Skip to main content

Advertisement

Log in

Neuronal and Astroglial TGFβ-Smad3 Signaling Pathways Differentially Regulate Dendrite Growth and Synaptogenesis

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

To address the role of the transforming growth factor beta (TGFβ)-Smad3 signaling pathway in dendrite growth and associated synaptogenesis, we used small inhibitory RNA to knockdown the Smad3 gene in either cultured neurons and or primary astrocytes. We found that TGFβ1 treatment of primary neurons increased dendrite extensions and the number of synapsin-1-positive synapses. When Smad3 was knockdown in primary neurons, dendrite growth was inhibited and the number of synapsin-1-positive synapses reduced even with TGFβ1 treatment. When astrocyte-conditioned medium (ACM), collected from TGFβ1-treated astrocytes (TGFβ1-stimulated ACM), was added to cultured neurons, dendritic growth was inhibited and the number of synapsin-1-positive puncta reduced. When TGFβ1-stimulated ACM was collected from astrocytes with Smad3 knocked down, this conditioned media promoted the growth of dendrites and the number of synapsin-1-positive puncta in cultured neurons. We further found that TGFβ1 signaling through Smad3 increased the expression of chondroitin sulfate proteoglycans, neurocan, and phosphacan in ACM. Application of chondroitinase ABC to the TGFβ1-stimulated ACM reversed its inhibitory effects on the dendrite growth and the number of synapsin-1-positive puncta. On the other hand, we found that TGFβ1 treatment caused a facilitation of Smad3 phosphorylation and translocation to the nucleus induced by status epilepticus (SE) in wild-type (Smad3+/+) mice, and this treatment also caused a promotion of γ-aminobutyric acid-ergic synaptogenesis impaired by SE in Smad3+/+ as well as in Smad3−/− mice, but more dramatic promotion in Smad3+/+ mice. Thus, we provide evidence for the first time that TGFβ-Smad3 signaling pathways within neuron and astrocyte differentially regulate dendrite growth and synaptogenesis, and this pathway may be involved in the pathogenesis of some central nervous system diseases, such as epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe, K., Chu, P. J., Ishihara, A., & Saito, H. (1996). Transforming growth factor-beta 1 promotes re-elongation of injured axons of cultured rat hippocampal neurons. Brain Research, 723, 206–209.

    Article  CAS  PubMed  Google Scholar 

  • Adlard, P. A., Bica, L., White, A. R., Nurjono, M., Filiz, G., Crouch, P. J., et al. (2011). Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One, 6, e17669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson, O., Reissmann, E., & Ibanez, C. F. (2006). Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Reports, 7, 831–837.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arimura, N., & Kaibuchi, K. (2007). Neuronal polarity: From extracellular signals to intracellular mechanisms. Nature Reviews Neuroscience, 8, 194–205.

    Article  CAS  PubMed  Google Scholar 

  • Attisano, L., Carcamo, J., Ventura, F., Weis, F. M., Massague, J., & Wrana, J. L. (1993). Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell, 75, 671–680.

    Article  CAS  PubMed  Google Scholar 

  • Bae, J. J., Xiang, Y. Y., Martinez-Canabal, A., Frankland, P. W., Yang, B. B., & Lu, W. Y. (2011). Increased transforming growth factor-beta1 modulates glutamate receptor expression in the hippocampus. International Journal of Physiology, Pathophysiology and Pharmacology, 3, 9–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baptista, C. A., Hatten, M. E., Blazeski, R., & Mason, C. A. (1994). Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron, 12, 243–260.

    Article  CAS  PubMed  Google Scholar 

  • Barker, A. J., & Ullian, E. M. (2010). Astrocytes and synaptic plasticity. Neuroscientist, 16, 40–50.

    Article  PubMed  Google Scholar 

  • Basu, A., Krady, J. K., Enterline, J. R., & Levison, S. W. (2002). Transforming growth factor beta1 prevents IL-1beta-induced microglial activation, whereas TNFalpha- and IL-6-stimulated activation are not antagonized. Glia, 40, 109–120.

    Article  PubMed  Google Scholar 

  • Battaglia, G., Cannella, M., Riozzi, B., Orobello, S., Maat-Schieman, M. L., Aronica, E., et al. (2011). Early defect of transforming growth factor beta1 formation in Huntington’s disease. Journal of Cellular and Molecular Medicine, 15, 555–571.

    Article  CAS  PubMed  Google Scholar 

  • Boche, D., Cunningham, C., Docagne, F., Scott, H., & Perry, V. H. (2006). TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiology of Diseases, 22, 638–650.

    Article  CAS  Google Scholar 

  • Boche, D., Cunningham, C., Gauldie, J., & Perry, V. H. (2003). Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. Journal of Cerebral Blood Flow and Metabolism, 23, 1174–1182.

    Article  CAS  PubMed  Google Scholar 

  • Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience, 31, 47–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Casanova, J. R., Nishimura, M., Owens, J. W., & Swann, J. W. (2012). Impact of seizures on developing dendrites: Implications for intellectual developmental disabilities. Epilepsia, 53(Suppl 1), 116–124.

    Article  PubMed  Google Scholar 

  • Chacon, P. J., & Rodriguez-Tebar, A. (2012). Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. Alzheimer’s Research & Therapy, 4, 31.

    Article  CAS  Google Scholar 

  • Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425, 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Derynck, R., Zhang, Y., & Feng, X. H. (1998). Smads: Transcriptional activators of TGF-beta responses. Cell, 95, 737–740.

    Article  CAS  PubMed  Google Scholar 

  • Diniz, L. P., Almeida, J. C., Tortelli, V., Vargas Lopes, C., Setti-Perdigao, P., Stipursky, J., et al. (2012). Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of d-serine levels in cerebral cortex neurons. Journal of Biological Chemistry, 287, 41432–41445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong, H., Martin, M. V., Chambers, S., & Csernansky, J. G. (2007). Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. Journal of Comparative Neurology, 500, 311–321.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis, J. E., Parker, L., Cho, J., & Arora, K. (2010). Activin signaling functions upstream of Gbb to regulate synaptic growth at the Drosophila neuromuscular junction. Development Biology, 342, 121–133.

    Article  CAS  Google Scholar 

  • Evans, N. A., Facci, L., Owen, D. E., Soden, P. E., Burbidge, S. A., Prinjha, R. K., et al. (2008). Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: A quantitative analysis. Journal of Neuroscience Methods, 175, 96–103.

    Article  CAS  PubMed  Google Scholar 

  • Fang, L., Wang, Y. N., Cui, X. L., Fang, S. Y., Ge, J. Y., Sun, Y., et al. (2012). The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. Journal of Cell Science, 125, 1500–1507.

    Article  CAS  PubMed  Google Scholar 

  • Galtrey, C. M., & Fawcett, J. W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Research Reviews, 54, 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. L. (2004). Intrinsic neuronal regulation of axon and dendrite growth. Current Opinion in Neurobiology, 14, 551–557.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, F. C., Garcia-Abreu, J., Galou, M., Paulin, D., & Moura Neto, V. (1999). Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia, 26, 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Aparicio, R., Flores, J. A., & Fernandez-Espejo, E. (2010). Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor beta1 is enhanced after co-infusion in rats. Experimental Neurology, 226, 136–147.

    Article  CAS  PubMed  Google Scholar 

  • Graciarena, M., Depino, A. M., & Pitossi, F. J. (2010). Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFbeta1 downregulation. Brain, Behavior, and Immunity, 24, 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  • Guan, J., Miller, O. T., Waugh, K. M., McCarthy, D. C., Gluckman, P. D., & Gunn, A. J. (2004). TGF beta-1 and neurological function after hypoxia-ischemia in adult rats. NeuroReport, 15, 961–964.

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi, S., Sasahara, K., Shikimi, H., Honda, S., Harada, N., & Tsutsui, K. (2012). Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. Cerebellum, 11, 416–417.

    Article  CAS  PubMed  Google Scholar 

  • Heldin, C. H., Miyazono, K., & ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390, 465–471.

    Article  CAS  PubMed  Google Scholar 

  • Hocking, J. C., Hehr, C. L., Chang, R. Y., Johnston, J., & McFarlane, S. (2008). TGFbeta ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Molecular and Cellular Neuroscience, 37, 247–260.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J., Furuya, A., Hayashi, K., & Furuichi, T. (2011). Interaction between very-KIND Ras guanine exchange factor and microtubule-associated protein 2, and its role in dendrite growth–structure and function of the second kinase noncatalytic C-lobe domain. FEBS Journal, 278, 1651–1661.

    Article  CAS  PubMed  Google Scholar 

  • Ishihara, A., Saito, H., & Abe, K. (1994). Transforming growth factor-beta 1 and -beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Research, 639, 21–25.

    Article  CAS  PubMed  Google Scholar 

  • Katsuno, M., Adachi, H., Banno, H., Suzuki, K., Tanaka, F., & Sobue, G. (2011). Transforming growth factor-beta signaling in motor neuron diseases. Current Molecular Medicine, 11, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Doi, H., Kondo, N., et al. (2010). Disrupted transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. Journal of Neuroscience, 30, 5702–5712.

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick, D. L., Wang, W., Gronostajski, R., & Litwack, E. D. (2012). Nuclear factor I and cerebellar granule neuron development: An intrinsic-extrinsic interplay. Cerebellum, 11, 41–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura-Kuroda, J., Teng, X., Komuta, Y., Yoshioka, N., Sango, K., Kawamura, K., et al. (2010). An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Molecular and Cellular Neuroscience, 43, 177–187.

    Article  CAS  PubMed  Google Scholar 

  • Knoferle, J., Ramljak, S., Koch, J. C., Tonges, L., Asif, A. R., Michel, U., et al. (2010). TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiology of Diseases, 38, 395–404.

    Article  Google Scholar 

  • Kumar, A., Novoselov, V., Celeste, A. J., Wolfman, N. M., ten Dijke, P., & Kuehn, M. R. (2001). Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. Journal of Biological Chemistry, 276, 656–661.

    Article  CAS  PubMed  Google Scholar 

  • Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L., & Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Molecular Cell, 2, 109–120.

    Article  CAS  PubMed  Google Scholar 

  • Levin, S. G., & Godukhin, O. V. (2012). Anti-inflammatory cytokines, TGF-beta1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: Comparative aspects. Experimental Neurology, 232, 329–332.

    Article  Google Scholar 

  • Li, L. Y., Li, J. L., Zhang, H. M., Yang, W. M., Wang, K., Fang, Y., et al. (2013). TGFbeta1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. Journal of Molecular Neuroscience, 50, 109–123.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., Zhong, X., Chau, K. F., Williams, E. C., & Chang, Q. (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nature Neuroscience, 14, 1001–1008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Livneh, Y., Feinstein, N., Klein, M., & Mizrahi, A. (2009). Sensory input enhances synaptogenesis of adult-born neurons. Journal of Neuroscience, 29, 86–97.

    Article  CAS  PubMed  Google Scholar 

  • Makwana, M., Jones, L. L., Cuthill, D., Heuer, H., Bohatschek, M., Hristova, M., et al. (2007). Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. Journal of Neuroscience, 27, 11201–11213.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. L., Brown, A. L., & Balkowiec, A. (2012). Glia determine the course of brain-derived neurotrophic factor-mediated dendritogenesis and provide a soluble inhibitory cue to dendritic growth in the brainstem. Neuroscience, 207, 333–346.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massague, J., Seoane, J., & Wotton, D. (2005). Smad transcription factors. Genes & Development, 19, 2783–2810.

    Article  CAS  Google Scholar 

  • Mavroudis, I. A., Fotiou, D. F., Manani, M. G., Njaou, S. N., Frangou, D., Costa, V. G., et al. (2011). Dendritic pathology and spinal loss in the visual cortex in Alzheimer’s disease: A Golgi study in pathology. International Journal of Neuroscience, 121, 347–354.

    Article  PubMed  Google Scholar 

  • McRae, P. A., & Porter, B. E. (2012). The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochemistry International, 61, 963–972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Misumi, S., Kim, T. S., Jung, C. G., Masuda, T., Urakawa, S., Isobe, Y., et al. (2008). Enhanced neurogenesis from neural progenitor cells with G1/S-phase cell cycle arrest is mediated by transforming growth factor beta1. European Journal of Neuroscience, 28, 1049–1059.

    Article  PubMed  Google Scholar 

  • Navarro Mora, G., Bramanti, P., Osculati, F., Chakir, A., Nicolato, E., Marzola, P., et al. (2009). Does pilocarpine-induced epilepsy in adult rats require status epilepticus? PLoS One, 4, e5759.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nishimura, M., Gu, X., & Swann, J. W. (2011). Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiology of Diseases, 44, 205–214.

    Article  Google Scholar 

  • Nishiyama, H., Fukaya, M., Watanabe, M., & Linden, D. J. (2007). Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron, 56, 472–487.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker, L., Ellis, J. E., Nguyen, M. Q., & Arora, K. (2006). The divergent TGF-beta ligand Dawdle utilizes an activin pathway to influence axon guidance in Drosophila. Development, 133, 4981–4991.

    Article  CAS  PubMed  Google Scholar 

  • Pfrieger, F. W. (2010). Role of glial cells in the formation and maintenance of synapses. Brain Research Reviews, 63, 39–46.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Capelo, A. (2005). Dual role for TGF-beta1 in apoptosis. Cytokine & Growth Factor Reviews, 16, 15–34.

    Article  CAS  Google Scholar 

  • Scheff, S. W., Price, D. A., Schmitt, F. A., Scheff, M. A., & Mufson, E. J. (2011). Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease, 24, 547–557.

    PubMed Central  PubMed  Google Scholar 

  • Shimizu, A., Kato, M., Nakao, A., Imamura, T., ten Dijke, P., Heldin, C. H., et al. (1998). Identification of receptors and Smad proteins involved in activin signalling in a human epidermal keratinocyte cell line. Genes to Cells, 3, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Shoji-Kasai, Y., Ageta, H., Hasegawa, Y., Tsuchida, K., Sugino, H., & Inokuchi, K. (2007). Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics. Journal of Cell Science, 120, 3830–3837.

    Article  CAS  PubMed  Google Scholar 

  • Sousa Vde, O., Romao, L., Neto, V. M., & Gomes, F. C. (2004). Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. European Journal of Neuroscience, 19, 1721–1730.

    Article  PubMed  Google Scholar 

  • Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278–7287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stipursky, J., Francis, D., & Gomes, F. C. (2012). Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Developmental Neuroscience, 34, 68–81.

    Article  CAS  PubMed  Google Scholar 

  • Susarla, B. T., Laing, E. D., Yu, P., Katagiri, Y., Geller, H. M., & Symes, A. J. (2011). Smad proteins differentially regulate transforming growth factor-beta-mediated induction of chondroitin sulfate proteoglycans. Journal of Neurochemistry, 119, 868–878.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahashi, R. H., Capetillo-Zarate, E., Lin, M. T., Milner, T. A., & Gouras, G. K. (2013). Accumulation of intraneuronal beta-amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses. PLoS One, 8, e51965.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takeuchi, M., Kamei, N., Shinomiya, R., Sunagawa, T., Suzuki, O., Kamoda, H., et al. (2012). Human platelet-rich plasma promotes axon growth in brain-spinal cord coculture. NeuroReport, 23, 712–716.

    Article  PubMed  Google Scholar 

  • Taniguchi, T., Tanaka, S., Ishii, A., Watanabe, M., Fujitani, N., Sugeo, A., et al. (2013). A brain-specific Grb2-associated regulator of extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) (GAREM) subtype, GAREM2, contributes to neurite outgrowth of neuroblastoma cells by regulating Erk signaling. Journal of Biological Chemistry, 288, 29934–29942.

    Article  CAS  PubMed  Google Scholar 

  • Tarasewicz, E., & Jeruss, J. S. (2012). Phospho-specific Smad3 signaling: Impact on breast oncogenesis. Cell Cycle, 11, 2443–2451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thind, K. K., Yamawaki, R., Phanwar, I., Zhang, G., Wen, X., & Buckmaster, P. S. (2010). Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. Journal of Comparative Neurology, 518, 647–667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tohda, C., Nakanishi, R., & Kadowaki, M. (2006). Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice. Neurosignals, 15, 293–306.

    Article  CAS  PubMed  Google Scholar 

  • Tsai, J., Grutzendler, J., Duff, K., & Gan, W. B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 7, 1181–1183.

    Article  CAS  PubMed  Google Scholar 

  • Villapol, S., Wang, Y., Adams, M., & Symes, A. J. (2013). Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Experimental Neurology, 250C, 353–365.

    Article  Google Scholar 

  • Walshe, T. E., Leach, L. L., & D’Amore, P. A. (2011). TGF-beta signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience, 189, 123–131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, Y., Moges, H., Bharucha, Y., & Symes, A. (2007). Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Experimental Neurology, 203, 168–184.

    Article  CAS  PubMed  Google Scholar 

  • Witte, H., & Bradke, F. (2008). The role of the cytoskeleton during neuronal polarization. Current Opinion in Neurobiology, 18, 479–487.

    Article  CAS  PubMed  Google Scholar 

  • Wrana, J. L., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell, 71, 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Z., Lin, L., Liu, Z., Ji, F., Shao, W., Wang, M., et al. (2010). Potential therapeutic effects of curcumin: Relationship to microtubule-associated proteins 2 in Abeta1-42 insult. Brain Research, 1361, 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka, N., Kimura-Kuroda, J., Saito, T., Kawamura, K., Hisanaga, S., & Kawano, H. (2011). Small molecule inhibitor of type I transforming growth factor-beta receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Journal of Neuroscience Research, 89, 381–393.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W., & Lu, B. (2012). Synapses and dendritic spines as pathogenic targets in Alzheimer’s disease. Neural Plast, 2012, 247150.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu, Y., Culmsee, C., Klumpp, S., & Krieglstein, J. (2004). Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience, 123, 897–906.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science grants to Y Wang (Grant Numbers: 30970997, and 81271444) from the National Natural Science Foundation of China, by Natural Science grants to Y Wang (Grant Number: 09020103008) from Natural Science Foundation of Anhui Province, by Key Scientific and Technological Project to Y Wang (Grant Number: 11010402168) from Anhui Science and Technology Department, and by Natural science grant to N Zhou (Grant Number: KJ2012A175) from the Educational Department of Anhui Province. The authors thank the innominate refers for their reviewing and suggestions.

Conflict of interest

This paper consists of original, unpublished work which is not submitted elsewhere. The authors declare no conflict of interest.

Ethical standard

The protocol for this research project has been approved by the Ethics Committee of the Anhui Medical University within which the work was undertaken and that it conforms to the provisions of the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Yu Wang.

Additional information

Chuan-Yong Yu, Wei Gui, Hui-Yan He, and Xiao-Shan Wang have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, CY., Gui, W., He, HY. et al. Neuronal and Astroglial TGFβ-Smad3 Signaling Pathways Differentially Regulate Dendrite Growth and Synaptogenesis. Neuromol Med 16, 457–472 (2014). https://doi.org/10.1007/s12017-014-8293-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-014-8293-y

Keywords

Navigation