Skip to main content

Advertisement

Log in

VEGF Ameliorates Cognitive Impairment in In Vivo and In Vitro Ischemia via Improving Neuronal Viability and Function

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Vascular endothelial growth factor (VEGF) has recently been proved to be a potential therapeutic drug in ischemic disorders depending on the dose, route and time of administration, especially in focal cerebral ischemia. Whether VEGF could exert protection in a long-term total cerebral ischemic model is still uncertain, and the cellular mechanism has not been clarified so far. In order to answer the above issue, an experiment was performed in non-invasively giving exogenous VEGF to a total cerebral ischemic model rats and examining their spatial cognitive function by performing Morris water maze and long-term potential test. Moreover, we performed in vitro experiment to explore the cellular mechanism of VEGF protection effect. In an in vitro ischemia model oxygen–glucose deprivation (OGD), whole-cell patch-clamp recording was employed to examine neuronal function. Additionally, hematoxylin–eosin and propidium iodide staining were applied in vivo and in vitro in the neuropathological and viability study, separately. Our results showed that intranasal administration of VEGF could improve the cognitive function, synaptic plasticity and damaged hippocampal neurons in a global cerebral ischemia model. In addition, VEGF could retain the membrane potential, neuronal excitability and spontaneous excitatory postsynaptic currents in the early stage of ischemia, which further demonstrated that there was an acute effect of VEGF in OGD-induced pyramidal neurons. Simultaneously, it was also found that the death of CA1 pyramidal neuronal was significantly reduced by VEGF, but there was no similar effect in VEGF coexists with SU5416 group. These results indicated that VEGF could ameliorate cognitive impairment and synaptic plasticity via improving neuronal viability and function through acting on VEGFR-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, N. J., & Attwell, D. (2004). The effect of simulated ischaemia on spontaneous GABA release in area CA1 of the juvenile rat hippocampus. Journal of Physiology, 561, 485–498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • An, L., Yang, Z., & Zhang, T. (2013). Melamine induced spatial cognitive deficits associated with impairments of hippocampal long-term depression and cholinergic system in Wistar rats. Neurobiology of Learning and Memory, 100, 18–24.

    Article  CAS  PubMed  Google Scholar 

  • Cao, L., Jiao, X., Zuzga, D. S., Liu, Y., Fong, D. M., Young, D., et al. (2004). VEGF links hippocampal activity with neurogenesis, learning and memory. Nature Genetics, 36, 827–835.

    Article  CAS  PubMed  Google Scholar 

  • Chu, K., Park, K. I., Lee, S. T., Jung, K. H., Ko, S. Y., Kang, L., et al. (2005). Combined treatment of vascular endothelial growth factor and human neural stem cells in experimental focal cerebral ischemia. Neuroscience Research, 53, 384–390.

    Article  CAS  PubMed  Google Scholar 

  • Clark, R. E., Broadbent, N. J., & Squire, L. R. (2007). The hippocampus and spatial memory: Findings with a novel modification of the water maze. Journal of Neuroscience, 27, 6647–6654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dias, R. B., Rombo, D. M., Ribeiro, J. A., & Sebastiao, A. M. (2013). Ischemia-induced synaptic plasticity drives sustained expression of calcium-permeable AMPA receptors in the hippocampus. Neuropharmacology, 65, 114–122.

    Article  CAS  PubMed  Google Scholar 

  • Ferrara, N., & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocrine Reviews, 18, 4–25.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, D. A., & Jin, K. (2013). Vascular endothelial growth factors (VEGFs) and stroke. Cellular and Molecular Life Sciences, 70, 1753–1761.

    Google Scholar 

  • Hansen, A. J., & Olsen, C. E. (1980). Brain extracellular space during spreading depression and ischemia. Acta Physiologica Scandinavica, 108, 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Harrigan, M. R., Ennis, S. R., Masada, T., & Keep, R. F. (2002). Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema. Neurosurgery, 50, 589–598.

    PubMed  Google Scholar 

  • Horie, N., Pereira, M. P., Niizuma, K., Sun, G., Keren-Gill, H., Encarnacion, A. et al. (2011). Transplanted stem cell-secreted VEGF effects post-stroke recovery, inflammation, and vascular repair. Stem Cells, 29, 274–285.

    Google Scholar 

  • Huang, Y. F., Yang, C. H., Huang, C. C., Tai, M. H., & Hsu, K. S. (2010). Pharmacological and genetic accumulation of hypoxia-inducible factor-1alpha enhances excitatory synaptic transmission in hippocampal neurons through the production of vascular endothelial growth factor. Journal of Neuroscience, 30, 6080–6093.

    Article  CAS  PubMed  Google Scholar 

  • Jin, K., Mao, X. O., Batteur, S. P., McEachron, E., Leahy, A., & Greenberg, D. A. (2001). Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience, 108, 351–358.

    Article  CAS  PubMed  Google Scholar 

  • Jin, K. L., Mao, X. O., & Greenberg, D. A. (2000). Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proceedings of the National Academy of Sciences, 97, 10242–10247.

    Article  CAS  Google Scholar 

  • Katchman, A. N., & Hershkowitz, N. (1994). Arachidonic acid participates in the anoxia-induced increase in mEPSC frequency in CA1 neurons of the rat hippocampus. Neuroscience Letters, 168, 217–220.

    Article  CAS  PubMed  Google Scholar 

  • Kaya, D., Gursoy-Ozdemir, Y., Yemisci, M., Tuncer, N., Aktan, S., & Dalkara, T. (2005). VEGF protects brain against focal ischemia without increasing blood–brain permeability when administered intracerebroventricularly. Journal of Cerebral Blood Flow and Metabolism, 25, 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  • Kim, B. W., Choi, M., Kim, Y. S., Park, H., Lee, H. R., Yun, C. O., et al. (2008). Vascular endothelial growth factor (VEGF) signaling regulates hippocampal neurons by elevation of intracellular calcium and activation of calcium/calmodulin protein kinase II and mammalian target of rapamycin. Cellular Signalling, 20, 714–725.

    Article  CAS  PubMed  Google Scholar 

  • Kril, J. J., Patel, S., Harding, A. J., & Halliday, G. M. (2002). Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 747–751.

    Google Scholar 

  • Krum, J. M., & Khaibullina, A. (2003). Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: Roles for VEGF in brain repair. Experimental Neurology, 181, 241–257.

    Article  CAS  PubMed  Google Scholar 

  • Krum, J. M., Mani, N., & Rosenstein, J. M. (2002). Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience, 110, 589–604.

    Article  CAS  PubMed  Google Scholar 

  • Lante, F., de Jesus Ferreira, M. C., Guiramand, J., Recasens, M., & Vignes, M. (2006). Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus, 16, 345–360.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Wang, Y., Xie, Y., Yang, Z., & Zhang, T. (2011). Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia. Neurochemical Research, 36, 1840–1849.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Y. Y., Li, K. Y., Wang, J. J., Huang, Y. L., Huang, Y., & Sun, F. Y. (2009). Vascular endothelial growth factor acutely reduces calcium influx via inhibition of the Ca2+ channels in rat hippocampal neurons. Journal of Neuroscience Research, 87, 393–402.

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Manoonkitiwongsa, P. S., Schultz, R. L., McCreery, D. B., Whitter, E. F., & Lyden, P. D. (2004). Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. Journal of Cerebral Blood Flow and Metabolism, 24, 693–702.

    Article  CAS  PubMed  Google Scholar 

  • Maraula, G., Traini, C., Mello, T., Coppi, E., Galli, A., Pedata, F., et al. (2013). Effects of oxygen and glucose deprivation on synaptic transmission in rat dentate gyrus: Role of A(2A) adenosine receptors. Neuropharmacology, 67, 511–520.

    Article  CAS  PubMed  Google Scholar 

  • McCloskey, D. P., Croll, S. D., & Scharfman, H. E. (2005). Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. Journal of Neuroscience, 25, 8889–8897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCloskey, D. P., Hintz, T. M., & Scharfman, H. E. (2008). Modulation of vascular endothelial growth factor (VEGF) expression in motor neurons and its electrophysiological effects. Brain Research Bulletin, 76, 36–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris, J. L., & Bevan, R. D. (1984). Development of the vascular bed in the rabbit ear: Scanning electron microscopy of vascular corrosion casts. American Journal of Anatomy, 171, 75–89.

    Article  CAS  PubMed  Google Scholar 

  • Ogunshola, O. O., Antic, A., Donoghue, M. J., Fan, S. Y., Kim, H., Stewart, W. B., et al. (2002). Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. Journal of Biological Chemistry, 277, 11410–11415.

    Article  CAS  PubMed  Google Scholar 

  • Pati, S., Orsi, S. A., Moore, A. N., & Dash, P. K. (2009). Intra-hippocampal administration of the VEGF receptor blocker PTK787/ZK222584 impairs long-term memory. Brain Research, 1256, 85–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plaschke, K., Staub, J., Ernst, E., & Marti, H. H. (2008). VEGF overexpression improves mice cognitive abilities after unilateral common carotid artery occlusion. Experimental Neurology, 214, 285–292.

    Article  CAS  PubMed  Google Scholar 

  • Quan, M. N., Zhang, N., Wang, Y. Y., Zhang, T., & Yang, Z. (2011). Possible antidepressant effects and mechanisms of memantine in behaviors and synaptic plasticity of a depression rat model. Neuroscience, 182, 88–97.

    Article  CAS  PubMed  Google Scholar 

  • Quintana, P., Alberi, S., Hakkoum, D., & Muller, D. (2006). Glutamate receptor changes associated with transient anoxia/hypoglycaemia in hippocampal slice cultures. European Journal of Neuroscience, 23, 975–983.

    Article  PubMed  Google Scholar 

  • Rosenstein, J. M., & Krum, J. M. (2004). New roles for VEGF in nervous tissue—beyond blood vessels. Experimental Neurology, 187, 246–253.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, D. J., Oshima, T., & Attwell, D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature, 403, 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X. O., Logvinova, A., et al. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. Journal of Clinical Investigation, 111, 1843–1851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun, G. C., & Ma, Y. Y. (2013). Vascular endothelial growth factor modulates voltage-gated Na+ channel properties and depresses action potential firing in cultured rat hippocampal neurons. Biological & Pharmaceutical Bulletin, 36, 548–555.

    Article  CAS  Google Scholar 

  • Thompson, R. J., Zhou, N., & MacVicar, B. A. (2006). Ischemia opens neuronal gap junction hemichannels. Science, 312, 924–927.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Galvan, V., Gorostiza, O., Ataie, M., Jin, K., & Greenberg, D. A. (2006). Vascular endothelial growth factor improves recovery of sensorimotor and cognitive deficits after focal cerebral ischemia in the rat. Brain Research, 1115, 186–193.

    Article  CAS  PubMed  Google Scholar 

  • Widenfalk, J., Lipson, A., Jubran, M., Hofstetter, C., Ebendal, T., Cao, Y., et al. (2003). Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience, 120, 951–960.

    Article  CAS  PubMed  Google Scholar 

  • Xie, M., Wang, W., Kimelberg, H. K., & Zhou, M. (2008). Oxygen and glucose deprivation-induced changes in astrocyte membrane potential and their underlying mechanisms in acute rat hippocampal slices. Journal of Cerebral Blood Flow and Metabolism, 28, 456–467.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J. Y., Zheng, P., Shen, D. H., Yang, S. Z., Zhang, L. M., Huang, Y. L., et al. (2003). Vascular endothelial growth factor inhibits outward delayed-rectifier potassium currents in acutely isolated hippocampal neurons. Neuroscience, 118, 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., An, L., Yao, Y., Yang, Z., & Zhang, T. (2011). Melamine impairs spatial cognition and hippocampal synaptic plasticity by presynaptic inhibition of glutamatergic transmission in infant rats. Toxicology, 289, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. P., Liu, H. J., Cheng, S. M., Wang, Z. L., Cheng, X., Yu, H. X., et al. (2009a). Direct transport of VEGF from the nasal cavity to brain. Neuroscience Letters, 449, 108–111.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J. P., Liu, H. J., Wang, Z. L., Cheng, S. M., Cheng, X., Xu, G. L., et al. (2009b). The dose-effectiveness of intranasal VEGF in treatment of experimental stroke. Neuroscience Letters, 461, 212–216.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Liu, Z., Xie, Y., Yang, Z., & Zhang, T. (2013). Peroxynitrite alters GABAergic synaptic transmission in immature rat hippocampal slices. Neuroscience Research, 75, 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Han, D. D., Zhang, T., & Yang, Z. (2010). Quercetin improves cognitive deficits in rats with chronic cerebral ischemia and inhibits voltage-dependent sodium channels in hippocampal CA1 pyramidal neurons. Phytotherapy Research, 24, 136–140.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Schools, G. P., Lei, T., Wang, W., Kimelberg, H. K., & Zhou, M. (2008). Resveratrol attenuates early pyramidal neuron excitability impairment and death in acute rat hippocampal slices caused by oxygen–glucose deprivation. Experimental Neurology, 212, 44–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Z. G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., et al. (2000). VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. Journal of Clinical Investigation, 106, 829–838.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (31171053, 11232005) and Tianjin Research Program of Application Foundation and Advanced Technology (12JCZDJC22300) and 111 Project (B08011).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yao, Y., Chen, T. et al. VEGF Ameliorates Cognitive Impairment in In Vivo and In Vitro Ischemia via Improving Neuronal Viability and Function. Neuromol Med 16, 376–388 (2014). https://doi.org/10.1007/s12017-013-8284-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-013-8284-4

Keywords

Navigation