Skip to main content

Advertisement

Log in

NNZ-2566, a Novel Analog of (1–3) IGF-1, as a Potential Therapeutic Agent for Fragile X Syndrome

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, and many agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. In the present work, a novel pharmacological approach for FXS is investigated. NNZ-2566, a synthetic analog of a naturally occurring neurotrophic peptide derived from insulin-like growth factor-1 (IGF-1), was administered to fmr1 knockout mice correcting learning and memory deficits, abnormal hyperactivity and social interaction, normalizing aberrant dendritic spine density, overactive ERK and Akt signaling, and macroorchidism. Altogether, our results indicate a unique disease-modifying potential for NNZ-2566 in FXS. Most importantly, the present data implicate the IGF-1 molecular pathway in the pathogenesis of FXS. A clinical trial is under way to ascertain whether these findings translate into clinical effects in FXS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baker, A. M., Batchelor, D. C., Thomas, G. B., Wen, J. Y., Rafiee, M., Lin, H., & Guan, J. (2005). Central penetration and stability of N-terminal tripeptide of insulin-like growth factor-I, glycine-proline-glutamate in adult rat. Neuropeptides, 39, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Bickerdike, M. J., Thomas, G. B., Batchelor, D. C., Sirimanne, E. S., Leong, W., Lin, H., et al. (2009). NNZ-2566: A Gly-Pro-Glu analogue with neuroprotective efficacy in a rat model of acute focal stroke. Journal of the Neurological Sciences, 278, 85–90.

    Article  CAS  PubMed  Google Scholar 

  • Corvin, A. P., Molinos, I., Little, G., Donohoe, G., Gill, M., Morris, D. W., & Tropea, D. (2012). Insulin-like growth factor 1 (IGF1) and its active peptide (1–3) IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neuroscience Letters, 520, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, R. M. J. (2006a). Assessing nest building in mice. Nature Protocols, 1, 1117–1119.

    Article  PubMed  Google Scholar 

  • Deacon, R. M. J. (2006b). Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nature Protocols, 1, 122–124.

    Article  CAS  PubMed  Google Scholar 

  • Deacon, R. M. J. (2013). The successive alleys test of anxiety in mice and rats. Journal of Visualized Experiments, 76, e2705.

    Google Scholar 

  • Deacon, R. M. J., Brook, R. C., Meyer, D., Haeckel, O., Ashcroft, F. M., Miki, T., et al. (2006). Behavioral phenotyping of mice lacking the KATP channel subunit Kir6.2. Physiology & Behavior, 87, 723–733.

    Article  CAS  Google Scholar 

  • Deacon, R. M. J., & Rawlins, J. N. P. (2005). Hippocampal lesions, species-typical behaviours and anxiety in mice. Behavioural Brain Research, 156, 241–249.

    Article  PubMed  Google Scholar 

  • D’Ercole, A. J., & Ye, P. (2008). Minireview: Expanding the mind: Insulin-like growth factor I and brain development. Endocrinology, 149, 5958–5962.

    Article  Google Scholar 

  • Derecki, N. C., Cronk, J. C., Lu, Z., Xu, E., Abbott, S. B., Guyenet, P. G., & Kipnis, J. (2012). Wild type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484, 105–109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ethell, I. M., Irie, F., Kalo, M. S., Couchman, J. R., Pasquale, E. B., & Yamaguchi, Y. (2001). EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron, 31, 1001–1013.

    Article  CAS  PubMed  Google Scholar 

  • Ethell, I. M., & Yamaguchi, Y. (1999). Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. Journal of Cell Biology, 144, 575–586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan, J., & Gluckman, P. D. (2009). IGF-1 derived small neuropeptides and analogues: A novel strategy for the development of pharmaceuticals for neurological conditions. British Journal of Pharmacology, 157, 881–891.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagerman, R. J. (1997). Fragile X syndrome. Molecular and clinical insights and treatment issues. Western Journal of Medicine, 166, 129–137.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henderson, C., Wijetunge, L., Kinoshita, M. N., Shumway, M., Hammond, R. S., Postma, F. R., et al. (2012). Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABA(B) receptors with arbaclofen. Science Translational Medicine, 4, 128.

    Article  Google Scholar 

  • Henkemeyer, M., Itkis, O. S., Ngo, M., Hickmott, P. W., & Ethell, I. M. (2003). Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. Journal of Cell Biology, 163, 1313–1326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoeffer, C. A., Sanchez, E., Hagerman, R. J., Mu, Y., Nguyen, D. V., Wong, H., et al. (2012). Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes, Brain, and Behavior, 11, 332–341.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irwin, S. A., Galvez, R., & Greenough, W. T. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex, 10, 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs, S., & Doering, L. C. (2010). Astrocytes prevent abnormal neuronal development in the fragile X mouse. Journal of Neuroscience, 30, 4508–4514.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J., & Wu, G. Y. (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. Journal of Neuroscience, 25, 11288–11299.

    Article  CAS  PubMed  Google Scholar 

  • Levenga, J., Hayashi, S., de Vrij, F. M., Koekkoek, S. K., van der Linde, H. C., Nieuwenhuizen, I., et al. (2011). AFQ056, a new mGluR5 antagonist for treatment of fragile X syndrome. Neurobiology of Diseases, 42, 311–317.

    Article  CAS  Google Scholar 

  • Lister, R. G. (1987). The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl), 92, 180–185.

    CAS  Google Scholar 

  • Lopez Verrilli, M. A., Pirola, C. J., Pascual, M. M., Dominici, F. P., Turyn, D., & Gironacci, M. M. (2009). Angiotensin-(1–7) through AT receptors mediates tyrosine hydroxylase degradation via the ubiquitin-proteasome pathway. Journal of Neurochemistry, 109, 326–335.

    Article  PubMed  Google Scholar 

  • Maezawa, I., & Jin, L. W. (2010). Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. Journal of Neuroscience, 30, 5346–5356.

    Article  CAS  PubMed  Google Scholar 

  • Michalon, A., Sidorov, M., Ballard, T. M., Ozmen, L., Spooren, W., Wettstein, J. G., et al. (2012). Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron, 74, 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Nimchinsky, E. A., Oberlander, A. M., & Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knockout mice. Journal of Neuroscience, 21, 5139–5146.

    CAS  PubMed  Google Scholar 

  • Oostra, B. A., & Willemsen, R. (2003). A fragile balance: FMR1 expression levels. Human Molecular Genetics, 12, R249–R257.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers, R. J., & Johnson, N. J. (1995). Factor analysis of spatiotemporal and ethological measures in the murine elevated plus-maze test of anxiety. Pharmacology, Biochemistry and Behavior, 52, 297–303.

    Article  CAS  PubMed  Google Scholar 

  • Sara, V. R., Carlsson-Skwirut, C., Bergman, T., Jornvall, H., Roberts, P. J., Crawford, M., et al. (1989). Identification of Gly-Pro-Glu (GPE), the aminoterminal tripeptide of insulin-like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochemical and Biophysical Research Communications, 165, 766–771.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, A., Hoeffer, C. A., Takayasu, Y., Miyawaki, T., McBride, S. M., Klann, E., & Zukin, R. S. (2010). Dysregulation of mTOR signaling in fragile X syndrome. Journal of Neuroscience, 30, 694–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Svedin, P., Guan, J., Mathai, S., Zhang, R., Wang, X., Gustavsson, M., et al. (2007). Delayed peripheral administration of a GPE analogue induces astrogliosis and angiogenesis and reduces inflammation and brain injury following hypoxia-ischemia in the neonatal rat. Developmental Neuroscience, 29, 393–402.

    Article  CAS  PubMed  Google Scholar 

  • The Dutch-Belgian Fragile X Consortium, Bakker, C. E., Verheij, C., Willemsen, R., van der Helm, R., Oerlemans, F., et al. (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. Cell, 78, 23–33.

    Google Scholar 

  • Tropea, D., Giacometti, E., Wilson, N. R., Beard, C., McCurry, C., Fu, D. D., et al. (2009). Partial reversal of Rett syndrome-like symptoms in MeCP2 mutant mice. PNAS, 106, 2029–2034.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wei, H. H., Lu, X. C., Shear, D. A., Waghray, A., Yao, C., Tortella, F. C., & Dave, J. R. (2009). NNZ-2566 treatment inhibits neuroinflammation and pro-inflammatory cytokine expression induced by experimental penetrating ballistic-like brain injury in rats. Journal of Neuroinflammation, 6, 19–29.

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan, Q. J., Rammal, M., Tranfaglia, M., & Bauchwitz, R. P. (2005). Suppression of two major fragile X syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology, 49, 1053–1066.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are much indebted to FRAXA Research Foundation, USA, and Professor David Nelson, Baylor College of Medicine, USA, for sending us the two fmr1 knockout mice used in this study. We thank the FRAXA Research Foundation and Neuren Pharmaceuticals Ltd for supporting this work. We would like to thank Dr. Mike Bickerdike, for helpful advice and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Larry Glass or Patricia Cogram.

Additional information

Robert M. J. Deacon and Larry Glass have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deacon, R.M.J., Glass, L., Snape, M. et al. NNZ-2566, a Novel Analog of (1–3) IGF-1, as a Potential Therapeutic Agent for Fragile X Syndrome. Neuromol Med 17, 71–82 (2015). https://doi.org/10.1007/s12017-015-8341-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8341-2

Keywords

Navigation