Skip to main content
Log in

Hypoxia Markers are Expressed in Interneurons Exposed to Recurrent Seizures

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

An early but transient decrease in oxygen availability occurs during experimentally induced seizures. Using pimonidazole, which probes hypoxic insults, we found that by increasing the duration of pilocarpine-induced status epilepticus (SE) from 30 to 120 min, counts of pimonidazole-immunoreactive neurons also increased (P < 0.01, 120 vs 60 and 30 min). All the animals exposed to SE were immunopositive to pimonidazole, but a different scenario emerged during epileptogenesis when a decrease in pimonidazole-immunostained cells occurred from 7 to 14 days, so that only 1 out of 4 rats presented with pimonidazole-immunopositive cells. Pimonidazole-immunoreactive cells robustly reappeared at 21 days post-SE induction when all animals (7 out of 7) had developed spontaneous recurrent seizures. Specific neuronal markers revealed that immunopositivity to pimonidazole was present in cells identified by neuropeptide Y (NPY) or somatostatin antibodies. At variance, neurons immunopositive to parvalbumin or cholecystokinin were not immunopositive to pimonidazole. Pimonidazole-immunopositive neurons expressed remarkable immunoreactivity to hypoxia-inducible factor 1α (HIF-1α). Interestingly, surgical samples obtained from pharmacoresistant patients showed neurons co-labeled by HIF-1α and NPY antibodies. These interneurons, along with parvalbumin-positive interneurons that were negative to HIF-1α, showed immunopositivity to markers of cell damage, such as high-mobility group box 1 in the cytoplasm and cleaved caspase-3 in the nucleus. These findings suggest that interneurons are continuously endangered in rodent and human epileptogenic tissue. The presence of hypoxia and cell damage markers in NPY interneurons of rats and patients presenting with recurrent seizures indicates a mechanism of selective vulnerability in a specific neuronal subpopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arellano, J. I., Muñoz, A., Ballesteros-Yáñez, I., Sola, R. G., & DeFelipe, J. (2004). Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain, 127, 45–64.

    Article  PubMed  CAS  Google Scholar 

  • Arteel, G. E., Thurman, R. G., & Raleigh, J. A. (1998). Reductive metabolism of the hypoxia marker pimonidazole is regulated by oxygen tension independent of the pyridine nucleotide redox state. European Journal of Biochemistry, 253, 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Arteel, G. E., Thurman, R. G., Yates, J. M., & Raleigh, J. A. (1995). Evidence that hypoxia markers detect oxygen gradients in liver: Pimonidazole and retrograde perfusion of rat liver. British Journal of Cancer, 72, 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Benini, R., Longo, D., Biagini, G., & Avoli, M. (2011). Perirhinal cortex hyperexcitability in pilocarpine-treated epileptic rats. Hippocampus, 21, 702–713.

    Article  PubMed  Google Scholar 

  • Bergeron, M., Yu, A. Y., Solway, K. E., Semenza, G. L., & Sharp, F. R. (1999). Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. European Journal of Neuroscience, 11, 4159–4170.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, B. C., Worsley, K. J., Kim, H., Evans, A. C., Bernasconi, A., & Bernasconi, N. (2009). Longitudinal and cross-sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology, 72, 1747–1754.

    Article  PubMed  CAS  Google Scholar 

  • Biagini, G., Baldelli, E., Longo, D., Contri, M. B., Guerrini, U., Sironi, L., et al. (2008). Proepileptic influence of a focal vascular lesion affecting entorhinal cortex-CA3 connections after status epilepticus. Journal of Neuropathology and Experimental Neurology, 67, 687–701.

    Article  PubMed  Google Scholar 

  • Biagini, G., Baldelli, E., Longo, D., Pradelli, L., Zini, I., Rogawski, M. A., et al. (2006). Endogenous neurosteroids modulate epileptogenesis in a model of temporal lobe epilepsy. Experimental Neurology, 201, 519–524.

    Article  PubMed  CAS  Google Scholar 

  • Biagini, G., D’Arcangelo, G., Baldelli, E., D’Antuono, M., Tancredi, V., & Avoli, M. (2005). Impaired activation of CA3 pyramidal neurons in the epileptic hippocampus. NeuroMolecular Medicine, 7, 325–342.

    Article  PubMed  CAS  Google Scholar 

  • Biagini, G., Pich, E. M., Carani, C., Marrama, P., Gustafsson, J. A., Fuxe, K., et al. (1993). Indole-pyruvic acid, a tryptophan ketoanalogue, antagonizes the endocrine but not the behavioral effects of repeated stress in a model of depression. Biological Psychiatry, 33, 712–719.

    Article  PubMed  CAS  Google Scholar 

  • Blümcke, I., Thom, M., Aronica, E., Armstrong, D. D., Vinters, H. V., Palmini, A., et al. (2011). The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia, 52, 158–174.

    Article  PubMed  Google Scholar 

  • Bortel, A., Longo, D., de Guzman, P., Dubeau, F., Biagini, G., & Avoli, M. (2010). Selective changes in inhibition as determinants for limited hyperexcitability in the insular cortex of epileptic rats. European Journal of Neuroscience, 31, 2014–2023.

    Article  PubMed  Google Scholar 

  • Cao, G., Pei, W., Lan, J., Stetler, R. A., Luo, Y., Nagayama, T., et al. (2001). Caspase activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. Journal of Neuroscience, 21, 4678–4690.

    PubMed  CAS  Google Scholar 

  • Chen, C., Hu, Q., Yan, J., Lei, J., Qin, L., Shi, X., et al. (2007). Multiple effects of 2ME2 and D609 on the cortical expression of HIF-1α and apoptotic genes in a middle cerebral artery occlusion-induced focal ischemia rat model. Journal of Neurochemistry, 102, 1831–1841.

    Article  PubMed  CAS  Google Scholar 

  • Coan, A. C., Appenzeller, S., Bonilha, L., Li, L. M., & Cendes, F. (2009). Seizure frequency and lateralization affect progression of atrophy in temporal lobe epilepsy. Neurology, 73, 834–842.

    Article  PubMed  CAS  Google Scholar 

  • Curia, G., Longo, D., Biagini, G., Jones, R. S., & Avoli, M. (2008). The pilocarpine model of temporal lobe epilepsy. Journal of Neuroscience Methods, 172, 143–157.

    Article  PubMed  CAS  Google Scholar 

  • Fabene, P. F., Merigo, F., Galiè, M., Benati, D., Bernardi, P., Farace, P., et al. (2007). Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PLoS ONE, 2, e1105.

    Article  PubMed  Google Scholar 

  • Faraco, G., Fossati, S., Bianchi, M. E., Patrone, M., Pedrazzi, M., Sparatore, B., et al. (2007). High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. Journal of Neurochemistry, 103, 590–603.

    Article  PubMed  CAS  Google Scholar 

  • Feast, A., Martinian, L., Liu, J., Catarino, C. B., Thom, M., & Sisodiya, S. M. (2012). Investigation of hypoxia-inducible factor-1α in hippocampal sclerosis: A postmortem study. Epilepsia, 53, 1349–1359.

    Article  PubMed  Google Scholar 

  • Geneslaw, A. S., Zhao, M., Ma, H., & Schwartz, T. H. (2011). Tissue hypoxia correlates with intensity of interictal spikes. Journal of Cerebral Blood Flow and Metabolism, 31, 1394–1402.

    Article  PubMed  Google Scholar 

  • Gorter, J. A., van Vliet, E. A., Aronica, E., & Lopes da Silva, F. H. (2011). Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. European Journal of Neuroscience, 13, 657–669.

    Article  Google Scholar 

  • Gualtieri, F., Curia, G., Marinelli, C., & Biagini, G. (2012). Increased perivascular laminin predicts damage to astrocytes in CA3 and piriform cortex following chemoconvulsive treatments. Neuroscience, 218, 278–294.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, K., Qiu, J., & Lo, E. H. (2010). Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Annals of the New York Academy of Sciences, 1207, 50–57.

    Article  PubMed  CAS  Google Scholar 

  • Helton, R., Cui, J., Scheel, J. R., Ellison, J. A., Ames, C., Gibson, C., et al. (2005). Brain-specific knock-out of hypoxia-inducible factor-1α reduces rather than increases hypoxic-ischemic damage. Journal of Neuroscience, 25, 4099–4107.

    Article  PubMed  CAS  Google Scholar 

  • Hempel, C., Combes, V., Hunt, N. H., Kurtzhals, J. A., & Grau, G. E. (2011). CNS hypoxia is more pronounced in murine cerebral than noncerebral malaria and is reversed by erythropoietin. American Journal of Pathology, 179, 1939–1950.

    Article  PubMed  CAS  Google Scholar 

  • Henshall, D. C., Clark, R. S., Adelson, P. D., Chen, M., Watkins, S. C., & Simon, R. P. (2000). Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology, 55, 250–257.

    Article  PubMed  CAS  Google Scholar 

  • Henshall, D. C., & Simon, R. P. (2005). Epilepsy and apoptosis pathways. Journal of Cerebral Blood Flow and Metabolism, 25, 1557–1572.

    Article  PubMed  CAS  Google Scholar 

  • Hossain, M. A. (2005). Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain. Epilepsy & Behavior, 7, 204–213.

    Article  Google Scholar 

  • Hota, K. B., Hota, S. K., Srivastava, R. B., & Singh, S. B. (2012). Neuroglobin regulates hypoxic response of neuronal cells through Hif-1α- and Nrf2-mediated mechanism. Journal of Cerebral Blood Flow and Metabolism, 32, 1046–1060.

    Article  PubMed  CAS  Google Scholar 

  • Ingvar, M. (1986). Cerebral blood flow and metabolic rate during seizures. Relationship to epileptic brain damage. Annals of the New York Academy of Sciences, 462, 194–206.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, T., Takita, M., Sorelle, J. A., Sugimoto, K., Chujo, D., Qin, H., et al. (2012). Correlation of released HMGB1 levels with the degree of islet damage in mice and humans and with the outcomes of islet transplantation in mice. Cell Transplantation. doi:10.3727/096368912X640592.

    Google Scholar 

  • Kim, J. B., Sig Choi, J., Yu, Y. M., Nam, K., Piao, C. S., Kim, S. W., et al. (2006). HMGB1, a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. Journal of Neuroscience, 26, 6413–6421.

    Article  PubMed  CAS  Google Scholar 

  • Kizaka-Kondoh, S., & Konse-Nagasawa, H. (2009). Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Cancer Science, 100, 1366–1373.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., & Buckmaster, P. S. (2003). Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. Journal of Neuroscience, 23, 2440–2452.

    PubMed  CAS  Google Scholar 

  • Kreisman, N. R., Magee, J. C., & Brizzee, B. L. (1991). Relative hypoperfusion in rat cerebral cortex during recurrent seizures. Journal of Cerebral Blood Flow and Metabolism, 11, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., Qu, Y., Li, J., Xiong, Y., Mao, M., & Mu, D. (2007). Relationship between HIF-1α expression and neuronal apoptosis in neonatal rats with hypoxia-ischemia brain injury. Brain Research, 1180, 133–139.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Zhou, C., Calvert, J. W., Colohan, A. R., & Zhang, J. H. (2005). Multiple effects hyperbaric oxygen on the expression of HIF-1α and apoptotic genes in a global ischemia-hypotension rat model. Experimental Neurology, 191, 198–210.

    Article  PubMed  CAS  Google Scholar 

  • Ma, H., Geneslaw, A., Zhao, M., Suh, M., Perry, C., & Schwartz, T. H. (2009). The importance of latency in the focality of perfusion and oxygenation changes associated with triggered afterdischarges in human cortex. Journal of Cerebral Blood Flow and Metabolism, 29, 1003–1014.

    Article  PubMed  Google Scholar 

  • Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A. M., et al. (2010). Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nature Medicine, 16, 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Mathern, G. W., Babb, T. L., Pretorius, J. K., & Leite, J. P. (1995). Reactive synaptogenesis and neuron densities for neuropeptide Y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentata. Journal of Neuroscience, 15, 3990–4004.

    PubMed  CAS  Google Scholar 

  • Meldrum, B. S. (2002). Concept of activity-induced cell death in epilepsy: Historical and contemporary perspectives. Progress in Brain Research, 135, 3–11.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B. S., & Nilsson, B. (1976). Cerebral blood flow and metabolic rate early and late in prolonged epileptic seizures induced in rats by bicuculline. Brain, 99, 523–542.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, J., Gatherer, M., & Sundstrom, L. E. (1995). Loss of hilar somatostatin neurons following tetanus toxin-induced seizures. Acta Neuropathologica, 89, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Mott, R. T., Thore, C. R., Moody, D. M., Glazier, S. S., Ellis, T. L., & Brown, W. R. (2009). Reduced ratio of afferent to total vascular density in mesial temporal sclerosis. Journal of Neuropathology and Experimental Neurology, 68, 1147–1154.

    Article  PubMed  Google Scholar 

  • Ndode-Ekane, X. E., Hayward, N., Gröhn, O., & Pitkänen, A. (2010). Vascular changes in epilepsy: functional consequences and association with network plasticity in pilocarpine-induced experimental epilepsy. Neuroscience, 166, 312–332.

    Article  PubMed  CAS  Google Scholar 

  • Nevander, G., Ingvar, M., Auer, R., & Siesjö, B. K. (1985). Status epilepticus in well-oxygenated rats causes neuronal necrosis. Annals of Neurology, 18, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Niquet, J., Baldwin, R. A., Allen, S. G., Fujikawa, D. G., & Wasterlain, C. G. (2003). Hypoxic neuronal necrosis: Protein synthesis-independent activation of a cell death program. Proceedings of the National academy of Sciences of the United States of America, 100, 2825–2830.

    Article  PubMed  CAS  Google Scholar 

  • Northington, F. J., Chavez-Valdez, R., & Martin, L. J. (2011). Neuronal cell death in neonatal hypoxia-ischemia. Annals of Neurology, 69, 743–758.

    Article  PubMed  CAS  Google Scholar 

  • Noto, T., Furuichi, Y., Ishiye, M., Matsuoka, N., Aramori, I., Mutoh, S., et al. (2006). Temporal and topographic profiles of tissue hypoxia following transient focal cerebral ischemia in rats. Journal of Veterinary Medicine Science, 68, 803–807.

    Article  Google Scholar 

  • Noto, T., Furuichi, Y., Ishiye, M., Matsuoka, N., Aramori, I., Mutoh, S., et al. (2007). Tacrolimus (FK506) limits accumulation of granulocytes and platelets and protects against brain damage after transient focal cerebral ischemia in rat. Biology and Pharmaceutical Bulletin, 30, 313–317.

    Article  CAS  Google Scholar 

  • Plum, F., Posner, J. B., & Troy, B. (1968). Cerebral metabolic and circulatory responses to induced convulsions in animals. Archives of Neurology, 18, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, J., Nishimura, M., Wang, Y., Sims, J. R., Qiu, S., Savitz, S. I., et al. (2008). Early release of HMGB-1 from neurons after the onset of brain ischemia. Journal of Cerebral Blood Flow and Metabolism, 28, 927–938.

    Article  PubMed  CAS  Google Scholar 

  • Racine, R. J. (1972). Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and Clinical Neurophysiology, 32, 281–294.

    Article  PubMed  CAS  Google Scholar 

  • Rademakers, S. E., Lok, J., van der Kogel, A. J., Bussink, J., & Kaanders, J. H. (2011). Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer, 11, 167.

    Article  PubMed  Google Scholar 

  • Rigau, V., Morin, M., Rousset, M. C., de Bock, F., Lebrun, A., Coubes, P., et al. (2007). Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain, 130, 1942–1956.

    Article  PubMed  Google Scholar 

  • Saunders, M. I., Anderson, P. J., Bennett, M. H., Dische, S., Minchinton, A. I., & Stratford, M. R. L. (1984). The clinical testing of Ro 03–8799—Pharmacokinetics, toxicology, tissue and tumor concentrations. International Journal of Radiation Oncology Biology Physics, 10, 1759–1763.

    Article  CAS  Google Scholar 

  • Sayin, U., Osting, S., Hagen, J., Rutecki, P., & Sutula, T. (2003). Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats. Journal of Neuroscience, 23, 2759–2768.

    PubMed  CAS  Google Scholar 

  • Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Schelshorn, D. W., Schneider, A., Kuschinsky, W., Weber, D., Krüger, C., Dittgen, T., et al. (2009). Expression of hemoglobin in rodent neurons. Journal of Cerebral Blood Flow and Metabolism, 29, 585–595.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, C. K., Pearson, E. G., Bonner, H. P., So, N. K., Simon, R. P., Prehn, J. H., et al. (2006). Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy. Journal of Cerebral Blood Flow and Metabolism, 26, 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G. L. (2011). Hypoxia. Cross talk between oxygen sensing and the cell cycle machinery. American Journal of Physiology-Cell Physiology, 301, C550–C552.

    Article  PubMed  CAS  Google Scholar 

  • Semenza, G. L., Agani, F., Feldser, D., Iyer, N., Kotch, L., Laughner, E., et al. (2000). Hypoxia, HIF-1, and the pathophysiology of common human diseases. Advances in Experimental Medicine and Biology, 475, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö, B. K., Ingvar, M., & Wieloch, T. (1986). Cellular and molecular events underlying epileptic brain damage. Annals of the New York Academy of Sciences, 462, 207–223.

    Article  PubMed  Google Scholar 

  • Simon, R. P. (1985). Physiologic consequences of status epilepticus. Epilepsia, 26(Suppl 1), S58–S66.

    Article  PubMed  Google Scholar 

  • Sloviter, R. S. (1987). Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science, 235, 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Sundstrom, L. E., Brana, C., Gatherer, M., Mepham, J., & Rougier, A. (2001). Somatostatin- and neuropeptide Y-synthesizing neurones in the fascia dentata of humans with temporal lobe epilepsy. Brain, 124, 688–697.

    Article  PubMed  CAS  Google Scholar 

  • Thored, P., Wood, J., Arvidsson, A., Cammenga, J., Kokaia, Z., & Lindvall, O. (2007). Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke, 38, 3032–3039.

    Article  PubMed  Google Scholar 

  • van Vliet, E. A., Aronica, E., Tolner, E. A., Lopes da Silva, F. H., & Gorter, J. A. (2004). Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Experimental Neurology, 187, 367–379.

    Article  PubMed  Google Scholar 

  • Weinstein, P. R., Hong, S., & Sharp, F. R. (2004). Molecular identification of the ischemic penumbra. Stroke, 35(11 Suppl 1), 2666–2670.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Q. W., Xiang, J., Zhou, Y., Zhong, Q., & Li, J. C. (2010). Targeting HMGB1/TLR4 signaling as a novel approach to treatment of cerebral ischemia. Frontiers in Bioscience, 2, 1081–1091.

    Article  Google Scholar 

  • Yeh, S. H., Ou, L. C., Gean, P. W., Hung, J. J., & Chang, W. C. (2011). Selective inhibition of early—But not late—Expressed HIF-1α is neuroprotective in rats after focal ischemic brain damage. Brain Pathology, 21, 249–262.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C. H., Moon, C. T., Sur, J. H., Chun, Y. I., Choi, W. H., & Yhee, J. Y. (2011). Serial expression of hypoxia inducible factor-1α and neuronal apoptosis in hippocampus of rats with chronic ischemic brain. Journal of Korean Neurosurgical Society, 50, 481–485.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Ma, H., Suh, M., & Schwartz, T. H. (2009). Spatiotemporal dynamics of perfusion and oximetry during ictal discharges in the rat neocortex. Journal of Neuroscience, 29, 2814–2823.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Emilia-Romagna Region (Region-University Program 2007–2009, grant 1232 to GB, SM, and PFN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Biagini.

Additional information

Fabio Gualtieri, Carla Marinelli, and Daniela Longo equally contributed to the work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gualtieri, F., Marinelli, C., Longo, D. et al. Hypoxia Markers are Expressed in Interneurons Exposed to Recurrent Seizures. Neuromol Med 15, 133–146 (2013). https://doi.org/10.1007/s12017-012-8203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8203-0

Keywords

Navigation