Skip to main content

Advertisement

Log in

Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Ventral midbrain (VM) dopaminergic (DA) neurons project to the dorsal striatum via the nigrostriatal pathway to regulate voluntary movements, and their loss leads to the motor dysfunction seen in Parkinson’s disease (PD). Despite recent progress in the understanding of VM DA neurogenesis, the factors regulating nigrostriatal pathway development remain largely unknown. The bone morphogenetic protein (BMP) family regulates neurite growth in the developing nervous system and may contribute to nigrostriatal pathway development. Two related members of this family, BMP2 and growth differentiation factor (GDF)5, have neurotrophic effects, including promotion of neurite growth, on cultured VM DA neurons. However, the molecular mechanisms regulating their effects on DA neurons are unknown. By characterising the temporal expression profiles of endogenous BMP receptors (BMPRs) in the developing and adult rat VM and striatum, this study identified BMP2 and GDF5 as potential regulators of nigrostriatal pathway development. Furthermore, through the use of noggin, dorsomorphin and BMPR/Smad plasmids, this study demonstrated that GDF5- and BMP2-induced neurite outgrowth from cultured VM DA neurons is dependent on BMP type I receptor activation of the Smad 1/5/8 signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

BMP(s):

Bone morphogenetic protein(s)

BMPR(s):

Bone morphogenetic protein receptor(s)

caBMPRIb:

Constitutively active BMPRIb

CNS:

Central nervous system

DA:

Dopaminergic/dopamine

DIV:

Day(s) in vitro

E:

Embryonic day

FCS:

Foetal calf serum

GDF(s):

Growth differentiation factor(s)

GDNF:

Glial cell line-derived neurotrophic factor

N:

Number of repetitions

P:

Post-natal day

PBS:

Phosphate-buffered saline

PD:

Parkinson’s disease

RT-QPCR:

Quantitative real-time PCR

RT-PCR:

Reverse transcriptase-polymerase chain reaction

SC:

Spinal cord

SNpc:

Substantia nigra pars compacta

TGF:

Transforming growth factor

TH:

Tyrosine hydroxlase

VM:

Ventral midbrain/mesencephalon

References

  • Agius, E., Decker, Y., Soukkarieh, C., Soula, C., & Cochard, P. (2010). Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord. Development Biology, 344(2), 611–620.

    CAS  Google Scholar 

  • Allen © 2012 Allen Institute for Brain Science. Allen Mouse Brain Atlas [Internet]. Available from: http://mouse.brain-map.org/.

  • Andrews, Z. B., Zhao, H., Frugier, T., Meguro, R., Grattan, D. R., Koishi, K., et al. (2006). Transforming growth factor beta2 haploinsufficient mice develop age-related nigrostriatal dopamine deficits. Neurobiology of Diseases, 21(3), 568–575.

    CAS  Google Scholar 

  • Bagri, A., Marin, O., Plump, A. S., Mak, J., Pleasure, S. J., Rubenstein, J. L., et al. (2002). Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron, 33(2), 233–248.

    CAS  PubMed  Google Scholar 

  • Barnett, M. W., Fisher, C. E., Perona-Wright, G., & Davies, J. A. (2002). Signalling by glial cell line-derived neurotrophic factor (GDNF) requires heparan sulphate glycosaminoglycan. Journal of Cell Science, 115(Pt 23), 4495–4503.

    CAS  PubMed  Google Scholar 

  • Bjorklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194–202.

    PubMed  Google Scholar 

  • Blum, M. (1998). A null mutation in TGF-alpha leads to a reduction in midbrain dopaminergic neurons in the substantia nigra. Nature Neuroscience, 1(5), 374–377.

    CAS  PubMed  Google Scholar 

  • Boger, H. A., Middaugh, L. D., Huang, P., Zaman, V., Smith, A. C., Hoffer, B. J., et al. (2006). A partial GDNF depletion leads to earlier age-related deterioration of motor function and tyrosine hydroxylase expression in the substantia nigra. Experimental Neurology, 202(2), 336–347.

    CAS  PubMed  Google Scholar 

  • Bonnamain, V., Neveu, I., & Naveilhan, P. (2012). Neural stem/progenitor cells as a promising candidate for regenerative therapy of the central nervous system. Frontiers in Cellular Neuroscience, 6, 17.

    PubMed Central  PubMed  Google Scholar 

  • Bovolenta, P. (2005). Morphogen signaling at the vertebrate growth cone: A few cases or a general strategy? Journal of Neurobiology, 64(4), 405–416.

    PubMed  Google Scholar 

  • Burke, R. E. (2003). Postnatal developmental programmed cell death in dopamine neurons. Annals of the New York Academy of Sciences, 991, 69–79.

    CAS  PubMed  Google Scholar 

  • Butler, S. J., & Dodd, J. (2003). A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron, 38(3), 389–401.

    CAS  PubMed  Google Scholar 

  • Calo, L., Spillantini, M., Nicoletti, F., & Allen, N. D. (2005). Nurr1 co-localizes with EphB1 receptors in the developing ventral midbrain, and its expression is enhanced by the EphB1 ligand, ephrinB2. Journal of Neurochemistry, 92(2), 235–245.

    CAS  PubMed  Google Scholar 

  • Chalazonitis, A., D’Autreaux, F., Guha, U., Pham, T. D., Faure, C., Chen, J. J., et al. (2004). Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-dependent subset. Journal of Neuroscience, 24(17), 4266–4282.

    CAS  PubMed  Google Scholar 

  • Chalazonitis, A., D’Autreaux, F., Pham, T. D., Kessler, J. A., & Gershon, M. D. (2011). Bone morphogenetic proteins regulate enteric gliogenesis by modulating ErbB3 signaling. Development Biology, 350(1), 64–79.

    CAS  Google Scholar 

  • Chalazonitis, A., & Kessler, J. A. (2012). Pleiotropic effects of the bone morphogenetic proteins on development of the enteric nervous system. Developmental Neurobiology, 72(6), 843–856.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, H. L., Lein, P. J., Wang, J. Y., Gash, D., Hoffer, B. J., & Chiang, Y. H. (2003). Expression of bone morphogenetic proteins in the brain during normal aging and in 6-hydroxydopamine-lesioned animals. Brain Research, 994(1), 81–90.

    CAS  PubMed  Google Scholar 

  • Chizhikov, V. V., & Millen, K. J. (2005). Roof plate-dependent patterning of the vertebrate dorsal central nervous system. Development Biology, 277(2), 287–295.

    CAS  Google Scholar 

  • Chou, J., Harvey, B. K., Ebendal, T., Hoffer, B., & Wang, Y. (2008). Nigrostriatal alterations in bone morphogenetic protein receptor II dominant negative mice. Acta Neurochirurgica. Supplementum, 101, 93–98.

    CAS  Google Scholar 

  • Collins, L. M., O’Keeffe, G. W., Long-Smith, C. M., Wyatt, S. L., Sullivan, A. M., Toulouse, A., et al. (2013). Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: Promotion of the morphological development of midbrain dopaminergic neurons. NeuroMolecular Medicine, 15(2), 435–446.

    CAS  PubMed  Google Scholar 

  • Cooper, M. A., Kobayashi, K., & Zhou, R. (2009). Ephrin-A5 regulates the formation of the ascending midbrain dopaminergic pathways. Developmental Neurobiology, 69(1), 36–46.

    CAS  PubMed  Google Scholar 

  • Crampton, S. J., Collins, L. M., Toulouse, A., Nolan, Y. M., & O’Keeffe, G. W. (2012). Exposure of foetal neural progenitor cells to IL-1beta impairs their proliferation and alters their differentiation: A role for maternal inflammation? Journal of Neurochemistry, 120(6), 964–973.

    CAS  PubMed  Google Scholar 

  • Crossley, P. H., & Martin, G. R. (1995). The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development, 121(2), 439–451.

    CAS  PubMed  Google Scholar 

  • Dahlstroem, A., & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the bentral nervous syste, I. Demonstrations of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica. Supplementum., 232, 231–255.

    Google Scholar 

  • De Feo, D., Merlini, A., Laterza, C., & Martino, G. (2012). Neural stem cell transplantation in central nervous system disorders: From cell replacement to neuroprotection. Current Opinion in Neurology, 25(3), 322–333.

    PubMed  Google Scholar 

  • Dent, E. W., Gupton, S. L., & Gertler, F. B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol, 3(3).

  • Dugan, J. P., Stratton, A., Riley, H. P., Farmer, W. T., & Mastick, G. S. (2011). Midbrain dopaminergic axons are guided longitudinally through the diencephalon by Slit/Robo signals. Molecular and Cellular Neuroscience, 46(1), 347–356.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egea, J., & Klein, R. (2007). Bidirectional Eph-ephrin signaling during axon guidance. Trends in Cell Biology, 17(5), 230–238.

    CAS  PubMed  Google Scholar 

  • Espejo, M., Cutillas, B., Ventura, F., & Ambrosio, S. (1999). Exposure of foetal mesencephalic cells to bone morphogenetic protein-2 enhances the survival of dopaminergic neurones in rat striatal grafts. Neuroscience Letters, 275(1), 13–16.

    CAS  PubMed  Google Scholar 

  • Flores, C., Manitt, C., Rodaros, D., Thompson, K. M., Rajabi, H., Luk, K. C., et al. (2005). Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Molecular Psychiatry, 10(6), 606–612.

    CAS  PubMed  Google Scholar 

  • Gates, M. A., Coupe, V. M., Torres, E. M., Fricker-Gates, R. A., & Dunnett, S. B. (2004). Spatially and temporally restricted chemoattractive and chemorepulsive cues direct the formation of the nigro-striatal circuit. European Journal of Neuroscience, 19(4), 831–844.

    PubMed  Google Scholar 

  • Gates, M. A., Torres, E. M., White, A., Fricker-Gates, R. A., & Dunnett, S. B. (2006). Re-examining the ontogeny of substantia nigra dopamine neurons. European Journal of Neuroscience, 23(5), 1384–1390.

    PubMed  Google Scholar 

  • German, D. C., Schlusselberg, D. S., & Woodward, D. J. (1983). Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: From mouse to man. Journal of Neural Transmission, 57(4), 243–254.

    CAS  PubMed  Google Scholar 

  • Gratacos, E., Checa, N., Perez-Navarro, E., & Alberch, J. (2001). Brain-derived neurotrophic factor (BDNF) mediates bone morphogenetic protein-2 (BMP-2) effects on cultured striatal neurones. Journal of Neurochemistry, 79(4), 747–755.

    CAS  PubMed  Google Scholar 

  • Gratacos, E., Gavalda, N., & Alberch, J. (2002). Bone morphogenetic protein-6 is a neurotrophic factor for calbindin-positive striatal neurons. Journal of Neuroscience Research, 70(5), 638–644.

    CAS  PubMed  Google Scholar 

  • Groppe, J., Greenwald, J., Wiater, E., Rodriguez-Leon, J., Economides, A. N., Kwiatkowski, W., et al. (2002). Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature, 420(6916), 636–642.

    CAS  PubMed  Google Scholar 

  • Gutierrez, H., & Davies, A. M. (2007). A fast and accurate procedure for deriving the Sholl profile in quantitative studies of neuronal morphology. Journal of Neuroscience Methods, 163(1), 24–30.

    PubMed  Google Scholar 

  • Halladay, A. K., Tessarollo, L., Zhou, R., & Wagner, G. C. (2004). Neurochemical and behavioral deficits consequent to expression of a dominant negative EphA5 receptor. Molecular Brain Research, 123(1–2), 104–111.

    CAS  PubMed  Google Scholar 

  • Hazen, V. M., Andrews, M. G., Umans, L., Crenshaw, E. B, 3rd, Zwijsen, A., & Butler, S. J. (2012). BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord. Development Biology, 367(2), 216–227.

    CAS  Google Scholar 

  • Hazen, V. M., Phan, K. D., Hudiburgh, S., & Butler, S. J. (2011). Inhibitory Smads differentially regulate cell fate specification and axon dynamics in the dorsal spinal cord. Development Biology, 356(2), 566–575.

    CAS  Google Scholar 

  • Hedlund, E., & Perlmann, T. (2009). Neuronal cell replacement in Parkinson’s disease. Journal of Internal Medicine, 266(4), 358–371.

    CAS  PubMed  Google Scholar 

  • Hegarty, S. V., O’Keeffe, G. W., & Sullivan, A. M. (2013a). BMP-Smad 1/5/8 signalling in the development of the nervous system. Progress in Neurobiology, 109C, 28–41.

    Google Scholar 

  • Hegarty, S. V., Sullivan, A. M., & O’Keeffe, G. W. (2013b). BMP2 and GDF5 induce neuronal differentiation through a Smad dependant pathway in a model of human midbrain dopaminergic neurons. Molecular and Cellular Neuroscience, 56C, 263–271.

    Google Scholar 

  • Hegarty, S. V., Sullivan, A. M., & O’Keeffe, G. W. (2013c). Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Development Biology, 379(2), 123–138.

    CAS  Google Scholar 

  • Hegarty, S. V., Sullivan, A. M., & O’Keeffe, G. W. (2014). Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons. Molecular Neurobiology,. doi:10.1007/s12035-014-8639-3.

    PubMed  Google Scholar 

  • Hernandez-Montiel, H. L., Tamariz, E., Sandoval-Minero, M. T., & Varela-Echavarria, A. (2008). Semaphorins 3A, 3C, and 3F in mesencephalic dopaminergic axon pathfinding. Journal of Comparative Neurology, 506(3), 387–397.

    CAS  PubMed  Google Scholar 

  • Hurley, F. M., Costello, D. J., & Sullivan, A. M. (2004). Neuroprotective effects of delayed administration of growth/differentiation factor-5 in the partial lesion model of Parkinson’s disease. Experimental Neurology, 185(2), 281–289.

    CAS  PubMed  Google Scholar 

  • Hynes, M., Porter, J. A., Chiang, C., Chang, D., Tessier-Lavigne, M., Beachy, P. A., et al. (1995). Induction of midbrain dopaminergic neurons by Sonic hedgehog. Neuron, 15(1), 35–44.

    CAS  PubMed  Google Scholar 

  • Iwase, T., Jung, C. G., Bae, H., Zhang, M., & Soliven, B. (2005). Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. Journal of Neurochemistry, 94(6), 1488–1499.

    CAS  PubMed  Google Scholar 

  • Jackson-Lewis, V., Vila, M., Djaldetti, R., Guegan, C., Liberatore, G., Liu, J., et al. (2000). Developmental cell death in dopaminergic neurons of the substantia nigra of mice. Journal of Comparative Neurology, 424(3), 476–488.

    CAS  PubMed  Google Scholar 

  • Jordan, J., Bottner, M., Schluesener, H. J., Unsicker, K., & Krieglstein, K. (1997). Bone morphogenetic proteins: Neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. European Journal of Neuroscience, 9(8), 1699–1709.

    CAS  PubMed  Google Scholar 

  • Koenig, B. B., Cook, J. S., Wolsing, D. H., Ting, J., Tiesman, J. P., Correa, P. E., et al. (1994). Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Molecular and Cellular Biology, 14(9), 5961–5974.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolk, S. M., Gunput, R. A., Tran, T. S., van den Heuvel, D. M., Prasad, A. A., Hellemons, A. J., et al. (2009). Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. Journal of Neuroscience, 29(40), 12542–12557.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krieglstein, K., Suter-Crazzolara, C., Hotten, G., Pohl, J., & Unsicker, K. (1995). Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. Journal of Neuroscience Research, 42(5), 724–732.

    CAS  PubMed  Google Scholar 

  • Lauder, J. M., & Bloom, F. E. (1974). Ontogeny of monoamine neurons in the locus coeruleus, Raphe nuclei and substantia nigra of the rat. I. Cell differentiation. Journal of Comparative Neurology, 155(4), 469–481.

    CAS  PubMed  Google Scholar 

  • Lees, A. J., Hardy, J., & Revesz, T. (2009). Parkinson’s disease. Lancet, 373(9680), 2055–2066.

    CAS  PubMed  Google Scholar 

  • Lein, P., Johnson, M., Guo, X., Rueger, D., & Higgins, D. (1995). Osteogenic protein-1 induces dendritic growth in rat sympathetic neurons. Neuron, 15(3), 597–605.

    CAS  PubMed  Google Scholar 

  • Li, W., & LoTurco, J. J. (2000). Noggin is a negative regulator of neuronal differentiation in developing neocortex. Developmental Neuroscience, 22(1–2), 68–73.

    PubMed  Google Scholar 

  • Lin, L., Rao, Y., & Isacson, O. (2005). Netrin-1 and slit-2 regulate and direct neurite growth of ventral midbrain dopaminergic neurons. Molecular and Cellular Neuroscience, 28(3), 547–555.

    CAS  PubMed  Google Scholar 

  • Liu, A., & Joyner, A. L. (2001). EN and GBX2 play essential roles downstream of FGF8 in patterning the mouse mid/hindbrain region. Development, 128(2), 181–191.

    CAS  PubMed  Google Scholar 

  • Lopez-Bendito, G., Flames, N., Ma, L., Fouquet, C., Di Meglio, T., Chedotal, A., et al. (2007). Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the mammalian forebrain. Journal of Neuroscience, 27(13), 3395–3407.

    CAS  PubMed  Google Scholar 

  • Lumsden, A., & Krumlauf, R. (1996). Patterning the vertebrate neuraxis. Science, 274(5290), 1109–1115.

    CAS  PubMed  Google Scholar 

  • Manitt, C., Mimee, A., Eng, C., Pokinko, M., Stroh, T., Cooper, H. M., et al. (2011). The netrin receptor DCC is required in the pubertal organization of mesocortical dopamine circuitry. Journal of Neuroscience, 31(23), 8381–8394.

    CAS  PubMed  Google Scholar 

  • Miyazono, K., Kamiya, Y., & Morikawa, M. (2010). Bone morphogenetic protein receptors and signal transduction. Journal of Biochemistry, 147(1), 35–51.

    CAS  PubMed  Google Scholar 

  • Monteiro, R. M., de Sousa Lopes, S. M., Bialecka, M., de Boer, S., Zwijsen, A., & Mummery, C. L. (2008). Real time monitoring of BMP Smads transcriptional activity during mouse development. Genesis, 46(7), 335–346.

    CAS  PubMed  Google Scholar 

  • Nakamura, S., Ito, Y., Shirasaki, R., & Murakami, F. (2000). Local directional cues control growth polarity of dopaminergic axons along the rostrocaudal axis. Journal of Neuroscience, 20(11), 4112–4119.

    CAS  PubMed  Google Scholar 

  • Niere, M., Braun, B., Gass, R., Sturany, S., & Volkmer, H. (2006). Combination of engineered neural cell adhesion molecules and GDF-5 for improved neurite extension in nerve guide concepts. Biomaterials, 27(18), 3432–3440.

    CAS  PubMed  Google Scholar 

  • Nishitoh, H., Ichijo, H., Kimura, M., Matsumoto, T., Makishima, F., Yamaguchi, A., et al. (1996). Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. Journal of Biological Chemistry, 271(35), 21345–21352.

    CAS  PubMed  Google Scholar 

  • O’Keeffe, G. W., Dockery, P., & Sullivan, A. M. (2004a). Effects of growth/differentiation factor 5 on the survival and morphology of embryonic rat midbrain dopaminergic neurones in vitro. Journal of Neurocytology, 33(5), 479–488.

    PubMed  Google Scholar 

  • O’Keeffe, G. W., Hanke, M., Pohl, J., & Sullivan, A. M. (2004b). Expression of growth differentiation factor-5 in the developing and adult rat brain. Developmental Brain Research, 151(1–2), 199–202.

    PubMed  Google Scholar 

  • Oo, T. F., & Burke, R. E. (1997). The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Developmental Brain Research, 98(2), 191–196.

    CAS  PubMed  Google Scholar 

  • Orlacchio, A., Bernardi, G., & Martino, S. (2010). Stem cells and neurological diseases. Discovery Medicine, 9(49), 546–553.

    PubMed  Google Scholar 

  • Orme, R. P., Bhangal, M. S., & Fricker, R. A. (2013). Calcitriol imparts neuroprotection in vitro to midbrain dopaminergic neurons by upregulating GDNF expression. PLoS ONE, 8(4), e62040.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Sullivan, D. B., Harrison, P. T., & Sullivan, A. M. (2010). Effects of GDF5 overexpression on embryonic rat dopaminergic neurones in vitro and in vivo. Journal of Neural Transmission, 117(5), 559–572.

    PubMed  Google Scholar 

  • Pakkenberg, B., Moller, A., Gundersen, H. J., Mouritzen Dam, A., & Pakkenberg, H. (1991). The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. Journal of Neurology, Neurosurgery and Psychiatry, 54(1), 30–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parikh, P., Hao, Y., Hosseinkhani, M., Patil, S. B., Huntley, G. W., Tessier-Lavigne, M., et al. (2011). Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(19), E99–E107.

    PubMed Central  PubMed  Google Scholar 

  • Paxinos, G., & Watson, C. (1988). The rat brain in stereotaxic coordinates. San Diego: Academic Press.

    Google Scholar 

  • Phan, K. D., Hazen, V. M., Frendo, M., Jia, Z., & Butler, S. J. (2010). The bone morphogenetic protein roof plate chemorepellent regulates the rate of commissural axonal growth. Journal of Neuroscience, 30(46), 15430–15440.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reiriz, J., Espejo, M., Ventura, F., Ambrosio, S., & Alberch, J. (1999). Bone morphogenetic protein-2 promotes dissociated effects on the number and differentiation of cultured ventral mesencephalic dopaminergic neurons. Journal of Neurobiology, 38(2), 161–170.

    CAS  PubMed  Google Scholar 

  • Round, J., & Stein, E. (2007). Netrin signaling leading to directed growth cone steering. Current Opinion in Neurobiology, 17(1), 15–21.

    CAS  PubMed  Google Scholar 

  • Sgado, P., Ferretti, E., Grbec, D., Bozzi, Y., & Simon, H. H. (2012). The atypical homeoprotein Pbx1a participates in the axonal pathfinding of mesencephalic dopaminergic neurons. Neural Development, 7, 24.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi, Y., & Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 113(6), 685–700.

    CAS  PubMed  Google Scholar 

  • Sieber, C., Kopf, J., Hiepen, C., & Knaus, P. (2009). Recent advances in BMP receptor signaling. Cytokine & Growth Factor Reviews, 20(5–6), 343–355.

    CAS  Google Scholar 

  • Sieber, B. A., Kuzmin, A., Canals, J. M., Danielsson, A., Paratcha, G., Arenas, E., et al. (2004). Disruption of EphA/ephrin-a signaling in the nigrostriatal system reduces dopaminergic innervation and dissociates behavioral responses to amphetamine and cocaine. Molecular and Cellular Neuroscience, 26(3), 418–428.

    CAS  PubMed  Google Scholar 

  • Smith, W. C., & Harland, R. M. (1992). Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell, 70(5), 829–840.

    CAS  PubMed  Google Scholar 

  • Soderstrom, S., & Ebendal, T. (1999). Localized expression of BMP and GDF mRNA in the rodent brain. Journal of Neuroscience Research, 56(5), 482–492.

    CAS  PubMed  Google Scholar 

  • Specht, L. A., Pickel, V. M., Joh, T. H., & Reis, D. J. (1981a). Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. I. Early ontogeny. Journal of Comparative Neurology, 199(2), 233–253.

    CAS  PubMed  Google Scholar 

  • Specht, L. A., Pickel, V. M., Joh, T. H., & Reis, D. J. (1981b). Light-microscopic immunocytochemical localization of tyrosine hydroxylase in prenatal rat brain. II. Late ontogeny. Journal of Comparative Neurology, 199(2), 255–276.

    CAS  PubMed  Google Scholar 

  • Storm, E. E., Huynh, T. V., Copeland, N. G., Jenkins, N. A., Kingsley, D. M., & Lee, S. J. (1994). Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature, 368(6472), 639–643.

    CAS  PubMed  Google Scholar 

  • Sullivan, A. M., & O’Keeffe, G. W. (2005). The role of growth/differentiation factor 5 (GDF5) in the induction and survival of midbrain dopaminergic neurones: Relevance to Parkinson’s disease treatment. Journal of Anatomy, 207(3), 219–226.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sullivan, A. M., Opacka-Juffry, J., Hotten, G., Pohl, J., & Blunt, S. B. (1997). Growth/differentiation factor 5 protects nigrostriatal dopaminergic neurones in a rat model of Parkinson’s disease. Neuroscience Letters, 233(2–3), 73–76.

    CAS  PubMed  Google Scholar 

  • Sullivan, A. M., Opacka-Juffry, J., Pohl, J., & Blunt, S. B. (1999). Neuroprotective effects of growth/differentiation factor 5 depend on the site of administration. Brain Research, 818(1), 176–179.

    CAS  PubMed  Google Scholar 

  • Sullivan, A. M., Pohl, J., & Blunt, S. B. (1998). Growth/differentiation factor 5 and glial cell line-derived neurotrophic factor enhance survival and function of dopaminergic grafts in a rat model of Parkinson’s disease. European Journal of Neuroscience, 10(12), 3681–3688.

    CAS  PubMed  Google Scholar 

  • Sullivan, A. M., & Toulouse, A. (2011). Neurotrophic factors for the treatment of Parkinson’s disease. Cytokine & Growth Factor Reviews, 22(3), 157–165.

    CAS  Google Scholar 

  • Tamariz, E., Diaz-Martinez, N. E., Diaz, N. F., Garcia-Pena, C. M., Velasco, I., & Varela-Echavarria, A. (2010). Axon responses of embryonic stem cell-derived dopaminergic neurons to semaphorins 3A and 3C. Journal of Neuroscience Research, 88(5), 971–980.

    CAS  PubMed Central  PubMed  Google Scholar 

  • ten Dijke, P., Yamashita, H., Sampath, T. K., Reddi, A. H., Estevez, M., Riddle, D. L., et al. (1994). Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. Journal of Biological Chemistry, 269(25), 16985–16988.

    PubMed  Google Scholar 

  • Torre, E. R., Gutekunst, C. A., & Gross, R. E. (2010). Expression by midbrain dopamine neurons of Sema3A and 3F receptors is associated with chemorepulsion in vitro but a mild in vivo phenotype. Molecular and Cellular Neuroscience, 44(2), 135–153.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toulouse, A., & Sullivan, A. M. (2008). Progress in Parkinson’s disease-where do we stand? Progress in Neurobiology, 85(4), 376–392.

    PubMed  Google Scholar 

  • Ulloa, F., & Briscoe, J. (2007). Morphogens and the control of cell proliferation and patterning in the spinal cord. Cell Cycle, 6(21), 2640–2649.

    CAS  PubMed  Google Scholar 

  • Van den Heuvel, D. M., & Pasterkamp, R. J. (2008). Getting connected in the dopamine system. Progress in Neurobiology, 85(1), 75–93.

    PubMed  Google Scholar 

  • Verney, C. (1999). Distribution of the catecholaminergic neurons in the central nervous system of human embryos and fetuses. Microscopy Research and Technique, 46(1), 24–47.

    CAS  PubMed  Google Scholar 

  • Vitalis, T., Cases, O., Engelkamp, D., Verney, C., & Price, D. J. (2000). Defect of tyrosine hydroxylase-immunoreactive neurons in the brains of mice lacking the transcription factor Pax6. Journal of Neuroscience, 20(17), 6501–6516.

    CAS  PubMed  Google Scholar 

  • Voorn, P., Kalsbeek, A., Jorritsma-Byham, B., & Groenewegen, H. J. (1988). The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience, 25(3), 857–887.

    CAS  PubMed  Google Scholar 

  • Wen, Z., Han, L., Bamburg, J. R., Shim, S., Ming, G. L., & Zheng, J. Q. (2007). BMP gradients steer nerve growth cones by a balancing act of LIM kinase and Slingshot phosphatase on ADF/cofilin. Journal of Cell Biology, 178(1), 107–119.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wood, T. K., McDermott, K. W., & Sullivan, A. M. (2005). Differential effects of growth/differentiation factor 5 and glial cell line-derived neurotrophic factor on dopaminergic neurons and astroglia in cultures of embryonic rat midbrain. Journal of Neuroscience Research, 80(6), 759–766.

    CAS  PubMed  Google Scholar 

  • Xu, B., Goldman, J. S., Rymar, V. V., Forget, C., Lo, P. S., Bull, S. J., et al. (2010). Critical roles for the netrin receptor deleted in colorectal cancer in dopaminergic neuronal precursor migration, axon guidance, and axon arborization. Neuroscience, 169(2), 932–949.

    CAS  PubMed  Google Scholar 

  • Yamashita, H., Ten Dijke, P., Heldin, C. H., & Miyazono, K. (1996). Bone morphogenetic protein receptors. Bone, 19(6), 569–574.

    CAS  PubMed  Google Scholar 

  • Yamauchi, K., Phan, K. D., & Butler, S. J. (2008). BMP type I receptor complexes have distinct activities mediating cell fate and axon guidance decisions. Development, 135(6), 1119–1128.

    CAS  PubMed  Google Scholar 

  • Yu, P. B., Hong, C. C., Sachidanandan, C., Babitt, J. L., Deng, D. Y., Hoyng, S. A., et al. (2008). Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nature Chemical Biology, 4(1), 33–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yue, Y., Widmer, D. A., Halladay, A. K., Cerretti, D. P., Wagner, G. C., Dreyer, J. L., et al. (1999). Specification of distinct dopaminergic neural pathways: Roles of the Eph family receptor EphB1 and ligand ephrin-B2. Journal of Neuroscience, 19(6), 2090–2101.

    CAS  PubMed  Google Scholar 

  • Zou, Y., & Lyuksyutova, A. I. (2007). Morphogens as conserved axon guidance cues. Current Opinion in Neurobiology, 17(1), 22–28.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no conflict of interest. This work was supported by grant support from the Irish Research Council (SVH/AS/G’OK), the Health Research Board of Ireland (HRA/2009/127) (GO’K/AS) and Science Foundation Ireland (10/RFP/NES2786) (GO’K).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aideen M. Sullivan or Gerard W. O’Keeffe.

Additional information

Aideen M. Sullivan and Gerard W. O’Keeffe have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Experimental primers and hybridisation probes (TIFF 3661 kb)

12017_2014_8299_MOESM2_ESM.tif

Noggin and dorsomorphin prevent the promotion of SH-SH5Y neurite growth by BMP2 and GDF5. (a) Total neurite length of noggin- or dorsomorphin-pre-treated and/or BMP2- or GDF5-treated (daily for 4 DIV) SH-SY5Y cells, as indicated (*** P < 0.001 vs. control; ANOVA with post hoc Tukey’s test; 20 images analysed for each group per experiment; N = 3 experiments). Data are expressed as mean ± SEM. (b) Representative photomicrographs of noggin pre-treated and/or BMP2- or GDF5-treated SH-SY5Y cells, as indicated, immunocytochemically stained for β-actin. Scale bar = 100 μm (TIFF 4240 kb)

12017_2014_8299_MOESM3_ESM.tif

Heparinase III does not affect the promotion of SH-SH5Y neurite growth by BMP2 and GDF5. (a) Total neurite length of Heparinase III-pre-treated and/or BMP2- or GDF5-treated (daily for 4 DIV) SH-SY5Y cells, as indicated (*** P < 0.001 vs. control; ANOVA with post hoc Tukey’s test; 20 images analysed for each group per experiment; N = 3 experiments). Data are expressed as mean ± SEM. (b) Representative photomicrographs of Heparinase III-pre-treated and/or GDF5-treated SH-SY5Y cells, as indicated, immunocytochemically stained for β-actin. Scale bar = 100 μm (TIFF 1711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegarty, S.V., Collins, L.M., Gavin, A.M. et al. Canonical BMP–Smad Signalling Promotes Neurite Growth in Rat Midbrain Dopaminergic Neurons. Neuromol Med 16, 473–489 (2014). https://doi.org/10.1007/s12017-014-8299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8299-5

Keywords

Navigation