Skip to main content

Advertisement

Log in

MicroRNAs: A Light into the “Black Box” of Neuropediatric Diseases?

  • Review Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Although there have been tremendous advances in the diagnosis and treatment of pediatric brain diseases in the last few decades, the causes and pathogenesis of these diseases remain to be elucidated. Pediatric central nervous system (CNS) diseases create both short- and long-term impairments and disabilities and are therefore one of the leading causes for emotional, financial, and social burden to patients, their families, and their social network. The significant pediatric morbidity and mortality rates caused by CNS diseases call for equally significant efforts toward a better understanding of the etiology and nature of these disorders. Recent studies show the involvement of microRNAs (miRNAs) in various aspects of central nervous system development and neuropsychiatric diseases. This review focuses on the role of miRNAs in different pediatric neurological conditions. We emphasize the importance of microRNA-based research in combating pediatric neurological disorders. We believe this approach will result in novel therapies to secure normal development and prevent disabilities in the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

MiRNAs:

MicroRNAs

DMD:

Duchenne muscular dystrophy

OLs:

Oligodendrocytes

VLCFAs:

Very-long-chain fatty acids

HIBD:

Hypoxic ischemic brain injuries

MCAO:

Middle cerebral artery occlusion

NTDs:

Neural tube defects

RA:

Retinoic acid

ID:

Intellectual disability

ASDs:

Autism spectrum disorders

SNPs:

Single nucleotide polymorphisms

FXS:

Fragile X mental retardation

FMRP:

Fragile X mental retardation protein

RTT:

Rett syndrome

MeCP2:

Methyl-CpG binding protein 2

ADHD:

Attention deficit hyperactivity disorder

DGS:

DiGeorge syndrome

DS:

Down syndrome

SCI:

Spinal cord injury

TLE:

Temporal lobe epilepsy

BMD:

Becker muscular dystrophy

FSHD:

Facioscapulohumeral muscular dystrophy

References

  • Abu-Elneel, K., Liu, T., Gazzaniga, F. S., Nishimura, Y., Wall, D. P., Geschwind, D. H., et al. (2008). Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics, 9(3), 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, M. S., Casar, J. C., Motohashi, N., Myers, J. A., Eisenberg, I., Gonzalez, R. T., et al. (2011). Regulation of DMD pathology by an ankyrin-encoded miRNA. Skeletal Muscle, 8, 1–27.

    Google Scholar 

  • Allgaier, A. K., Pietsch, K., Frühe, B., Prast, E., Sigl-Glöckner, J., & Schulte-Körne, G. (2012). Depression in pediatric care: Is the WHO-Five Well-Being Index a valid screening instrument for children and adolescents? General Hospital Psychiatry, 34(3), 234–241.

    Article  PubMed  Google Scholar 

  • Al-Macki, N., Miller, S. P., Hall, N., & Shevell, M. (2009). The spectrum of abnormal neurologic outcomes subsequent to term intrapartum asphyxia. Pediatric Neurology, 41(6), 399–405.

    Article  PubMed  Google Scholar 

  • Anney, R., Klei, L., Pinto, D., Regan, R., Conroy, J., Magalhaes, T. R., et al. (2010). A genome-wide scan for common alleles affecting risk for autism. Hum Mol Gen, 19(20), 4072–4082.

    Article  PubMed  CAS  Google Scholar 

  • Aronica, E., Fluiter, K., Iyer, A., Zurolo, E., Vreijling, J., van Vliet, E. A., et al. (2010). Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience, 31(6), 1100–1107.

    Article  PubMed  CAS  Google Scholar 

  • Bagni, C., & Greenough, W. T. (2005). From mRNP trafficking to spine dysmorphogenesis: The roots of fragile X syndrome. Nature Reviews Neuroscience, 6(5), 376–387.

    Google Scholar 

  • Baldassarre, G., Belletti, B., Nicoloso, M. S., Schiappacassi, M., Vecchione, A., Spessotto, P., et al. (2005). p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell, 7(1), 51–63.

    Article  PubMed  CAS  Google Scholar 

  • Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Barton, M., & Volkmar, F. (1998). How commonly are known medical conditions associated with autism? Journal of Autism and Developmental Disorder, 28(4), 273–278.

    Article  CAS  Google Scholar 

  • Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 60(2), 201–214.

    Article  PubMed  CAS  Google Scholar 

  • Basu, U., Lozynska, O., Moorwood, C., Patel, G., Wilton, S. D., & Khurana, T. S. (2011). Translational regulation of utrophin by miRNAs. PLoS One, 6(12), e29376.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, A., Mouillet-Richard, S., Schneider, B., Launay, J. M., & Kellermann, O. (2010). miR-16 targets the serotonin transporter: A new facet for adaptive responses to antidepressants. Science, 329(5998), 1537–1541.

    Article  PubMed  CAS  Google Scholar 

  • Beesdo, K., Pine, D. S., Lieb, R., & Wittchen, H. U. (2010). Incidence and risk patterns of anxiety and depressive disorders and categorization of generalized anxiety disorder. Archives of General Psychiatry, 67(1), 47–57.

    Article  PubMed  Google Scholar 

  • Beveridge, N. J., Gardiner, E., Carroll, A. P., Tooney, P. A., & Cairns, M. J. (2010). Schizophrenia is associated with an increase in cortical microRNA biogenesis. Molecular Psychiatry, 15(12), 1176–1189.

    Article  PubMed  CAS  Google Scholar 

  • Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum Mol Gen, 17(8), 1156–1168.

    Article  PubMed  CAS  Google Scholar 

  • Birks, D. K., Barton, V. N., Donson, A. M., Handler, M. H., Vibhakar, R., & Foreman, N. K. (2011). Survey of MicroRNA expression in pediatric brain tumors. Pediatric Blood & Cancer, 56(2), 211–216.

    Article  Google Scholar 

  • Bottoni, A., Piccin, D., Tagliati, F., Luchin, A., Zatelli, M. C., & degli Uberti, E. C. (2005). miR-15a and miR-16-1 down-regulation in pituitary adenomas. Journal of Cellular Physiology, 204(1), 280–285.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, C. A., Boulet, S., Schieve, L. A., Cohen, R. A., Blumberg, S. J., Yeargin-Allsopp, M., et al. (2011). Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics, 127(6), 1034–1042.

    Article  PubMed  Google Scholar 

  • Brooks-Kayal, A. (2011). Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia, 52(1), 13–20.

    Article  PubMed  Google Scholar 

  • Cacchiarelli, D., Incitti, T., Martone, J., Cesana, M., Cazzella, V., Santini, T., et al. (2011a). miR-31 modulates dystrophin expression: new implications for Duchenne muscular dystrophy therapy. EMBO Reports, 12(2), 136–141.

    Article  PubMed  CAS  Google Scholar 

  • Cacchiarelli, D., Legnini, I., Martone, J., Cazzella, V., D’Amico, A., Bertini, E., et al. (2011b). MiRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Molecular Medicine, 3(5), 258–265.

    Article  PubMed  CAS  Google Scholar 

  • Cacchiarelli, D., Martone, J., Girardi, E., Cesana, M., Incitti, T., Morlando, M., et al. (2010). microRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway. Cell Metabolism, 12(4), 341–351.

    Article  PubMed  CAS  Google Scholar 

  • Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., et al. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12(3), 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proceedings of the National academy of Sciences of the United States of America, 101, 2999–3004.

    Article  PubMed  CAS  Google Scholar 

  • Callis, T. E., Deng, Z., Chen, J. F., & Wang, D. Z. (2008). Muscling through the microRNA world. Exper Biol Med (Maywood), 233(2), 131–138.

    Article  CAS  Google Scholar 

  • Camfield, P., & Camfield, C. (2011). Transition to adult care for children with chronic neurological disorders. Annals of Neurology, 69(3), 437–444.

    Article  PubMed  Google Scholar 

  • Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasekar, V., & Dreyer, J. L. (2009). microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Molecular and Cellular Neuroscience, 42(4), 350–362.

    Article  PubMed  CAS  Google Scholar 

  • Chang, H., Zhang, T., Zhang, Z., Bao, R., Fu, C., Wang, Z., et al. (2011). Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects. The Journal of Nutritional Biochemistry, 22(12), 1172–1177.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Guo, J., Lei, Y., Zou, J., Lu, X., Bao, Y., et al. (2010). Global DNA hypomethylation is associated with NTD-affected pregnancy: A case-control study. Birth Defects Research, Part A: Clinical and Molecular Teratology, 88(7), 575–581.

    Article  CAS  Google Scholar 

  • Chen, W., Jensen, L. R., Gecz, J., Fryns, J. P., Moraine, C., de Brouwer, A., et al. (2007). Mutation screening of brain-expressed X-chromosomal miRNA genes in 464 patients with nonsyndromic X-linked mental retardation. European Journal of Human Genetics, 15(3), 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Ciafre, S. A., Galardi, S., Mangiola, A., Ferracin, M., Liu, C. G., Sabatino, G., et al. (2005). Extensive modulation of a set of microRNAs in primary glioblastoma. Biochemical and Biophysical Research Communications, 334(4), 1351–1358.

    Article  PubMed  CAS  Google Scholar 

  • Collins, P. Y., Patel, V., Joestl, S. S., March, D., Insel, T. R., Daar, A. S., et al. (2011). Grand challenges in global mental health. Nature, 475(7354), 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Corsten, M. F., Miranda, R., Kasmieh, R., Krichevsky, A. M., Weissleder, R., & Shah, K. (2007). MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Research, 67(19), 8994–9000.

    Article  PubMed  CAS  Google Scholar 

  • Covington, H. E., Lobo, M. K., Maze, I., Vialou, V., Hyman, J. M., et al. (2010). Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. Journal of Neuro Science, 30(48), 16082–16090.

    CAS  Google Scholar 

  • Cuellar, T. L., Davis, T. H., Nelson, P. T., Loeb, G. B., Harfe, B. D., Ullian, E., et al. (2008). Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proceedings of the National academy of Sciences of the United States of America, 105(14), 5614–5619.

    Article  PubMed  CAS  Google Scholar 

  • Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuro Science, 28(17), 4322–4330.

    CAS  Google Scholar 

  • de Graaf, R., Ten Have, M., van Gool, C., & van Dorsselaer, S. (2012). Prevalence of mental disorders and trends from 1996 to 2009. Results from the Netherlands Mental Health Survey and Incidence Study-2. Social Psychiatry and Psychiatric Epidemiology, 47(2), 203–213.

    Article  PubMed  Google Scholar 

  • De Smaele, E., Ferretti, E., & Gulino, A. (2010). MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Research, 1338, 100–111.

    Article  PubMed  CAS  Google Scholar 

  • Dessy, A., & Gorman, J. M. (2011). The emerging therapeutic role of RNA interference in disorders of the central nervous system. Clinical Pharmacology & Therapeutics, 89(3), 450–454.

    Article  CAS  Google Scholar 

  • DeVito, L. M., Balu, D. T., Kanter, B. R., Lykken, C., Basu, A. C., Coyle, J. T., et al. (2011). Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes, Brain, and Behavior, 10(2), 210–222.

    Article  PubMed  CAS  Google Scholar 

  • Dharap, A., Bowen, K., Place, R., Li, L. C., & Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. Journal of Cerebral Blood Flow and Metabolism, 29(4), 675–687.

    Article  PubMed  CAS  Google Scholar 

  • Dugas, J. C., Cuellar, T. L., Scholze, A., Ason, B., Ibrahim, A., Emery, B., et al. (2010). Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron, 65(5), 597–611.

    Article  PubMed  CAS  Google Scholar 

  • Edbauer, D., Neilson, J. R., Foster, K. A., Wang, C. F., Seeburg, D. P., Batterton, M. N., et al. (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65(3), 373–384.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, I., Alexander, M. S., & Kunkel, L. M. (2009). miRNAS in normal and diseased skeletal muscle. Journal of Cellular and Molecular Medicine, 13(1), 2–11.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, I., Eran, A., Nishino, I., Moggio, M., Lamperti, C., Amato, A. A., et al. (2007). Distinctive patterns of microRNA expression in primary muscular disorders. Proceedings of the National academy of Sciences of the United States of America, 104(43), 17016–17021.

    Article  PubMed  CAS  Google Scholar 

  • Emery, B. (2010). Regulation of oligodendrocyte differentiation and myelination. Science, 330(6005), 779–782.

    Article  PubMed  CAS  Google Scholar 

  • Ferretti, E., De Smaele, E., Po, A., Di Marcotullio, L., Tosi, E., Espinola, M. S., et al. (2009). MicroRNA profiling in human medulloblastoma. International Journal of Cancer, 124(3), 568–577.

    Article  CAS  Google Scholar 

  • Fineberg, S. K., Kosik, K. S., & Davidson, B. L. (2009). MicroRNAs potentiate neural development. Neuron, 64(3), 303–309.

    Article  PubMed  CAS  Google Scholar 

  • Flynt, A. S., & Lai, E. C. (2008). Biological principles of microRNA-mediated regulation: Shared themes amid diversity. Nature Reviews Genetics, 9(11), 831–842.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, K. L., Yu, G., Nicolini, C., Michalski, B., Garzon, D. J., Chiu, V. S., et al. (2012). Altered balance of proteolytic isoforms of pro-brain-derived neurotrophic factor in autism. Journal of Neuropathology and Experimental Neurology, 71(4), 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, E., Beveridge, N. J., Wu, J. Q., Carr, V., Scott, R. J, Tooney, P. A., et al. (2011). Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Molecular Psychiatry. doi:10.1038/mp.2011.78.

  • Gerber, J., & Nau, R. (2010). Mechanisms of injury in bacterial meningitis. Current Opinion in Neurology, 23(3), 312–318.

    Article  PubMed  Google Scholar 

  • Glessner, J. T., Wang, K., Cai, G., Korvatska, O., Kim, C. E., Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246), 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Godlewski, J., Nowicki, M. O., Bronisz, A., Williams, S., Otsuki, A., Nuovo, G., et al. (2008). Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Research, 68(22), 9125–9130.

    Article  PubMed  CAS  Google Scholar 

  • Greco, S., De Simone, M., Colussi, C., Zaccagnini, G., Fasanaro, P., Pescatori, M., et al. (2009). Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB Journal, 23(10), 3335–3346.

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson, A., Svensson, M., Jacobi, F., Allgulander, C., Alonso, J., Beghi, E., et al. (2011). Cost of disorders of the brain in Europe 2010. European Neuropsychopharmacology, 21(10), 718–779.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman, R., Hoem, G., & Hagerman, P. (2010). Fragile X and autism: Intertwined at the molecular level leading to targeted treatments. Molecular Autism, 1(1), 12.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T., Olsen, L., Lindow, M., Jakobsen, K. D., Ullum, H., Jonsson, E., et al. (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS One, 2, e873.

    Article  PubMed  CAS  Google Scholar 

  • Harrington, M. G., Fonteh, A. N., Oborina, E., Liao, P., Cowan, R. P., McComb, G., et al. (2009). The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Research, 6, 10.

    Article  PubMed  CAS  Google Scholar 

  • Harris, S. W., Hessl, D., Goodlin-Jones, B., Ferranti, J., Bacalman, S., Barbato, I., et al. (2008). Autism profiles of males with fragile X syndrome. American Journal of Mental Retardation, 113(6), 427–438.

    Article  PubMed  Google Scholar 

  • Heaney, A. P. (2006). Pituitary tumour pathogenesis. British Medical Bulletin, 75–76, 81–97.

    Article  PubMed  CAS  Google Scholar 

  • Hébert, S. S., Horré, K., Nicolaï, L., Bergmans, B., Papadopoulou, A. S., Delacourte, A., et al. (2009). MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiology of Diseases, 33(3), 422–428.

    Article  CAS  Google Scholar 

  • Hébert, S. S., Horré, K., Nicolaï, L., Papadopoulou, A. S., Mandemakers, W., Silahtaroglu, A. N., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National academy of Sciences of the United States of America, 105(17), 6415–6420.

    Article  PubMed  Google Scholar 

  • Hu, K., Zhang, C., Long, L., Long, X., Feng, L., Li, Y., et al. (2011). Expression profile of microRNAs in rat hippocampus following lithium–pilocarpine-induced status epilepticus. Neuroscience Letters, 488(3), 252–257.

    Article  PubMed  CAS  Google Scholar 

  • Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron, 74(2), 285–299.

    Article  PubMed  CAS  Google Scholar 

  • Jeyaseelan, K., Herath, W. B., & Armugam, A. (2007). MicroRNAs as therapeutic targets in human diseases. Expert Opinion on Therapeutic Targets, 11(8), 1119–1129.

    Article  PubMed  CAS  Google Scholar 

  • Jeyaseelan, K., Lim, K. Y., & Armugam, A. (2008). MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke, 39(3), 959–966.

    Article  PubMed  CAS  Google Scholar 

  • John, HM., & Richard, G. (2005). Traumatic brain and spinal cord injuries in children. In Bernard L. Maria (Ed.), Current management in child neurology (3rd ed., pp. 515–527). BC Decker Inc.

  • Kessler, R. C., Cox, B. J., Green, J. G., Ormel, J., McLaughlin, K. A., Merikangas, K. R., et al. (2011). The effects of latent variables in the development of comorbidity among common mental disorders. Depression and Anxiety, 28(1), 29–39.

    Article  PubMed  Google Scholar 

  • Kim, J., Krichevsky, A., Grad, Y., Hayes, G. D., Kosik, K. S., Church, G. M., et al. (2004). Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National academy of Sciences of the United States of America, 101(1), 360–365.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A. H., Reimers, M., Maher, B., Williamson, V., McMichael, O., McClay, J. L., et al. (2010). MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophrenia Research, 124(1–3), 183–191.

    Article  PubMed  Google Scholar 

  • Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10(12), 1513–1514.

    Article  PubMed  CAS  Google Scholar 

  • Kloosterman, W. P., Steiner, F. A., Berezikov, E., de Bruijn, E., van de Belt, J., Verheul, M., et al. (2006). Cloning and expression of new microRNAs from zebrafish. Nucleic Acids Research, 34(9), 2558–2569.

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24(4), 857–864.

    Article  PubMed  CAS  Google Scholar 

  • Krol, J., Loedige, I., & Filipowicz, W. (2010). The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 11(9), 597–610.

    PubMed  CAS  Google Scholar 

  • Kuhn, D. E., Nuovo, G. J., Martin, M. M., Malana, G. E., Pleister, A. P., Jiang, J., et al. (2008). Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochemical and Biophysical Research Communications, 370(3), 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Kuss, A. W., & Chen, W. (2008). MicroRNAs in brain function and disease. Current Neurology and Neuroscience Reports, 8(3), 190–197.

    Article  PubMed  CAS  Google Scholar 

  • Kye, M. J., Neveu, P., Lee, Y. S., Zhou, M., Steen, J. A., Sahin, M., et al. (2011). NMDA mediated contextual conditioning changes miRNA expression. PLoS One, 6(9), e24682.

    Article  PubMed  CAS  Google Scholar 

  • Lai, C. Y., Yu, S. L., Hsieh, M. H., Chen, C. H., Chen, H. Y., Wen, C. C., et al. (2011). MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One, 6, e21635.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, T. J., Storm, D. R., & Sullivan, J. M. (2010). MicroRNA132 modulates short-term synaptic plasticity but not basal release probability in hippocampal neurons. PLoS One, 5(12), e15182.

    Article  PubMed  CAS  Google Scholar 

  • Le, M. T., Xie, H., Zhou, B., Chia, P. H., Rizk, P., Um, M., et al. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Molecular and Cellular Biology, 29(19), 5290–5305.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. T., Risom, T., & Strauss, W. M. (2007). Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA and Cell Biology, 26(4), 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Lei, P., Li, Y., Chen, X., Yang, S., & Zhang, J. (2009). Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Research, 1284, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Li, K. K., Pang, J. C., Ching, A. K., Wong, C. K., Kong, X., Wang, Y., et al. (2009). miR-124 is frequently downregulated in medulloblastoma and is a negative regulator of SLC16A1. Human Pathology, 40(9), 1234–1243.

    Article  PubMed  CAS  Google Scholar 

  • Lin, S. T., & Fu, Y. H. (2009). MiR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Disease Models & Mechanisms, 2(3–4), 178–188.

    Article  CAS  Google Scholar 

  • Lise, M. F., & El-Husseini, A. (2006). The neuroligin and neurexin families: From structure to function at the synapse. Cellular and Molecular Life Sciences, 63(16), 1833–1849.

    Article  PubMed  CAS  Google Scholar 

  • Liu, D. Z., Tian, Y., Ander, B. P., Xu, H., Stamova, B. S., Zhan, X., et al. (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow and Metabolism, 30(1), 92–101.

    Article  PubMed  CAS  Google Scholar 

  • Liu, N. K., Wang, X. F., Lu, Q. B., & Xu, X. M. (2009). Altered microRNA expression following traumatic spinal cord injury. Experimental Neurology, 219(2), 424–429.

    Article  PubMed  CAS  Google Scholar 

  • Lugli, G., Torvik, V. I., Larson, J., & Smalheiser, N. R. (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. Journal of Neurochemistry, 106(2), 650–661.

    Article  PubMed  CAS  Google Scholar 

  • Lujambio, A., & Esteller, M. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.

    Article  PubMed  CAS  Google Scholar 

  • Maller Schulman, B. R., Liang, X., Stahlhut, C., DelConte, C., Stefani, G., & Slack, F. J. (2008). The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure. Cell Cycle, 7(24), 3935–3942.

    Article  PubMed  Google Scholar 

  • Marshall, C. R., Noor, A., Vincent, J. B., Lionel, A. C., Feuk, L., Skaug, J., et al. (2008). Structural variation of chromosomes in autism spectrum disorder. American Journal of Human Genetics, 82(2), 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Marsit, C. J., Eddy, K., & Kelsey, K. T. (2006). MicroRNA responses to cellular stress. Cancer Research, 66(22), 10843–10848.

    Article  PubMed  CAS  Google Scholar 

  • Martinelli-Boneschi, F., Fenoglio, C., Brambilla, P., Sorosina, M., Giacalone, G., Esposito, F., et al. (2012). MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neuroscience Letters, 508(1), 4–8.

    Article  PubMed  CAS  Google Scholar 

  • Mellios, N., Sugihara, H., Castro, J., Banerjee, A., Le, C., Kumar, A., et al. (2011). miR-132, an experience dependent microRNA, is essential for visual cortex plasticity. Nature Neuroscience, 14(10), 1240–1242.

    Article  PubMed  CAS  Google Scholar 

  • Miller, C. R., & Perry, A. (2007). Glioblastoma. Archives of Pathology and Laboratory Medicine, 131(3), 397–406.

    PubMed  Google Scholar 

  • Miller, D. T., Shen, Y., Weiss, L. A., Korn, J., Anselm, I., Bridgemohan, C., et al. (2009). Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders. Journal of Medical Genetics, 46(4), 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Miller, B. H., & Wahlestedt, C. (2010). MicroRNA dysregulation in psychiatric disease. Brain Research, 1338, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Miller, B. H., Zeier, Z., Xi, L., Lanz, T. A., Deng, S., Strathmann, J., et al. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National academy of Sciences of the United States of America, 109(8), 3125–3130.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National academy of Sciences of the United States of America, 105(30), 10513–10518.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, H., Nakamura, A., Aoki, Y., Ito, N., Kishi, S., & Yamamoto, K. (2011). Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One, 6(3), e18388.

    Article  PubMed  CAS  Google Scholar 

  • Moreau, M. P., Bruse, S. E., David-Rus, R., Buyske, S., & Brzustowicz, L. M. (2011). Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biological Psychiatry, 69(2), 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, P. T., & Keller, J. N. (2007). RNA in brain disease: no longer just “the messenger in the middle”. Journal of Neuropathology and Experimental Neurology, 66(6), 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Nicoloso, M. S., & Calin, G. A. (2008). MicroRNA involvement in brain tumors: from bench to bedside. Brain Pathology, 18(1), 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Olde Loohuis, N. F., Kos, A., Martens, G. J., Van Bokhoven, H., Nadif Kasri, N., & Aschrafi, A. (2012). MicroRNA networks direct neuronal development and plasticity. Cellular and Molecular Life Sciences, 69(1), 89–102.

    Article  PubMed  CAS  Google Scholar 

  • Omran, A., Peng, J., Zhang, C., Xiang, Q. L., Xue, J., Gan, N., et al. (2012a). Interleukin-1 beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia, 53(7), 1215–1224.

    Google Scholar 

  • Omran, A., Peng, J., Zhang, C., Xue, J., Xiang Q. L., & Yin, F. (2012b). The expression of interleukin-1B and miRNA-146a in the cerebral cortex of acute Escherichia Coli meningitis immature rat model. African Journal of Infectious Diseases, 6(2), 41–47.

    Google Scholar 

  • Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuro Science, 28(53), 14341–14346.

    CAS  Google Scholar 

  • Peng, T., Jia, Y. J., Wen, Q. Q., Guan, W. J., Zhao, E. Y., & Zhang, B. A. (2010). Expression of microRNA in neonatal rats with hypoxic-ischemic brain damage. Zhongguo Dang Dai Er Ke Za Zhi, 12(5), 373–376.

    PubMed  CAS  Google Scholar 

  • Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27.

    Article  PubMed  CAS  Google Scholar 

  • Prasadarao, N. V. (2002). Identification of Escherichia coli outer membrane protein A receptor on human brain microvascular endothelial cells. Infection and Immunity, 70(8), 4556–4563.

    Article  PubMed  CAS  Google Scholar 

  • Prince, M., Patel, V., Saxena, S., Maj, M., Maselko, J., Phillips, M. R., et al. (2007). No health without mental health. Lancet, 370(9590), 859–877.

    Article  PubMed  Google Scholar 

  • Qiu, J., Hong, Q., Chen, R. H., Tong, M. L., Zhang, M., Fei, L., et al. (2010). Gene expression profiles in the prefrontal cortex of SHR rats by cDNA microarrays. Molecular Biology Reports, 37(4), 1733–1740.

    Article  PubMed  CAS  Google Scholar 

  • Redell, J. B., Liu, Y., & Dash, P. K. (2009). Traumatic brain injury alters expression of hippocampal microRNAs: Potential regulators of multiple pathophysiological processes. Journal of Neuroscience Research, 87(6), 1435–1448.

    Article  PubMed  CAS  Google Scholar 

  • Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., et al. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969–976.

    Article  CAS  Google Scholar 

  • Rota, R., Ciarapica, R., Giordano, A., Miele, L., & Locatelli, F. (2011). MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality. Molecular Cancer, 10, 120.

    Article  PubMed  CAS  Google Scholar 

  • Roth, R. H., Edbauer, D., Kleiman, R. J., & Wahlestedt, C. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National academy of Sciences of the United States of America, 109(8), 3125–3130.

    Article  PubMed  Google Scholar 

  • Roth, P., Wischhusen, J., Happold, C., Chandran, P. A., Hofer, S., Eisele, G., et al. (2011). A specific miRNA signature in the peripheral blood of glioblastoma patients. Journal of Neurochemistry, 118(3), 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Sarachana, T., Zhou, R., Chen, G., Manji, H. K., & Hu, V. W. (2010). Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Medicine, 2(4), 23.

    Article  PubMed  CAS  Google Scholar 

  • Schratt, G. (2009). MicroRNAs at the synapse. Nature Reviews Neuroscience, 10(12), 842–849.

    Article  PubMed  CAS  Google Scholar 

  • Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074), 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Sellner, J., Täuber, M. G., & Leib, S. L. (2010). Pathogenesis and pathophysiology of bacterial CNS infections. Handbook of Clinical Neurology, 96, 1–16.

    Article  PubMed  Google Scholar 

  • Shi, Y., Zhao, X., Hsieh, J., Wichterle, H., Impey, S., Banerjee, S., et al. (2010). MicroRNA regulation of neural stem cells and neurogenesis. Journal of Neuro Science, 30(45), 14931–14936.

    CAS  Google Scholar 

  • Shin, D., Shin, J. Y., McManus, M. T., Ptacek, L. J., & Fu, Y. H. (2009). Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Annals of Neurology, 66(6), 843–857.

    Article  PubMed  CAS  Google Scholar 

  • Silber, J., Lim, D. A., Petritsch, C., Persson, A. I., Maunakea, A. K., Yu, M., et al. (2008). miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Medicine, 6, 14.

    Article  PubMed  CAS  Google Scholar 

  • Simon, D. J., Madison, J. M., Conery, A. L., Thompson-Peer, K. L., Soskis, M., Ruvkun, G. B., et al. (2008). The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell, 133(5), 903–915.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N. R., & Lugli, G. (2009). microRNA regulation of synaptic plasticity. NeuroMolecular Medicine, 11(3), 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Smalheiser, N. R., Lugli, G., Rizavi, H. S., Torvik, V. I., Turecki, G., & Dwivedi, Y. (2012). MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PLoS One, 7(3), e33201.

    Article  PubMed  CAS  Google Scholar 

  • Sokol, N. S., Xu, P., Jan, Y. N., & Ambros, V. (2008). Drosophila let-7 microRNA is required for remodeling of the neuromusculature during metamorphosis. Genes and Development, 22(12), 1591–1596.

    Article  PubMed  CAS  Google Scholar 

  • Song, Y. J., Tian, X. B., Zhang, S., Zhang, Y. X., Li, X., Li, D., et al. (2011). Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Research, 1387, 134–140.

    Article  PubMed  CAS  Google Scholar 

  • Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., Hsu, R., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40(6), 751–760.

    Article  PubMed  CAS  Google Scholar 

  • Talebizadeh, Z., Butler, M. G., & Theodoro, M. F. (2008). Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Research, 1(4), 240–250.

    Article  PubMed  Google Scholar 

  • Talebizadeh, Z., Lam, D. Y., Theodoro, M. F., Bittel, D. C., Lushington, G. H., & Butler, M. G. (2006). Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. Journal of Medical Genetics, 43(5), e21.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, K., Makino, A., Hullin-Matsuda, F., Kobayashi, T., Furihata, M., Chung, S., et al. (2009). Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Research, 69(20), 8133–8140.

    Article  PubMed  CAS  Google Scholar 

  • Tan, K. S., Armugam, A., Sepramaniam, S., Lim, K. Y., Setyowati, K. D., Wang, C. W., et al. (2009). Expression profile of MicroRNAs in young stroke patients. PLoS One, 4(11), e7689.

    Article  PubMed  CAS  Google Scholar 

  • Tognini, P., Putignano, E., Coatti, A., & Pizzorusso, T. (2011). Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nature Neuroscience, 14(10), 1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Townsend, J. D., Eberhart, N. K., Bookheimer, S. Y., Eisenberger, N. I., Foland-Ross, L. C., et al. (2010). fMRI activation in the amygdala and the orbitofrontal cortex inunmedicated subjects with major depressive disorder. Psychiatry Research, 183(3), 209–217.

    Article  PubMed  Google Scholar 

  • Van Rooij, E., Liu, N., & Olson, E. N. (2008). MicroRNAs flex their muscles. Trends in Genetics, 24(4), 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Vo, N. K., Cambronne, X. A., & Goodman, R. H. (2010). MicroRNA pathways in neural development and plasticity. Current Opinion in Neurobiology, 20(4), 457–465.

    Article  PubMed  CAS  Google Scholar 

  • Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). A Camp response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National academy of Sciences of the United States of America, 102(45), 16426–16431.

    Article  PubMed  CAS  Google Scholar 

  • Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National academy of Sciences of the United States of America, 103(7), 2257–2261.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Chen, J., Chang, P., LeBlanc, A., Li, D., Abbruzzesse, J. L., et al. (2009a). MicroRNAs in plasma of pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer prevention research (Philadelphia, Pa.), 2(9), 807–813.

    Article  CAS  Google Scholar 

  • Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuro Science, 28(5), 1213–1223.

    Google Scholar 

  • Wang, L., Wang, F., Guan, J., Le, J., Wu, L., Zou, J., et al. (2010). Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. American Journal of Clinical Nutrition, 91(5), 1359–1367.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L. L., Zhang, Z., Li, Q., Ynag, R., Pei, X., Xu, Y., et al. (2009b). Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects, which can be suppressed by folic acid supplementation. Human Reproduction, 24(3), 562–579.

    Article  PubMed  CAS  Google Scholar 

  • Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., et al. (2009c). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459(7246), 528–533.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, T. A., Emery, B., Mulinyawe, S., & Barres, B. A. (2008). Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron, 60(4), 555–569.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., et al. (2008). Association between microdeletion and microduplication at 16p11.2 and autism. New England Journal of Medicine, 358(7), 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Werner, N. S., Meindl, T., Materne, J., Engel, R. R., Huber, D., Riedel, M., et al. (2009). Functional MRI study of memory-related brain regions in patients with depressive disorder. Journal of Affective Disorders, 119(1–3), 124–131.

    Article  PubMed  Google Scholar 

  • Williams, A. E. (2008). Functional aspects of animal microRNAs. Cellular and Molecular Life Sciences, 65(4), 545–562.

    Article  PubMed  CAS  Google Scholar 

  • Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., et al. (2009). MicroRNA206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science, 326(5959), 1549–1554.

    Article  PubMed  CAS  Google Scholar 

  • Wong, J., Duncan, C. E., Beveridge, N. J, Webster, M. J., Cairns, M. J., & Shannon Weickert, C. (2012). Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia. Schizophrenia bulletin. doi:10.1093/schbul/sbr177.

  • Wong, R. L., Wlodarczyk, B. J., Min, K. S., Scott, M. L., Kartiko, S., Yu, W., et al. (2008). Mouse Fkbp8 activity is required to inhibit cell death and establish dorsoventral patterning in the posterior neural tube. Human Molecular Genetics, 17(4), 587–601.

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization. (2008). The global burden of disease: 2004 update. Geneva: WHO.

    Google Scholar 

  • Wu, L., Zhao, Q., Zhu, X., Peng, M., Jia, C., Wu, W., et al. (2010). A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain Pathology, 20(6), 1042–1054.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Liu, H., Li, F., Sun, N., Ren, Y., Liu, Z., et al. (2010). A polymorphism in the microRNA-30e precursor associated with major depressive disorder risk and P300 waveform. Journal of Affective Disorders, 127(1–3), 332–336.

    Article  PubMed  CAS  Google Scholar 

  • Yin, K. J., Deng, Z., Huang, H., Hamblin, M., Xie, C., Zhang, J., et al. (2010). MiR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiology of Diseases, 38(1), 17–26.

    Article  CAS  Google Scholar 

  • Yuasa, K., Hagiwara, Y., Ando, M., Nakamura, A., Takeda, S., & Hijikata, T. (2008). MicroRNA-206 is highly expressed in newly formed muscle fibers: Implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Structure and Function, 33(2), 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z., Chang, H., Li, Y., Zhang, T., Zou, J., Zheng, X., et al. (2010). MicroRNAs potential regulators involved in human anencephaly. The International Journal of Biochemistry & Cell Biology, 42(2), 367–374.

    Article  CAS  Google Scholar 

  • Zhang, Y., Chao, T., Li, R., Liu, W., Chen, Y., Yan, X., et al. (2009). MicroRNA-128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. Journal of Molecular Medicine, 87(1), 43–51.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Huang, J., Yang, N., Greshock, J., Megraw, M. S., Giannakakis, A., et al. (2006a). MicroRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National academy of Sciences of the United States of America, 103(24), 9136–9141.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Wang, T., Wright, A. F., Suri, M., Schwartz, C. E., Stevenson, R. E., et al. (2006b). A microdeletion in Xp11.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred. American Journal of Medical Genetics. Part A, 140(4), 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, C., Sun, G., Li, S., Lang, M. F., Yang, S., Li, W., et al. (2010). MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proceedings of the National academy of Sciences of the United States of America, 107(5), 1876–1881.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Sun, D., Wang, J., Liu, S., Zhang, C., Zhu, M., et al. (2008). Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Childs Nervous System, 24(4), 485–492.

    Article  Google Scholar 

  • Zheng, K., Li, H., Zhu, Y., Zhu, Q., & Qiu, M. (2010). MicroRNAs are essential for the developmental switch from neurogenesis to oliogenesis in the developing spinal cord. Journal of Neuro Science, 30(24), 8245–8250.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by the National Natural Science Foundation of China (NO. 30872790, 30901631, 81171226, 81100846) and the Scientific and Technological Department of Hunan Province (2011FJ3163). Additional support was received from the Ph.D. programs of the Foundation of the Ministry of Education of China (20090162110041). We are most grateful to Ahmed Abdelrahman, Department of Computer Science and Technology, College of Information Science and Engineering, Hunan University, China for helping us with figure editing.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omran, A., Elimam, D., Shalaby, S. et al. MicroRNAs: A Light into the “Black Box” of Neuropediatric Diseases?. Neuromol Med 14, 244–261 (2012). https://doi.org/10.1007/s12017-012-8193-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8193-y

Keywords

Navigation