Skip to main content

Advertisement

Log in

Multiple Mechanisms of Iron-Induced Amyloid Beta-Peptide Accumulation in SHSY5Y Cells: Protective Action of Negletein

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The increased accumulation of iron in the brain in Alzheimer’s disease (AD) is well documented, and excess iron is strongly implicated in the pathogenesis of the disease. The adverse effects of accumulated iron in AD brain may include the oxidative stress, altered amyloid beta-metabolism and the augmented toxicity of metal-bound amyloid beta 42. In this study, we have shown that exogenously added iron in the form of ferric ammonium citrate (FAC) leads to considerable accumulation of amyloid precursor protein (APP) without a corresponding change in the concerned gene expression in cultured SHSY5Y cells during exposure up to 48 h. This phenomenon is also associated with increased β-secretase activity and augmented release of amyloid beta 42 in the medium. Further, the increase in β-secretase activity, in SHSY5Y cells, upon exposure to iron apparently involves reactive oxygen species (ROS) and NF-κB activation. The synthetic flavone negletein (5,6-dihydroxy-7-methoxyflavone), which is a known chelator for iron, can significantly prevent the effects of FAC on APP metabolism in SHSY5Y cells. Further, this compound inhibits the iron-dependent formation of ROS and also blocks the iron-induced oligomerization of amyloid beta 42 in vitro. In concentrations used in this study, negletein alone appears to have only marginal toxic effects on cell viability, but, on the other hand, the drug is capable of ameliorating the iron-induced loss of cell viability considerably. Our results provide the initial evidence of potential therapeutic effects of negletein, which should be explored in suitable animal models of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguirre, P., Mena, N., Tapia, V., Arredondo, M., & Nunez, M. T. (2005). Iron homeostasis in neuronal cells: A role for IREG1. BioMed Central Neuroscience. doi:10.1186/1471-2202-6-3.

  • Aracena, P., Aguirre, P., Munoz, P., & Nunez, M. T. (2009). Iron and glutathione at the crossroad of redox metabolism in neurons. Biological Research, 39, 157–165.

    Google Scholar 

  • Bandyopadhyay, S., Cahill, C., Balleidier, A., Huang, C., Lahiri, D. K., Huang, X., et al. (2013). Novel 5′ untranslated region directed blockers of iron-regulatory protein-1 dependent amyloid precursor protein translation: Implications for down syndrome and Alzheimer’s disease. PLoS One, 8(7), e65978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baptista, F. I., Henriques, A. G., Silva, A. M., Wiltfang, J., da Cruz, E., & Silva, O. A. (2014). Flavonoids as therapeutic compounds targeting key proteins involved in Alzheimer’s disease. ACS Chemical Neuroscience, 5(2), 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Barnham, K. J., Kenche, V. B., Ciccotosto, G. D., Smith, D. P., Tew, D. J., Liu, X., et al. (2008). Platinum-based inhibitors of amyloid-β as therapeutic agents for Alzheimer’s disease. Proceedings of the National Academy Sciences of the United States of America, 105(19), 6813–6818.

    Article  CAS  Google Scholar 

  • Beaudoin, M. E., Poirel, V.-J., & Krushel, L. A. (2008). Regulating amyloid precursor protein synthesis through an internal ribosomal entry site. Nucleic Acids Research, 36(21), 6835–6847.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belyaev, N. D., Kellett, K. A., Beckett, C., Makova, N. Z., Revett, T. J., & Nalivaeva, N. N. (2010). The transcriptionally active amyloid precursor protein (APP) intracellular domain is preferentially produced from the 695 isoform of APP in a {beta}-secretase-dependent pathway. Journal of Biological Chemistry, 285(53), 41443–41454.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bonda, D. J., Lee, H., Blair, J. A., Zhu, X., Perry, G., & Smith, M. A. (2011). Role of metal dyshomeostasis in Alzheimer’s disease. Metallomics, 3(3), 267–270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Butterfield, D. A., Perluigi, M., Sultana, R., et al. (2006). Oxidative stress in Alzheimer’s disease brain: New insight from redox proteomics. European Journal of Pharmacology, 545(1), 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti, S., Sinha, M., Thakurta, I. G., Banerjee, P., & Chattopadhyay, M. (2013). Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants. Current Medicinal Chemistry, 20(37), 4648–4664.

    Article  CAS  PubMed  Google Scholar 

  • Chami, L., & Checler, F. (2012). BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and β-amyloid production in Alzheimer’s disease. Molecular Neurodegeneration, 7, 52. doi:10.1186/1750-1326-7-52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, C. H., Zhou, W., Liu, S., Deng, Y., Cai, F., Tone, M., et al. (2012). Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. The International Journal of Neuropsychopharmacology, 15(1), 77–90.

    Article  CAS  PubMed  Google Scholar 

  • Choi, D. Y., Lee, Y. J., Hong, J. T., & Lee, H. J. (2012). Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Research Bulletin, 87(2–3), 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Clark, J. B., Bates, T. E., Boakye, P., Kuimov, A., & Land, J. M. (1997). Investigation of mitochondrial defects in brain and skeletal muscle. In A. J. Turner & H. S. Bachelard (Eds.), Neurochemistry: A practical approach (pp. 151–174). New York: Oxford University Press Inc.

    Google Scholar 

  • Commenges, D., Scotet, V., Renaud, S., Jacqmin-Gadda, H., Barberger-Gateau, P., & Dartigues, J. F. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357–363.

    Article  CAS  PubMed  Google Scholar 

  • Dai, X., Sun, Y., Gao, Z., & Jiang, Z. (2010). Copper enhances amyloid-β peptide neuro-toxicity and non β-aggregation: A series of experiments conducted upon copper- bound and copper-free amyloid-β peptide. Journal of Molecular Neuroscience, 41(1), 66–73.

    Article  CAS  PubMed  Google Scholar 

  • Dragicevic, N., Smith, A., Lin, X., Yuan, F., Copes, N., Delic, V., et al. (2011). Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. Journal of Alzheimer’s disease, 26(3), 507–521.

    CAS  PubMed  Google Scholar 

  • Duce, J. A., Bush, A. I., & Adlard, P. A. (2011). Role of amyloid-beta-metal interactions in Alzheimer’s disease. Future Neurology, 6(5), 641–659.

    Article  CAS  Google Scholar 

  • Guo, C., Wang, T., Zheng, W., Shan, Z. Y., Teng, W. P., & Wang, Z. Y. (2013a). Intranasal deferoxamine reverses iron-induced memory deficits and inhibits amyloidogenic APP processing in a transgenic mouse model of Alzheimer’s disease. Neurobiology of Aging, 34(2), 562–575.

    Article  CAS  PubMed  Google Scholar 

  • Guo, C., Wang, P., Zhong, M. L., Wang, T., Huang, X. S., Li, J. Y., et al. (2013b). Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochemistry International, 62(2), 165–172.

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge, J. M. C. (1992). Iron and oxygen radicals in brain. Annals of Neurology, 32(S1), S16–S21.

    Article  CAS  PubMed  Google Scholar 

  • Hallgren, B., & Sourander, P. (1958). The effect of age on the non-haemin iron in the human brain. Journal of Neurochemistry, 3(1), 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B., & Gutteridge, J. M. C. (1998). Free radicals in biology and medicine. Oxford: Oxford University Press.

    Google Scholar 

  • Hayden, M. S., & Ghosh, S. (2004). Signaling to NF-kB. Genes and Development, 18(18), 2195–2224.

    Article  CAS  PubMed  Google Scholar 

  • Hickok, J. R., Sahni, S., Mikhed, Y., Bonini, M. G., & Thomas, D. D. (2011). Nitric oxide suppresses tumor cell migration through N-Myc downstream-regulated gene-1 (NDRG1) expression role of chelatable iron. The Journal of Biological Chemistry, 286(48), 41413–41424.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoepken, H. H., Korten, T., Robinson, S. R., & Dringen, R. (2004). Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferring receptor in cultured astrocytes during incubation with ferric ammonium citrate. Journal of Neurochemistry, 88, 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Atwood, C. S., Moir, R. D., Hartshorn, M. A., Tanzi, R. E., & Bush, A. I. (2004). Trace metal contamination initiates the apparent auto-aggregation, amyloi- dosis, and oligomerization of Alzheimer’s Aβ peptides. Journal of Biological Inorganic Chemistry, 9(8), 954–960.

    Article  CAS  PubMed  Google Scholar 

  • Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., et al. (2012). National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers and Dementia, 8(1), 1–13.

    Article  Google Scholar 

  • Jana, S., Sinha, M., Chanda, D., Roy, T., Banerjee, K., Munshi, S., et al. (2011). Mitochondrial dysfunction mediated by quinone oxidation products of dopamine: Implications in dopamine cytotoxicity and pathogenesis of Parkinson’s disease. Biochimica et Biophysica Acta, 1812(6), 663–673.

    Article  CAS  PubMed  Google Scholar 

  • Jomova, K., Vondrakova, D., Lawson, M., & Valko, M. (2010). Metals, oxidative stress and neurodegenerative disorders. Molecular and Cellular Biochemistry, 345(1–2), 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa, K., Uehara, M., Yanagitani, H., & Hashimoto, T. (2006). Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Archives of Biochemistry and Biophysics, 455(2), 2197–2203.

    Article  Google Scholar 

  • Khemka, V. K., Bagchi, D., Bandyopadhyay, K., Bir, A., Chattopadhyay, M., Biswas, A., et al. (2014). Altered serum levels of adipokines and insulin in probable Alzheimer’s disease. Journal of Alzheimers Disease. doi:10.3233/JAD-140006.

    Google Scholar 

  • Li, Y. P., Bushnell, A. F., Lee, C. M., Perlmutter, L. S., & Wong, S. K. (1996). Beta-amyloid induces apoptosis in human-derived neurotypic SH-SY5Y cells. Brain Research, 738(2), 196–204.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., Zou, L. Y., Cao, C. M., & Yang, E. S. (2005). Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. Biofactors, 25(1–4), 97–107.

    Article  PubMed  Google Scholar 

  • Lin, Y.-Z., Yao, S. Y., Veach, R. A., Torgerson, T. R., & Hawiger, J. (1995). Inhibition of nuclear translocation of transcription factor NF-κB by a synthetic peptide containing a cell membrane-permeable motif and nuclear localization sequence. The Journal of Biological Chemistry, 270(24), 14255–14258.

    Article  CAS  PubMed  Google Scholar 

  • Lombardo, E., Sabellico, C., Hájek, J., Staňková, V., Filipský, T., Balducci, V., et al. (2013). Protection of cells against oxidative stress by nanomolar levels of hydroxyflavones indicates a new type of intracellular antioxidant mechanism. PLoS One, 8(4), e60796.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L., & Markesbery, W. R. (1998). Copper, iron and zinc in Alzheimer’s disease senile plaques. Journal of the Neurological Sciences, 158(1), 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Macáková, K., Mladěnka, P., Filipský, T., Říha, M., Jahodář, L., Trejtnar, F., et al. (2012). Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chemistry, 135(4), 2584–2592.

    Article  PubMed  Google Scholar 

  • Middleton, E, Jr, Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673–751.

    CAS  PubMed  Google Scholar 

  • Mills, E., Dong, X.-P., Wang, F., & Xu, H. (2010). Mechanisms of brain iron transport: Insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2(1), 51–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mladěnka, P., Macáková, K., Filipský, T., Zatloukalová, L., Jahodář, L., Bovicelli, P., et al. (2011). In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry, 105(5), 693–701.

    Article  PubMed  Google Scholar 

  • Morel, Y., & Barouki, R. (1999). Repression of gene expression by oxidative stress. The Biochemical Journal, 342(3), 481–496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morgan, M. J., & Liu, Z-g. (2011). Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 21(1), 103–115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mura, C. V., Delgado, R., Aguirre, P., Bacigalupo, J., & Núñez, M. T. (2006). Quiescence induced by iron challenge protects neuroblastoma cells from oxidative stress. Journal of Neurochemistry, 98(1), 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, M., Shishido, N., Nunomura, A., Smith, M. A., Perry, G., Hayashi, Y., et al. (2007). Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry, 46(44), 12737–12743.

    Article  CAS  PubMed  Google Scholar 

  • Olivieri, G., Baysang, G., Meier, F., Müller-Spahn, F., Stähelin, H. B., Brockhaus, M., et al. (2001a). N-acetyl-l-cysteine protects SHSY5Y neuroblastoma cells from oxidative stress and cell cytotoxicity: Effects on beta-amyloid secretion and tau phosphorylation. Journal of Neurochemistry, 76(1), 224–233.

    Article  CAS  PubMed  Google Scholar 

  • Olivieri, G., Hess, C., Savaskan, E., Ly, C., Meier, F., Baysang, G., et al. (2001b). Melatonin protects SHSY5Y neuroblastoma cells from cobalt-induced oxidative stress, neurotoxicity and increased beta-amyloid secretion. Journal of Pineal Research, 31(4), 320–325.

    Article  CAS  PubMed  Google Scholar 

  • Olivieri, G., Otten, U., Meier, F., Baysang, G., Dimitriades-Schmutz, B., Müller-Spahn, F., et al. (2003). Beta-amyloid modulates tyrosine kinase B receptor expression in SHSY5Y neuroblastoma cells: Influence of the antioxidant melatonin. Neuroscience, 120(3), 659–665.

    Article  CAS  PubMed  Google Scholar 

  • Page, M., & Thorpe, R. (2002). Protein blotting by electroblotting. In J. M. Walker (Ed.), The protein protocols handbook (pp. 317–319). New Jersey: Humana Press.

    Chapter  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantitative real-time RT-PCR. Nucleic Acids Research, 29(9), 2002–2007.

    Article  Google Scholar 

  • Prasanthi, J. R., Huls, A., Thomasson, S., Thompson, A., Schommer, E., & Ghribi, O. (2009). Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterol on β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Molecular Neurodegeneration, 4, 1. doi:10.1186/1750-1326-4-1.

    Article  PubMed Central  PubMed  Google Scholar 

  • Prasanthi, J. R., Schrag, M., Dasari, B., Marwarha, G., Dickson, A., Kirsch, W. M., et al. (2012). Deferiprone reduces amyloid-β and tau phosphorylation levels but not reactive oxygen species generation in hippocampus of rabbits fed a cholesterol-enriched diet. Journal of Alzheimer’s Disease, 30(1), 167–182.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Procházková, D., Boušová, I., Wilhelmová, N., et al. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513–523.

    Article  PubMed  Google Scholar 

  • Randall, C. N., Strasburger, D., Prozonic, J., Morris, S. N., Winkie, A. D., Parker, G. R., et al. (2009). Cluster analysis of risk factor genetic polymorphisms in Alzheimer’s disease. Neurochemical Research, 34(1), 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P. H., & Beal, M. F. (2008). Amyloid beta, mitochondrial dysfunction and synaptic damage: Implications for cognitive decline in aging and Alzheimer’s disease. Trends in Molecular Medicine, 14(2), 45–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riemer, J., Hoepken, H. H., Czerwinska, H., Robinson, S. R., & Dringen, R. (2004). Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Analytical Biochemistry, 331(2), 370–375.

  • Righi, G., Antonioletti, R., Silvestri, I. P., D’Antona, N., Lambusta, D., & Bovicelli, P. (2010). Convergent synthesis of mosloflavone, negletein and baicalein from crysin. Tetrahedron, 66(2010), 1294–1298.

    Article  CAS  Google Scholar 

  • Rogers, J. T., Randall, J. D., Cahill, C. M., Eder, P. S., Huang, X., Gunshin, H., et al. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. The Journal of biological Chemistry, 277(47), 45518–45528.

    Article  CAS  PubMed  Google Scholar 

  • Sambamurti, K., Kinsey, R., Maloney, B., Ge, Y. W., & Lahiri, D. K. (2004). Gene structure and organization of the human beta-secretase (BACE) promoter. Federation of American Societies for Experimental Biology Journal, 18, 1034–1036.

  • Sato, N., & Morishita, R. (2013). Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: Short- and long-term modification by non-genetic risk factors. Frontiers in Aging Neuroscience, 5(1), 64.

    PubMed Central  PubMed  Google Scholar 

  • Sinha, M., Behera, P., Bhowmick, P., Banerjee, K., Basu, S., & Chakrabarti, S. (2011). Aging promotes amyloid-β peptide induced mitochondrial dysfunctions in rat brain: A molecular link between aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 27(4), 753–765.

    CAS  PubMed  Google Scholar 

  • Sinha, M., Bhowmick, P., Banerjee, A., & Chakrabarti, S. (2013). Antioxidant role of amyloid β protein in cell-free and biological systems: Implication for the pathogenesis of Alzheimer disease. Free Radical Biology and Medicine, 56(1), 184–192.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. G., Cappai, R., & Barnham, K. J. (2007a). The redox chemistry of the Alzheimer’s disease amyloid b peptide. Biochimica et Biophysica Acta, 1768(8), 1976–1990.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. P., Ciccotosto, G. D., Tew, D. J., Fodero-Tavoletti, M. T., Johanssen, T., & Masters, C. L. (2007b). Concentration dependent Cu2þ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-b peptide. Biochemistry, 46(10), 2881–2891.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M. A., Harris, P. L. R., Sayre, L. M., & Perry, G. (1997). Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the National Academy of Sciences of the United States of America, 94(18), 9866–9868.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Solano, D. C., Sironi, M., Bonfini, C., Solerte, S. B., Govoni, S., & Racchi, M. (2000). Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Federation of American Societies for Experimental Biology Journal, 14(7), 1015–1022.

    CAS  PubMed  Google Scholar 

  • Swerdlow, R. H. (2007). Pathogenesis of Alzheimer’s disease. Clinical Interventions in Aging, 2(3), 347–359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Symonowicz, M., & Kolanek, M. (2012). Flavonoids and their properties to form chelate complexes. Biotechnology and Food Science, 76(1), 35–41.

    CAS  Google Scholar 

  • Thakurta, I. G., Chattopadhyay, M., Ghosh, A., & Chakrabarti, S. (2012). Dietary supplementation with N-acetyl cysteine, α-tocopherol and α-lipoic acid reduces the extent of oxidative stress and proinflammatory state in aged rat brain. Biogerontology, 13(5), 479–488.

    Article  CAS  PubMed  Google Scholar 

  • Vanhoutte, G., Dewachter, I., Borghgraef, P., & Van Leuven, A. (2005). Non invasive in vivo MRI detection of neuritic plaques associated with iron in APP[V7171] transgenic mice, a model for Alzheimer’s disease. Magnetic Resonance in Medicine, 53(3), 607–613.

    Article  CAS  PubMed  Google Scholar 

  • Wan, L., Nie, G., Zhang, J., Luo, Y., Zhang, P., & Zhang, Z., et al. (2011). β-Amyloid peptide increaes levels of iron content and oxidative stress in human cell and Caenorhabditis elegans models of Alzheimer disease. Free Radical Biology & Medicine, 50(1), 122–129.

  • Xiong, Z., Hongmei, Z., Lu, S., & Yu, L. (2011). Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s Disease. Pharmacological Reports, 63(5), 1101–1108.

    Article  PubMed  Google Scholar 

  • Zheng, L., Calvo-Garrido, J., Hallbeck, M., Hultenby, K., Marcusson, J., & Cedazo-Minguez, A. (2013). Intracellular localization of amyloid-β peptide in SH-SY5Y neuroblastoma cells. Journal of Alzheimer’s Disease, 37(4), 713–733.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by a Grant from Department of Biotechnology, Govt. of India, New Delhi. PB was supported by a Senior Research Fellowship from Department of Science and Technology, Govt. of India, New Delhi.

Conflict of interest

The authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasanka Chakrabarti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, P., Sahoo, A., Anand, S. et al. Multiple Mechanisms of Iron-Induced Amyloid Beta-Peptide Accumulation in SHSY5Y Cells: Protective Action of Negletein. Neuromol Med 16, 787–798 (2014). https://doi.org/10.1007/s12017-014-8328-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8328-4

Keywords

Navigation