Skip to main content

Advertisement

Log in

Epigenome-Wide Association Study for Parkinson’s Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

A methylation-based EWAS on carefully phenotyped individuals with Parkinson’s disease (PD) was conducted to reveal prioritised genes and pathways with statistically significant and sizable changes in PD and in the anxiety that often accompanies it. This was followed by subsequent replication of top-ranked CpG sites. Using the Infinium® HumanMethylation 450K beadchip (Illumina Inc., USA), twenty unique genes with a sizable difference in methylation (P adjusted < 0.05, Δβ ≥ 0.2), after correction for multiple testing, were identified between PD and controls, while seventeen were identified between PD with anxiety and PD without anxiety. Twelve top ranked, significantly associated loci in PD were evaluated in an independent replicate population using Sequenom EpiTYPER for 219 individuals with similar phenotypes to the cross-sectional case–control discovery design. FANCC cg14115740 and TNKS2 cg11963436 show significant differential methylation between PD cases and controls using both techniques and their Δβ values, which have the same direction of effect, are reasonable to warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida Mdo, R. (2012). Glucocerebrosidase involvement in Parkinson disease and other synucleinopathies. Frontiers in Neurology, 3, 65.

    PubMed  Google Scholar 

  • Ardley, H. C., Scott, G. B., Rose, S. A., Tan, N. G., & Robinson, P. A. (2004). UCH-L1 aggresome formation in response to proteasome impairment indicates a role in inclusion formation in Parkinson’s disease. Journal of Neurochemistry, 90(2), 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Bajaj, A., Driver, J. A., & Schernhammer, E. S. (2010). Parkinson’s disease and cancer risk: A systematic review and meta-analysis. Cancer Causes & Control: CCC, 21(5), 697–707.

    Article  PubMed  Google Scholar 

  • Bando, Y., Onuki, R., Katayama, T., Manabe, T., Kudo, T., Taira, K., et al. (2005). Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease. Neurochemistry International, 46(1), 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Bell, C. G., Teschendorff, A. E., Rakyan, V. K., Maxwell, A. P., Beck, S., & Savage, D. A. (2010). Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Medical Genomics, 3, 33.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benjamini, Y., & H, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57(1), 289–300.

    Google Scholar 

  • Ben-Shlomo, Y. (1996). How far are we in understanding the cause of Parkinson’s disease? Journal of Neurology, Neurosurgery and Psychiatry, 61(1), 4–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breitling, L. P., Yang, R., Korn, B., Burwinkel, B., & Brenner, H. (2011). Tobacco-smoking-related differential DNA methylation: 27 K discovery and replication. American Journal of Human Genetics, 88(4), 450–457.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan, N. C., & Chan, D. C. (2011). Parkin uses the UPS to ship off dysfunctional mitochondria. Autophagy, 7(7), 771–772.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chowdhury, S., Erickson, S. W., Macleod, S. L., Cleves, M. A., Hu, P., Karim, M. A., et al. (2011). Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS one, 6(1), e16506.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarke, C. E. (Ed.). (2007). Parkinson’s Disease (2nd ed.). London: Royal Society of Medicine Press Ltd.

    Google Scholar 

  • Cook, C., Stetler, C., & Petrucelli, L. (2012). Disruption of protein quality control in Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine, 2(5), a009423.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cummings, J. L., Mega, M., Gray, K., Rosenberg-Thompson, S., Carusi, D. A., & Gornbein, J. (1994). The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology, 44(12), 2308–2314.

    Article  CAS  PubMed  Google Scholar 

  • Dahl, C., & Guldberg, P. (2003). DNA methylation analysis techniques. Biogerontology, 4(4), 233–250.

    Article  CAS  PubMed  Google Scholar 

  • Daniel, S. E., & Lees, A. J. (1993). Parkinson’s Disease Society Brain Bank, London: Overview and research. Journal of Neural Transmission. Supplementum, 39, 165–172.

    CAS  PubMed  Google Scholar 

  • Dehay, B., Martinez-Vicente, M., Ramirez, A., Perier, C., Klein, C., Vila, M., et al. (2012). Lysosomal dysfunction in Parkinson disease: ATP13A2 gets into the groove. Autophagy, 8(9), 1389–1391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Desideri, E., & Martins, L.M. (2012). Mitochondrial stress signalling: HTRA2 and Parkinson’s disease. International Journal of Cell Biology, 2012, 607929.

  • Flintoft, L. (2011). Disease epigenomics: A smoking gun. Nature Reviews Genetics, 12(5), 300.

    Article  CAS  PubMed  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Grupe, A., Li, Y., Rowland, C., Nowotny, P., Hinrichs, A. L., Smemo, S., et al. (2006). A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. American Journal of Human Genetics, 78(1), 78–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hancock, D. B., Martin, E. R., Mayhew, G. M., Stajich, J. M., Jewett, R., Stacy, M. A., et al. (2008). Pesticide exposure and risk of Parkinson’s disease: A family-based case-control study. BMC Neurology, 8, 6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Handel, A. E., Ebers, G. C., & Ramagopalan, S. V. (2010). Epigenetics: Molecular mechanisms and implications for disease. Trends in Molecular Medicine, 16(1), 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Harris, R. A., Nagy-Szakal, D., Pedersen, N., Opekun, A., Bronsky, J., Munkholm, P., et al. (2012). Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases. Inflammatory Bowel Diseases, 18(12), 2334–2341.

    Article  PubMed  Google Scholar 

  • Illumina, 09/03/12, 2012-last update, Infinium HumanMethylation450 BeadChip. [Homepage of Illumina] [Online]. Available: http://www.illumina.com/documents/products/datasheets/datasheet_humanmethylation450.pdf [03/20, 2012].

  • International Parkinson’s Disease Genomics Consortium (IPDGC) And Wellcome Trust Case Control Consortium 2 (WTCCC2). (2011). A two-stage meta-analysis identifies several new loci for Parkinson’s disease. PLoS Genetics, 7(6), e1002142.

    Article  Google Scholar 

  • Jellinger, K. (1988). The pedunculopontine nucleus in Parkinson’s disease, progressive supranuclear palsy and Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 51(4), 540–543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jellinger, K. A. (2009). Formation and development of Lewy pathology: A critical update. Journal of Neurology, 256(Suppl 3), 270–279.

    Article  PubMed  Google Scholar 

  • Johnson, M. R., Lydiard, R. B., Zealberg, J. J., Fossey, M. D., & Ballenger, J. C. (1994). Plasma and CSF HVA levels in panic patients with comorbid social phobia. Biological Psychiatry, 36(6), 425–427.

    Article  CAS  PubMed  Google Scholar 

  • Jowaed, A., Schmitt, I., Kaut, O., & Wullner, U. (2010). Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30(18), 6355–6359.

    Article  CAS  Google Scholar 

  • Junn, E., Taniguchi, H., Jeong, B. S., Zhao, X., Ichijo, H., & Mouradian, M. M. (2005). Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9691–9696.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaminker, P. G., Kim, S. H., Taylor, R. D., Zebarjadian, Y., Funk, W. D., Morin, G. B., et al. (2001). TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. The Journal of Biological Chemistry, 276(38), 35891–35899.

    Article  CAS  PubMed  Google Scholar 

  • Kummer, A., Cardoso, F., & Teixeira, A. L. (2008). Frequency of social phobia and psychometric properties of the Liebowitz social anxiety scale in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 23(12), 1739–1743.

    Article  Google Scholar 

  • Kummer, A., & Teixeira, A. L. (2009). Neuropsychiatry of Parkinson’s disease. Arquivos de Neuro-Psiquiatria, 67(3B), 930–939.

    Article  PubMed  Google Scholar 

  • Lang, A. E. T., & Fahn, S. (1989). Assessment of Parkinson’s disease. In T. L. Munsat (Ed.), Quantification of neurological deficit (pp. 285–309). Boston: Butterworths.

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science (New York), 219(4587), 979–980.

    Article  CAS  Google Scholar 

  • Lill, C. M., Roehr, J. T., McQueen, M. B., Kavvoura, F. K., Bagade, S., Schjeide, B. M., et al. (2012). Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: The PDGene database. PLoS Genetics, 8(3), e1002548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, B., Gao, H. M., & Hong, J. S. (2003). Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: Role of neuroinflammation. Environmental Health Perspectives, 111(8), 1065–1073.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, H., Liu, W., Wu, Y., Zhou, Y., Xue, R., Luo, C., et al. (2005). Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Research, 65(17), 7635–7643.

    CAS  PubMed  Google Scholar 

  • Mailman, M. D., Feolo, M., Jin, Y., Kimura, M., Tryka, K., Bagoutdinov, R., et al. (2007). The NCBI dbGaP database of genotypes and phenotypes. Nature Genetics, 39(10), 1181–1186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marques, S. C., Oliveira, C. R., Pereira, C. M., & Outeiro, T. F. (2011). Epigenetics in neurodegeneration: A new layer of complexity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(2), 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Marsit, C. J., Koestler, D. C., Christensen, B. C., Karagas, M. R., Houseman, E. A., & Kelsey, K. T. (2011). DNA methylation array analysis identifies profiles of blood-derived DNA methylation associated with bladder cancer. Journal of clinical Oncology: Official Journal of the American Society of Clinical Oncology, 29(9), 1133–1139.

    Article  Google Scholar 

  • Muzerengi, S., Contrafatto, D., & Chaudhuri, K. R. (2007). Non-motor symptoms: Identification and management. Parkinsonism and Related Disorders, 13(Suppl 3), 450–456.

    Article  Google Scholar 

  • Nutt, D. J., Bell, C. J., & Malizia, A. L. (1998). Brain mechanisms of social anxiety disorder. The Journal of Clinical Psychiatry, 59(Suppl 17), 4–11.

    PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York), 276(5321), 2045–2047.

    Article  CAS  Google Scholar 

  • Pontone, G. M., Williams, J. R., Anderson, K. E., Chase, G., Goldstein, S. A., Grill, S., et al. (2009). Prevalence of anxiety disorders and anxiety subtypes in patients with Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 24(9), 1333–1338.

    Article  Google Scholar 

  • Qureshi, I. A., & Mehler, M. F. (2011). Advances in epigenetics and epigenomics for neurodegenerative diseases. Current Neurology and Neuroscience Reports, 11(5), 464–473.

    Article  CAS  PubMed  Google Scholar 

  • Rakyan, V. K., Down, T. A., Balding, D. J., & Beck, S. (2011). Epigenome-wide association studies for common human diseases. Nature Reviews Genetics, 12(8), 529–541.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren, H., Fu, K., Wang, D., Mu, C., & Wang, G. (2011). Oxidized DJ-1 interacts with the mitochondrial protein BCL-XL. The Journal of Biological Chemistry, 286(40), 35308–35317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson, H. M., Hood, S. D., Bell, C. J., & Nutt, D. J. (2006). Dopamine and social anxiety disorder. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999), 28(4), 263–264.

    Article  Google Scholar 

  • Schneier, F. R., Liebowitz, M. R., Abi-Dargham, A., Zea-Ponce, Y., Lin, S. H., & Laruelle, M. (2000). Low dopamine D(2) receptor binding potential in social phobia. The American Journal of Psychiatry, 157(3), 457–459.

    Article  CAS  PubMed  Google Scholar 

  • Schrag, A. (2006). Quality of life and depression in Parkinson’s disease. Journal of the Neurological Sciences, 248(1–2), 151–157.

    Article  PubMed  Google Scholar 

  • Siemers, E. R., Shekhar, A., Quaid, K., & Dickson, H. (1993). Anxiety and motor performance in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 8(4), 501–506.

    Article  CAS  Google Scholar 

  • Smyth, L. J., McKay, G. J., Maxwell, A. P., & McKnight, A. J. (2014). DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics: Official Journal of the DNA Methylation Society, 9(3), 366–376.

    Article  CAS  Google Scholar 

  • Stern, M., Dulaney, E., Gruber, S. B., Golbe, L., Bergen, M., Hurtig, H., et al. (1991). The epidemiology of Parkinson’s disease: A case-control study of young-onset and old-onset patients. Archives of Neurology, 48(9), 903–907.

    Article  CAS  PubMed  Google Scholar 

  • Sun, F., Kanthasamy, A., Anantharam, V., & Kanthasamy, A. G. (2007). Environmental neurotoxic chemicals-induced ubiquitin proteasome system dysfunction in the pathogenesis and progression of Parkinson’s disease. Pharmacology & Therapeutics, 114(3), 327–344.

    Article  CAS  Google Scholar 

  • Wilhelmus, M. M., Nijland, P. G., Drukarch, B., de Vries, H. E., & van Horssen, J. (2012). Involvement and interplay of Parkin, PINK1, and DJ1 in neurodegenerative and neuroinflammatory disorders. Free Radical Biology & Medicine, 53(4), 983–992.

    Article  CAS  Google Scholar 

  • Wing, M. R., Devaney, J. M., Joffe, M. M., Xie, D., Feldman, H. I., Dominic, E. A., et al. (2014). DNA methylation profile associated with rapid decline in kidney function: Findings from the CRIC study. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association—European Renal Association, 29(4), 864–872.

    Article  CAS  Google Scholar 

  • Zhu, Y., Stevens, R. G., Hoffman, A. E., Tjonneland, A., Vogel, U. B., Zheng, T., et al. (2011). Epigenetic impact of long-term shiftwork: Pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiology International, 28(10), 852–861.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

A grant was received from the Department of Education and Learning to fund this study. Gen-Probe ran the 450K arrays. The DNA used in the replication phase was historically archived by Dr Owen Ross and Dr Mark Gibson.

Conflict of interest

All authors agreed the final version of this manuscript and the authors declare no conflict of interest.

Ethical standard

Ethical approval was granted for this project, and all participants provided informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry Moore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moore, K., McKnight, A.J., Craig, D. et al. Epigenome-Wide Association Study for Parkinson’s Disease. Neuromol Med 16, 845–855 (2014). https://doi.org/10.1007/s12017-014-8332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8332-8

Keywords

Navigation