Skip to main content

Advertisement

Log in

Growth Factors and Synaptic Plasticity in Relapsing–Remitting Multiple Sclerosis

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

During multiple sclerosis (MS) inflammatory attacks, and in subsequent clinical recovery phases, immune cells contribute to neuronal and oligodendroglial cell survival and tissue repair by secreting growth factors. Animal studies showed that growth factors also play a substantial role in regulating synaptic plasticity, and namely in long-term potentiation (LTP). LTP could drive clinical recovery in relapsing patients by restoring the excitability of denervated neurons. We recently reported that maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and that the platelet-derived growth factor (PDGF) may play a key role in its regulation. We also reported that a Hebbian form of LTP-like cortical plasticity, explored by paired associative stimulation (PAS), correlates with clinical recovery from a relapse in MS. Here, we explored the role of PDGF in clinical recovery and in adaptive neuroplasticity in relapsing–remitting MS (RR-MS) patients. We found a correlation between the cerebrospinal fluid (CSF) PDGF concentrations and the extent of clinical recovery after a relapse, as full recovery was more likely observed in patients with high PDGF concentrations and poor recovery in subjects with low PDGF levels. Consistently with the idea that PDGF-driven synaptic plasticity contributes to attenuate the clinical consequences of tissue damage in RR-MS, we also found a striking correlation between CSF levels of PDGF and the amplitude of LTP-like cortical plasticity explored by PAS. CSF levels of fibroblast growth factor, granulocyte colony-stimulating factor and granulocyte–macrophage colony-stimulating factor did not correlate with clinical recovery nor with measures of synaptic transmission and plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bartlett, T. E., & Wang, Y. T. (2013). The intersections of NMDAR-dependent synaptic plasticity and cell survival. Neuropharmacology, 74, 59–68.

    Article  CAS  PubMed  Google Scholar 

  • Beazely, M. A., Lim, A., Li, H., Trepanier, C., Chen, X., Sidhu, B., et al. (2009). Platelet-derived growth factor selectively inhibits NR2B-containing N-methyl-D-aspartate receptors in CA1 hippocampal neurons. Journal of Biological Chemistry, 284(12), 8054–8063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyd, T. D., Bennett, S. P., Mori, T., Governatori, N., Runfeldt, M., Norden, M., et al. (2010). GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. Journal of Alzheimer’s Disease, 21(2), 507–518.

    CAS  PubMed  Google Scholar 

  • Centonze, D., Rossi, S., Tortiglione, A., Picconi, B., Prosperetti, C., De Chiara, V., et al. (2007). Synaptic plasticity during recovery from permanent occlusion of the middle cerebral artery. Neurobiology of Diseases, 27(1), 44–53.

    Article  CAS  Google Scholar 

  • Chadi, G., & Fuxe, K. (1998). Analysis of trophic responses in lesioned brain: Focus on basic fibroblast growth factor mechanisms. Brazilian Journal of Medical and Biological Research, 31(2), 231–241.

    Article  CAS  PubMed  Google Scholar 

  • Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., et al. (2008). A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. Journal of Physiology, 586(23), 5717–5725.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Confavreux, C., & Vukusic, S. (2006). Age at disability milestones in multiple sclerosis. Brain, 129(3), 595–605.

    Article  PubMed  Google Scholar 

  • Cooke, S. F., & Bliss, T. V. (2006). Plasticity in the human central nervous system. Brain, 129(7), 1659–1673.

    Article  CAS  PubMed  Google Scholar 

  • Di Lazzaro, V., Profice, P., Pilato, F., Capone, F., Ranieri, F., Pasqualetti, P., et al. (2010). Motor cortex plasticity predicts recovery in acute stroke. Cerebral Cortex, 20(7), 1523–1528.

    Article  PubMed  Google Scholar 

  • Egawa-Tsuzuki, T., Ohno, M., Tanaka, N., Takeuchi, Y., Uramoto, H., Faigle, R., et al. (2004). The PDGF B-chain is involved in the ontogenic susceptibility of the developing rat brain to NMDA toxicity. Experimental Neurology, 186(1), 89–98.

    Article  CAS  PubMed  Google Scholar 

  • Erlandsson, A., Enarsson, M., & Forsberg-Nilsson, K. (2001). Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. Journal of Neuroscience, 21(10), 3483–3491.

    CAS  PubMed  Google Scholar 

  • Frost, E. E., Nielsen, J. A., Le, T. Q., & Armstrong, R. C. (2003). PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. Journal of Neurobiology, 54(3), 457–572.

    Article  CAS  PubMed  Google Scholar 

  • Gong, N., Li, Y., Cai, G. Q., Niu, R. F., Fang, Q., Wu, K., et al. (2009). GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation. Journal of Neuroscience, 29(50), 15836–15845.

    Article  CAS  PubMed  Google Scholar 

  • Gozal, D., Simakajornboon, N., Czapla, M. A., Xue, Y. D., Gozal, E., Vlasic, V., et al. (2000). Brainstem activation of platelet-derived growth factor-beta receptor modulates the late phase of the hypoxic ventilatory response. Journal of Neurochemistry, 74(1), 310–319.

    Article  CAS  PubMed  Google Scholar 

  • Hagemann, G., Redecker, C., Neumann-Haefelin, T., Freund, H. J., & Witte, O. W. (1998). Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Annals of Neurology, 44(2), 255–258.

    Article  CAS  PubMed  Google Scholar 

  • Hanajima, R., Ugawa, Y., Terao, Y., Enomoto, H., Shiio, Y., Mochizuki, H., et al. (2002). Mechanisms of intracortical I-wave facilitation elicited with paired-pulse magnetic stimulation in humans. Journal of Physiology, 538(1), 253–261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harirchian, M. H., Tekieh, A. H., Modabbernia, A., Aghamollaii, V., Tafakhori, A., Ghaffarpour, M., et al. (2012). Serum and CSF PDGF-AA and FGF-2 in relapsing–remitting multiple sclerosis: A case–control study. European Journal of Neurology, 19(2), 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Ishii, Y., Oya, T., Zheng, L., Gao, Z., Kawaguchi, M., Sabit, H., et al. (2006). Mouse brains deficient in neuronal PDGF receptor-beta develop normally but are vulnerable to injury. Journal of Neurochemistry, 98(2), 588–600.

    Article  CAS  PubMed  Google Scholar 

  • Kerschensteiner, M., Stadelmann, C., Dechant, G., Wekerle, H., & Hohlfeld, R. (2003). Neurotrophic cross-talk between the nervous and immune systems: Implications for neurological diseases. Annals of Neurology, 53(3), 292–304.

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf, K., Wang, Y., & Neumann, H. (2010). Immune-mediated CNS damage. Results and Problems in Cell Differentiation, 51, 173–196.

    Article  CAS  PubMed  Google Scholar 

  • Kujirai, T., Caramia, M. D., Rothwell, J. C., Day, B. L., Thompson, P. D., Ferbert, A., et al. (1993). Corticocortical inhibition in human motor cortex. Journal of Physiology, 471, 501–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuyama, S., Taniguchi, T., Kadoyama, K., & Matsumoto, A. (2008). Long-term potentiation-like facilitation through GABAA receptor blockade in the mouse dentate gyrus in vivo. Neuroreport, 19(18), 1809–1813.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, M. P., Kumar, K. N., Wang, H., Cheng, B., & Michaelis, E. K. (1993). Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. Journal of Neuroscience, 13, 4575–4588.

    CAS  PubMed  Google Scholar 

  • Messersmith, D. J., Murtie, J. C., Le, T. Q., Frost, E. E., & Armstrong, R. C. (2000). Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. Journal of Neuroscience Research, 62(2), 241–256.

    Article  CAS  PubMed  Google Scholar 

  • Mezzapesa, D. M., Rocca, M. A., Rodegher, M., Comi, G., & Filippi, M. (2008). Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Human Brain Mapping, 29(5), 562–573.

    Article  PubMed  Google Scholar 

  • Morgen, K., Kadom, N., Sawaki, L., Tessitore, A., Ohayon, J., McFarland, H., et al. (2004). Training-dependent plasticity in patients with multiple sclerosis. Brain, 127(11), 2506–2517.

    Article  PubMed  Google Scholar 

  • Mori, F., Kusayanagi, H., Nicoletti, C. G., Weiss, S., Marciani, M. G., & Centonze, D. (2013a). Cortical plasticity predicts recovery from relapse in multiple sclerosis. Multiple Sclerosis. doi:10.1177/1352458513512541.

    Google Scholar 

  • Mori, F., Rossi, S., Piccinin, S., Motta, C., Mango, D., Kusayanagi, H., et al. (2013b). Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. Journal of Neuroscience, 33(49), 19112–19119.

    Article  CAS  PubMed  Google Scholar 

  • Müller-Dahlhaus, J. F., Orekhov, Y., Liu, Y., & Ziemann, U. (2008). Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Experimental Brain Research, 187(3), 467–475.

    Article  PubMed  Google Scholar 

  • Nguyen, P. T., Nakamura, T., Hori, E., Urakawa, S., Uwano, T., Zhao, J., et al. (2011). Cognitive and socio-emotional deficits in platelet-derived growth factor receptor-β gene knockout mice. PLoS One, 6(3), e18004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng, F., Yao, H., Bai, X., Zhu, X., Reiner, B. C., Beazely, M., et al. (2010). Platelet-derived growth factor-mediated induction of the synaptic plasticity gene Arc/Arg3.1. Journal of Biological Chemistry, 285(28), 21615–21624.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Annals of Neurology, 69(2), 292–302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ponomarev, E. D., Shriver, L. P., Maresz, K., Pedras-Vasconcelos, J., Verthelyi, D., & Dittel, B. N. (2007). GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. Journal of Immunology, 178(1), 39–48.

    Article  CAS  Google Scholar 

  • Rottlaender, A., Villwock, H., Addicks, K., & Kuerten, S. (2011). Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology, 133(3), 370–378.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasahara, M., Fries, J. W., Raines, E. W., Gown, A. M., Westrum, L. E., Frosch, M. P., et al. (1991). PDGF B-chain in neurons of the central nervous system, posterior pituitary, and in a transgenic model. Cell, 64(1), 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, A., Krüger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., et al. (2005). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. Journal of Clinical Investigation, 115(8), 2083–2098.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz, M., Moalem, G., Leibowitz-Amit, R., & Cohen, I. R. (1999). Innate and adaptive immune responses can be beneficial for CNS repair. Trends in Neurosciences, 22(7), 295–299.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K. J., & McDonald, W. I. (1999). The pathophysiology of multiple sclerosis: The mechanisms underlying the production of symptoms and the natural history of the disease. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 354(1390), 1649–1673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R., & Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain, 123(3), 572–584.

    Article  PubMed  Google Scholar 

  • Tseng, H. C., & Dichter, M. A. (2005). Platelet-derived growth factor-BB pretreatment attenuates excitotoxic death in cultured hippocampal neurons. Neurobiology of Diseases, 19(1–2), 77–83.

    Article  CAS  Google Scholar 

  • Valls-Solé, J., Pascual-Leone, A., Wassermann, E. M., & Hallett, M. (1992). Human motor evoked responses to paired transcranial magnetic stimuli. Electroencephalography and Clinical Neurophysiology, 85(6), 355–364.

    Article  PubMed  Google Scholar 

  • Vana, A. C., Flint, N. C., Harwood, N. E., Le, T. Q., Fruttiger, M., & Armstrong, R. C. (2007). Platelet-derived growth factor promotes repair of chronically demyelinated white matter. Journal of Neuropathology and Experimental Neurology, 66(11), 975–988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Webster, H. D. (1997). Growth factors and myelin regeneration in multiple sclerosis. Multiple Sclerosis, 3(2), 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Zeller, D., Aufm Kampe, K., Biller, A., Stefan, K., Gentner, R., Schütz, A., et al. (2010). Rapid-onset central motor plasticity in multiple sclerosis. Neurology, 74(9), 728–735.

    Article  CAS  PubMed  Google Scholar 

  • Ziemann, U., Tergau, F., Wassermann, E. M., Wischer, S., Hildebrandt, J., & Paulus, W. (1998). Demonstration of facilitatory I wave interaction in the human motor cortex by paired transcranial magnetic stimulation. Journal of Physiology, 511(1), 181–190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from Fondazione Italiana Sclerosi Multipla to DC (FISM Special Project 2012/S/2).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Centonze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, F., Nicoletti, C.G., Rossi, S. et al. Growth Factors and Synaptic Plasticity in Relapsing–Remitting Multiple Sclerosis. Neuromol Med 16, 490–498 (2014). https://doi.org/10.1007/s12017-014-8297-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8297-7

Keywords

Navigation