CAS  Google Scholar 

  • Chockalingam, P. S., Gee, S. H., & Jarrett, H. W. (1999). Pleckstrin homology domain 1 of mouse alpha 1-syntrophin binds phosphatidylinositol 4,5-bisphosphate. Biochemistry, 38(17), 5596–5602.

    Article  CAS  PubMed  Google Scholar 

  • Chung, S. H., Frese, K. K., Weiss, R. S., Prasad, B. V., & Javier, R. T. (2007). A new crucial protein interaction element that targets the adenovirus E4-ORF1 oncoprotein to membrane vesicles. Journal of Virology, 81(9), 4787–4797.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cina, C., Maass, K., Theis, M., Willecke, K., Bechberger, J. F., & Naus, C. C. (2009). Involvement of the cytoplasmic C-terminal domain of connexin43 in neuronal migration. Journal of Neuroscience, 29(7), 2009–2021.

    Article  CAS  PubMed  Google Scholar 

  • CoCaTotILA, E. (1989). Proposal for revised classification of epilepsies and epileptic syndromes. Commission on classification and terminology of the international league against epilepsy. Epilepsia, 30(4), 389–399.

    Article  Google Scholar 

  • Collignon, F., Wetjen, N. M., Cohen-Gadol, A. A., Cascino, G. D., Parisi, J., Meyer, F. B., et al. (2006). Altered expression of connexin subtypes in mesial temporal lobe epilepsy in humans. Journal of Neurosurgery, 105(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy. (1981). Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia, 22, 489–501.

    Article  Google Scholar 

  • Commission on Classification and Terminology of the International League Against Epilepsy. (1989). Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia, 30, 389–399.

    Article  Google Scholar 

  • Connors, N. C., Adams, M. E., Froehner, S. C., & Kofuji, P. (2004). The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. Journal of Biological Chemistry, 279(27), 28387–28392.

    Article  CAS  PubMed  Google Scholar 

  • Coull, J. A., & Gagnon, M. (2009). The manipulation of cation-chloride co-transporters as a novel means to treat persistent pain, epilepsy and other neurological disorders. Current Opinion in Investigational Drugs, 10(1), 56–61.

    CAS  PubMed  Google Scholar 

  • Dawson, G., Estes, A., Munson, J., Schellenberg, G., Bernier, R., & Abbott, R. (2007). Quantitative assessment of autism symptom-related traits in probands and parents: Broader phenotype autism symptom scale. Journal of Autism and Developmental Disorders, 37(3), 523–536.

    Article  PubMed  Google Scholar 

  • Depaepe, V., Suarez-Gonzalez, N., Dufour, A., Passante, L., Gorski, J. A., Jones, K. R., et al. (2005). Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature, 435(7046), 1244–1250.

    Article  CAS  PubMed  Google Scholar 

  • Deprez, L., Weckhuysen, S., Holmgren, P., Suls, A., Van Dyck, T., Goossens, D., et al. (2010). Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology, 75(13), 1159–1165.

    Article  CAS  PubMed  Google Scholar 

  • Edmonson, C., Ziats, M. N., & Rennert, O. M. (2014). Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum. Molecular Autism, 5(1), 3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Elias, L. A., Wang, D. D., & Kriegstein, A. R. (2007). Gap junction adhesion is necessary for radial migration in the neocortex. Nature, 448(7156), 901–907.

    Article  CAS  PubMed  Google Scholar 

  • Endele, S., Rosenberger, G., Geider, K., Popp, B., Tamer, C., Stefanova, I., et al. (2010). Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nature Genetics, 42(11), 1021–1026.

    Article  CAS  PubMed  Google Scholar 

  • Etherington, L. A., Patterson, G. E., Meechan, L., Boison, D., Irving, A. J., Dale, N., et al. (2009). Astrocytic adenosine kinase regulates basal synaptic adenosine levels and seizure activity but not activity-dependent adenosine release in the hippocampus. Neuropharmacology, 56(2), 429–437.

    Article  CAS  PubMed  Google Scholar 

  • Fatemi, S. H., Folsom, T. D., Reutiman, T. J., & Lee, S. (2008). Expression of astrocytic markers aquaporin 4 and connexin 43 is altered in brains of subjects with autism. Synapse (New York, NY), 62(7), 501–507.

    Article  CAS  Google Scholar 

  • Filosa, A., Paixao, S., Honsek, S. D., Carmona, M. A., Becker, L., Feddersen, B., et al. (2009). Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neuroscience, 12(10), 1285–1292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fourie, C., Li, D., & Montgomery, J. M. (2014). The anchoring protein SAP97 influences the trafficking and localisation of multiple membrane channels. Biochimica et Biophysica Acta, 1838(2), 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Fushiki, S., Perez Velazquez, J. L., Zhang, L., Bechberger, J. F., Carlen, P. L., & Naus, C. C. (2003). Changes in neuronal migration in neocortex of connexin43 null mutant mice. Journal of Neuropathology and Experimental Neurology, 62(3), 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Ge, S., Goh, E. L., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076), 589–593.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamdan, F. F., Piton, A., Gauthier, J., Lortie, A., Dubeau, F., Dobrzeniecka, S., et al. (2009). De novo STXBP1 mutations in mental retardation and nonsyndromic epilepsy. Annals of Neurology, 65(6), 748–753.

    Article  CAS  PubMed  Google Scholar 

  • Horio, Y., Hibino, H., Inanobe, A., Yamada, M., Ishii, M., Tada, Y., et al. (1997). Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD-95/SAP90. Journal of Biological Chemistry, 272(20), 12885–12888.

    Article  CAS  PubMed  Google Scholar 

  • Ivens, S., Kaufer, D., Flores, L. P., Bechmann, I., Zumsteg, D., Tomkins, O., et al. (2007). TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain, 130(Pt 2), 535–547.

    Article  PubMed  Google Scholar 

  • Iwata, Y., Sampaolesi, M., Shigekawa, M., & Wakabayashi, S. (2004). Syntrophin is an actin-binding protein the cellular localization of which is regulated through cytoskeletal reorganization in skeletal muscle cells. European Journal of Cell Biology, 83(10), 555–565.

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar, A. R., & Norenberg, M. D. (2010). The Na-K-Cl Co-transporter in astrocyte swelling. Metabolic Brain Disease, 25(1), 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Jeste, S. S., & Geschwind, D. H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nature Reviews Neurology, 10(2), 74–81.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K., & Mardis, E. R. (2013). The next-generation sequencing revolution and its impact on genomics. Cell, 155(1), 27–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., et al. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36(2), 282–290.

    Article  CAS  PubMed  Google Scholar 

  • Larsen, B. R., Assentoft, M., Cotrina, M. L., Hua, S. Z., Nedergaard, M., Kaila, K., et al. (2014). Contributions of the Na(+)/K(+)-ATPase, NKCC1, and Kir4.1 to hippocampal K(+) clearance and volume responses. Glia, 62(4), 608–622.

    Article  PubMed Central  PubMed  Google Scholar 

  • Leonoudakis, D., Conti, L. R., Anderson, S., Radeke, C. M., McGuire, L. M., Adams, M. E., et al. (2004). Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. Journal of Biological Chemistry, 279(21), 22331–22346.

    Article  CAS  PubMed  Google Scholar 

  • Leung, H. T., & Ring, H. (2013). Epilepsy in four genetically determined syndromes of intellectual disability. Journal of Intellectual Disability Research, 57(1), 3–20.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Hertzberg, E. L., & Spray, D. C. (2005). Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. Journal of Biological Chemistry, 280(9), 7941–7948.

    Article  CAS  PubMed  Google Scholar 

  • Lioy, D. T., Garg, S. K., Monaghan, C. E., Raber, J., Foust, K. D., Kaspar, B. K., et al. (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357), 497–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marchese, M., Conti, V., Valvo, G., Moro, F., Muratori, F., Tancredi, R., et al. (2014). autism–epilepsy phenotype with macrocephaly suggests PTEN, but not GLIALCAM, genetic screening. BMC Medical Genetics, 15, 26.

    Article  PubMed Central  PubMed  Google Scholar 

  • Markadieu, N., & Delpire, E. (2014). Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Archiv. European Journal of Physiology, 466(1), 91–105.

    Article  CAS  PubMed  Google Scholar 

  • Martin, H. G., & Manzoni, O. J. (2014). Late onset deficits in synaptic plasticity in the valproic acid rat model of autism. Frontiers in Cellular Neuroscience, 8, 23.

    PubMed Central  PubMed  Google Scholar 

  • Mignot, C., Moutard, M. L., Trouillard, O., Gourfinkel-An, I., Jacquette, A., Arveiler, B., et al. (2011). STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia, 52(10), 1820–1827.

    Article  CAS  PubMed  Google Scholar 

  • Mirzaa, G. M., Riviere, J. B., & Dobyns, W. B. (2013). Megalencephaly syndromes and activating mutations in the PI3K-AKT pathway: MPPH and MCAP. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 163C(2), 122–130.

    Article  Google Scholar 

  • Molofsky, A. V., Krencik, R., Ullian, E. M., Tsai, H. H., Deneen, B., Richardson, W. D., et al. (2012). Astrocytes and disease: a neurodevelopmental perspective. Genes and Development, 26(9), 891–907.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montana, V., Malarkey, E. B., Verderio, C., Matteoli, M., & Parpura, V. (2006). Vesicular transmitter release from astrocytes. Glia, 54(7), 700–715.

    Article  PubMed  Google Scholar 

  • Mori, S., Tezuka, Y., Arakawa, A., Handa, N., Shirouzu, M., Akiyama, T., et al. (2013). Crystal structure of the guanylate kinase domain from discs large homolog 1 (DLG1/SAP97). Biochemical and Biophysical Research Communications, 435(3), 334–338.

    Article  CAS  PubMed  Google Scholar 

  • Murai, K. K., & Pasquale, E. B. (2011). Eph receptors and ephrins in neuron-astrocyte communication at synapses. Glia, 59(11), 1567–1578.

    Article  PubMed  Google Scholar 

  • Nagy, J. I., Dudek, F. E., & Rash, J. E. (2004). Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Research Brain Research Reviews, 47(1–3), 191–215.

    Article  CAS  PubMed  Google Scholar 

  • Nellhaus, G. (1968). Head circumference from birth to eighteen years. Practical composite international and interracial graphs. Pediatrics, 41(1), 106–114.

    CAS  PubMed  Google Scholar 

  • Ostby, I., Oyehaug, L., Einevoll, G. T., Nagelhus, E. A., Plahte, E., Zeuthen, T., et al. (2009). Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Computational Biology, 5(1), e1000272.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pellerin, L., & Magistretti, P. J. (1997). Glutamate uptake stimulates Na+, K+-ATPase activity in astrocytes via activation of a distinct subunit highly sensitive to ouabain. Journal of Neurochemistry, 69(5), 2132–2137.

    Article  CAS  PubMed  Google Scholar 

  • Penagarikano, O., Abrahams, B. S., Herman, E. I., Winden, K. D., Gdalyahu, A., Dong, H., et al. (2011). Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism—Related deficits. Cell, 147(1), 235–246.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poliak, S., Gollan, L., Martinez, R., Custer, A., Einheber, S., Salzer, J. L., et al. (1999). Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron, 24(4), 1037–1047.

    Article  CAS  PubMed  Google Scholar 

  • Poliak, S., Salomon, D., Elhanany, H., Sabanay, H., Kiernan, B., Pevny, L., et al. (2003). Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. Journal of Cell Biology, 162(6), 1149–1160.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rollins, J. D., Collins, J. S., & Holden, K. R. (2010). United States head circumference growth reference charts: birth to 21 years. The Journal of Pediatrics, 156(6), 907–913.

    Article  PubMed  Google Scholar 

  • Rose, E. M., Koo, J. C., Antflick, J. E., Ahmed, S. M., Angers, S., & Hampson, D. R. (2009). Glutamate transporter coupling to Na, K-ATPase. The Journal of Neuroscience, 29(25), 8143–8155.

    Article  CAS  PubMed  Google Scholar 

  • Saitsu, H., Kato, M., Mizuguchi, T., Hamada, K., Osaka, H., Tohyama, J., et al. (2008). De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nature Genetics, 40(6), 782–788.

    Article  CAS  PubMed  Google Scholar 

  • Santiago, M. F., Alcami, P., Striedinger, K. M., Spray, D. C., & Scemes, E. (2010). The carboxyl-terminal domain of connexin43 is a negative modulator of neuronal differentiation. Journal of Biological Chemistry, 285(16), 11836–11845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seifert, G., Carmignoto, G., & Steinhauser, C. (2010). Astrocyte dysfunction in epilepsy. Brain Research Reviews, 63(1–2), 212–221.

    Article  CAS  PubMed  Google Scholar 

  • Seifert, G., Schilling, K., & Steinhauser, C. (2006). Astrocyte dysfunction in neurological disorders: a molecular perspective. Nature Reviews Neuroscience, 7(3), 194–206.

    Article  CAS  PubMed  Google Scholar 

  • Seifert, G., & Steinhauser, C. (2013). Neuron-astrocyte signaling and epilepsy. Experimental Neurology, 244, 4–10.

    Article  PubMed  Google Scholar 

  • Shimada, S., Shimojima, K., Okamoto, N., Sangu, N., Hirasawa, K., Matsuo, M., et al. (2015). Microarray analysis of 50 patients reveals the critical chromosomal regions responsible for 1p36 deletion syndrome-related complications. Brain Development, 37(5), 515–526.

    Article  PubMed  Google Scholar 

  • Sicca, F., Imbrici, P., D’Adamo, M. C., Moro, F., Bonatti, F., Brovedani, P., et al. (2011). Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiology of Diseases, 43(1), 239–247.

    Article  CAS  Google Scholar 

  • Simard, M., & Nedergaard, M. (2004). The neurobiology of glia in the context of water and ion homeostasis. Neuroscience, 129(4), 877–896.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. J. (1994). Neural signalling. neuromodulatory astrocytes. Current Biology, 4(9), 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Spence, S. J., & Schneider, M. T. (2009). The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatric Research, 65(6), 599–606.

    Article  PubMed Central  PubMed  Google Scholar 

  • Strauss, K. A., Puffenberger, E. G., Huentelman, M. J., Gottlieb, S., Dobrin, S. E., Parod, J. M., et al. (2006). Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. New England Journal of Medicine, 354(13), 1370–1377.

    Article  CAS  PubMed  Google Scholar 

  • Tordjman, S., Somogyi, E., Coulon, N., Kermarrec, S., Cohen, D., Bronsard, G., et al. (2015). Gene× environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Frontiers in Psychiatry, 5, 53.

    Google Scholar 

  • Tuchman, R., Cuccaro, M., & Alessandri, M. (2010). Autism and epilepsy: historical perspective. Brain Development, 32(9), 709–718.

    Article  PubMed  Google Scholar 

  • Tuchman, R., Hirtz, D., & Mamounas, L. A. (2013). NINDS epilepsy and autism spectrum disorders workshop report. Neurology, 81(18), 1630–1636.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valvo, G., Baldini, S., Brachini, F., Apicella, F., Cosenza, A., Ferrari, A. R., et al. (2013). Somatic overgrowth predisposes to seizures in autism spectrum disorders. PLoS One, 8(9), e75015.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valvo, G., Baldini, S., Retico, A., Rossi, G., Tancredi, R., Ferrari A. R., et al. (2015). Temporal lobe connects regression and macrocephaly to autism spectrum disorders. Europian Child and Adolescent Psychiatry. doi:10.1007/s00787-015-0746-9.

    Google Scholar 

  • Voineagu, I., & Eapen, V. (2013). Converging pathways in autism spectrum disorders: interplay between synaptic dysfunction and immune responses. Frontiers in Human Neuroscience, 7, 738.

    Article  PubMed Central  PubMed  Google Scholar 

  • Voineagu, I., Wang, X., Johnston, P., Lowe, J. K., Tian, Y., Horvath, S., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474(7351), 380–384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wetherington, J., Serrano, G., & Dingledine, R. (2008). Astrocytes in the epileptic brain. Neuron, 58(2), 168–178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong, M., & Crino, P. B. (2012). Tuberous sclerosis and epilepsy: role of astrocytes. Glia, 60(8), 1244–1250.

    Article  PubMed  Google Scholar 

  • Zeidán-Chuliá, F., Salmina, A. B., Malinovskaya, N. A., Noda, M., Verkhratsky, A., & Moreira, J. C. (2014). The glial perspective of autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 38, 160–172.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support of Telethon Italy (http://www.telethon.it/en; Grant No. GGP11188) and Fondazione Cassa di Risparmio di Lucca (Grant 567-2014) is gratefully acknowledged. We also thank Dr. Valerio Conti for technical help in molecular studies and Dr. Catherine J. Wrenn for expert proof reading.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Federico Sicca or Filippo M. Santorelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standard

This study had been approved by the IRCCS Stella Maris Ethical Committee. All procedures involving human participants were in accordance with the ethical standards of the institutional and national research committee and with 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 714 kb)

Supplementary material 2 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchese, M., Valvo, G., Moro, F. et al. Targeted Gene Resequencing (Astrochip) to Explore the Tripartite Synapse in Autism–Epilepsy Phenotype with Macrocephaly. Neuromol Med 18, 69–80 (2016). https://doi.org/10.1007/s12017-015-8378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8378-2

Keywords

Navigation