Skip to main content
Log in

Increased Density of Prohibitin-Immunoreactive Oligodendrocytes in the Dorsolateral Prefrontal White Matter of Subjects with Schizophrenia Suggests Extraneuronal Roles for the Protein in the Disease

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Prohibitin has previously been implicated in the synaptic pathology of schizophrenia. The recently discovered abundant expression of prohibitin in human prefrontal oligodendrocytes raises the issue, whether this protein might also be part of the well-known white matter abnormalities in schizophrenia. Hence, post-mortem brains of ten patients with schizophrenia and ten matched control cases were investigated. Using a direct, 3D-counting technique we morphometrically analyzed the number and density of prohibitin-immunoreactive oligodendroglial cells in the left and right dorsolateral, anterior cingulate, and orbitofrontal cortex white matter. Additionally, we studied the prohibitin expression in different neuronal and non-neuronal cell populations in rat cell cultures. We could confirm the strong expression of prohibitin in oligodendrocytes. Intracellularly, the protein was localized to mitochondria and some cell nuclei. In schizophrenia, the numerical density of prohibitin-expressing oligodendrocytes was significantly increased in the right dorsolateral white matter area. Taking into consideration the dual intracellular localization of prohibitin in oligodendrocyte mitochondria and cell nuclei, one may suggest an involvement of the protein in mitochondrial dysfunction and/or cycle abnormalities in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

3D:

Three dimensional

ACC:

Anterior cingulate cortex

CA:

California

DAPI:

4′,6′-diamidine-2′-phenylindol-dihydrochloride

DLPFC:

Dorsolateral prefrontal cortex

DMEM:

Dulbecco’s Modified Eagle Medium

DSM:

Diagnostic and Statistical Manual of Mental Disorders

FCS:

Fetal calf serum

GFAP:

Glial fibrillary acidic protein

iNOS:

Inducible nitric oxide synthase

MAP2:

Microtubule-associated protein 2

MBP:

Myelin basic protein

OFC:

Orbitofrontal cortex

OL:

Oligodendrocyte(s)/oligodendroglia

Olig2:

Oligodendrocyte transcription factor 2

OLN-93:

Rat oligodendroglia cell line 93

PBS:

Phosphate buffered saline

PFA:

Paraformaldehyde fixation buffer

PSD:

Postsynaptic density

SD:

Standard deviation

References

  • Behan, A. T., Byrne, C., Dunn, M. J., Cagney, G., & Cotter, D. R. (2009). Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry, 14, 601–613.

    Google Scholar 

  • Benes, F. M. (2004). The role of apoptosis in neuronal pathology in schizophrenia and bipolar disorder. Current Opinion in Psychiatry, 17, 189–190.

    Article  Google Scholar 

  • Bernstein, H.-G., Baumann, B., Danos, P., Diekmann, S., Bogerts, B., Gundelfinger, E. D., et al. (1999). Regional and cellular distribution of neural visinin-like protein immunoreactivities (VILIP-1 and VILIP-3) in human brain. Journal of Neurocytology, 28, 655–662.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, H.-G., Smalla, K.-H., Mikhaylova, M., Sahin, J., Bogerts, B., Schmitt, A., et al. (2009a). Emerging roles of prohibitin in schizophrenia: Evidence from human postmortem studies and rat model of psychosis. European Archives of Psychiatry and Clinical Neuroscience, 259(Suppl1), S99.

    Google Scholar 

  • Bernstein, H.-G., Stanarius, A., Baumann, B., Henning, H., Krell, D., Danos, P., et al. (1998). Nitric oxide synthase-containing neurons in the human hypothalamus: Reduced number of immunoreactive cells in the paraventricular nucleus of depressive patients and schizophrenics. Neuroscience, 83, 867–875.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, H.-G., Steiner, J., & Bogerts, B. (2009b). Glial cells in schizophrenia: Pathophysiological significance and possible consequences for therapy. Expert Reviews of Neurotherapeutics, 9, 1059–1071.

    Article  CAS  Google Scholar 

  • Bertram, I., Bernstein, H.-G., Lendeckel, U., Bukowska, A., Dobrowolny, H., Keilhoff, G., et al. (2007). Immunohistochemical evidence for impaired neuregulin-1 signaling in the prefrontal cortex in schizophrenia and in unipolar depression. Annals of the New York Acadamy of Sciences, 1096, 147–156.

    Article  CAS  Google Scholar 

  • Byne, W., Kidkardnee, S., Tatusov, S. A., Yiannoulos, G., Buchsbaum, M. S., & Haroutunian, V. (2006). Schizophrenia-associated reduction of neuronal and oligodendrocyte numbers in the anterior principal thalamic nucleus. Schizophrenia Research, 85, 245–253.

    Article  PubMed  Google Scholar 

  • Clark, D., Dedova, I., & Matsumoto, I. (2011). Proteomics of the anterior cingulate cortex in schizophrenia. Advances in Neurobiology, 2, 381–398.

    Article  Google Scholar 

  • Danos, P., Baumann, B., Krämer, K., Bernstein, H.-G., Stauch, R., Krell, D., et al. (2003). Volumes of association thalamic nuclei in schizophrenia: a postmortem study. Schizophrenia Research, 60, 141–155.

    Article  PubMed  Google Scholar 

  • Davis, K. L., Stewart, D. G., Friedman, J. I., Buchsbaum, M., Harvey, P. D., Hof, P. R., et al. (2003). White matter changes in schizophrenia: evidence for myelin-related dysfunction. Archives of General Psychiatry, 60, 443–456.

    Article  PubMed  Google Scholar 

  • Dean, B., Crook, J. M., Pavey, G., Opeskin, K., & Copolov, D. L. (2000). Muscarinic 1 and 2 receptor mRNA in the human caudate-putamen: no change in m1mRNA in schizophrenia. Molecular Psychiatry, 5, 203–207.

    Article  PubMed  CAS  Google Scholar 

  • DeLisi, L. E., & Fleischhaker, W. (2007). Schizophrenia research in the era of the genome. Current Opinion in Psychiatry, 20, 109–110.

    Article  PubMed  Google Scholar 

  • Dürrschmidt, D., Smalla, K.-H., Kreutz, M. R., Dobrowolny, H., Steiner, J., Keilhoff, G., et al. (2010). Increased oligodendroglial expression of the cell proliferation-controlling protein prohibitin in schizophrenia. A hint for cell cycle abnormalities? Acta Clinica Croatica, 49(Suppl 2), 39–41.

    Google Scholar 

  • Escamilla, M., Hare, E., Dassori, A. M., Peralta, J. M., Ontiveros, A., Nicolini, H., et al. (2009). A schizophrenia gene locus on chromosome 17q21 in a new set of families of Mexican and central american ancestry: evidence from the NIMH Genetics of schizophrenia in latino populations study. American Journal of Psychiatry, 166, 442–449.

    Article  PubMed  Google Scholar 

  • Farkas, N., Lendeckel, U., Dobrowolny, H., Funke, S., Steiner, J., Keilhoff, G., et al. (2010). Reduced density of ADAM 12-immunoreactive oligodendrocytes in the anterior cingulate white matter of patients with schizophrenia. World Journal of Biological Psychiatry, 11, 556–566.

    Article  PubMed  Google Scholar 

  • Fornito, Y., Yücel, M., Wood, S. J., & Pantelis, C. (2009). Anatomical abnormalities of the anterior cingulate cortex in schizophrenia: bridging the gap between neuroimaging and neuropathology. Schizophrenia Bulletin, 35, 973–993.

    Article  PubMed  Google Scholar 

  • Glantz, L. A., Gilmore, J. H., Overstreet, D. H., Salimi, K., Lieberman, J. A., & Jarskog, L. F. (2010). Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophrenia Research, 118, 292–299.

    Article  PubMed  Google Scholar 

  • Govekar, R. B., D’Cruz, A. K., Alok Pathak, K., Agarwal, J., Dinshaw, K. A., Chinoy, R. F., et al. (2009). Proteomic profiling of cancer of the gingivo-buccal complex: Identification of new differentially expressed markers. Proteomics Clinical and Applied, 3, 1451–1462.

    CAS  Google Scholar 

  • Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Acadademy of Sciences of the USA, 98, 4746–4751.

    Article  CAS  Google Scholar 

  • Hamshere, M. L., Holmans, P. A., McCarthy, G. M., Jones, L. A., Murphy, K. C., Sanders, R. D., et al. (2011). Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. American Journal of Medical Genetics Section B Neuropsychiatric Genetics, 156, 929–940.

    Article  CAS  Google Scholar 

  • Hof, P. R., Haroutunian, V., Copland, C., Davis, K. L., & Buxbaum, J. D. (2002). Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochemical Research, 27, 1193–1200.

    Article  PubMed  CAS  Google Scholar 

  • Hof, P. R., Haroutunian, V., Friedrich, V. L., Jr, Byne, W., Buitron, C., Perl, D. P., et al. (2003). Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biological Psychiatry, 53, 1075–1085.

    Article  PubMed  CAS  Google Scholar 

  • Höistad, M., Segal, D., Takahashi, N., Sakurai, T., Buxbaum, J. D., & Hof, P. R. (2009). Linking white and grey matter in schizophrenia: oligodendrcyte and neuron pathology in the prefrontal cortex. Frontiers in Neuroanatomy, 3, 9.

    Article  PubMed  Google Scholar 

  • Hsu, S. M., & Soban, E. (1982). Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. Journal of Histochemistry and Cytochemistry, 30, 1079–1082.

    Article  PubMed  CAS  Google Scholar 

  • Katsel, P., Byne, W., Roussos, P., Tan, W., Siever, L., & Haroutunian, V. (2011). Astrocyte and glutamate markers in the superficial, deep, and white matter layers of the anterior cingulate gyrus in schizophrenia. Neuropsychopharmacology, 36, 1171–1177.

    Article  PubMed  CAS  Google Scholar 

  • Katsel, P., Davis, K. L., Li, C., Tan, W., Greenstein, E., Kleiner Hoffman, L. B., et al. (2008). Abnormal indices of cell cycle activity in schizophrenia and their potential association with oligodendrocytes. Neuropsychopharmacology, 33, 2993–3009.

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick, B., Messias, N. C., Conley, R. R., & Roberts, R. C. (2003). Interstitial cells of the white matter in the dorsolateral prefrontal cortex in deficient and nondeficient schizophrenia. Journal of Nervous and Mental Disease, 191, 563–567.

    Article  PubMed  Google Scholar 

  • Kostović, I., Judaš, M., & Sedmak, G. (2011). Developmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia. International Journal of Developmental Neuroscience, 29, 193–205.

    Article  PubMed  Google Scholar 

  • Kuwamura, M., Inumaki, K., Tanaka, M., Shirai, M., Izawa, T., Yamate, J., et al. (2011). Oligodendroglial pathology in the development of myelin breakdown in the dmy mutant rat. Brain Research, 1389, 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Mai, J. K., Assheuer, J., & Paxinos, G. (2003). Atlas of the Human Brain. San Diego: Academic.

    Google Scholar 

  • Martins-De-Souza, D., Dias-Neto, E., Schmitt, A., Falkai, P., Gormanns, P., Maccarrone, G., et al. (2010). Proteome analysis of schizophrenia brain tissue. World Journal of Biological Psychiatry, 11, 110–120.

    Article  PubMed  Google Scholar 

  • Martins-de-Souza, D., Gattaz, W. F., Schmitt, A., Maccarrone, G., Hunyadi-Gulyás, E., Eberlin, M. N., et al. (2009a). Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. Journal of Psychiatric Research, 43, 978–986.

    Article  PubMed  Google Scholar 

  • Martins-de-Souza, D., Gattaz, W. F., Schmitt, A., Rewerts, C., Maccarrone, G., Dias-Neto, E., et al. (2009b). Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 259, 151–163.

    Article  PubMed  Google Scholar 

  • Merkwirth, C., Dargazanli, S., Tatsuta, T., Geimer, S., Löwer, B., Wunderlich, F. T., et al. (2008). Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes & Development, 22, 476–488.

    Article  CAS  Google Scholar 

  • Mishra, S., Ande, S. R., & Nyomba, B. L. (2010). The role of prohibitin in cell signaling. FEBS Journal, 277, 3937–3946.

    Article  PubMed  CAS  Google Scholar 

  • Mitkus, S. N., Hyde, T. M., Vakkalanka, R., Kolachana, B., Weinberger, D. R., Kleinman, J. E., et al. (2008). Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophrenia Research, 98, 129–138.

    Article  PubMed  Google Scholar 

  • Mitterauer, B. J., & Kofler-Westergren, B. (2011). Possible effects of synaptic imbalances on oligodendrocyte–axonic interactions in schizophrenia: a hypothetical model. Frontiers in Psychiatry, 2, 15. doi:10.3389/fpsyt.2011.00015.

    Article  PubMed  Google Scholar 

  • Novak, G., & Tallerico, T. (2006). Nogo A, B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3′ -UTR. Brain Research, 1120, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Papanastasiou, E., Gaughran, F., & Smith, S. (2011). Schizophrenia as segmental progeria. Journal of the Royal Society of Medicine, 104, 475–484.

    Article  PubMed  Google Scholar 

  • Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T.-J., Griffin, J. L., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Molecular Psychiatry, 9, 684–697.

    Article  PubMed  CAS  Google Scholar 

  • Rezin, G. T., Amboni, G., Zugno, A. I., Quevedo, J., & Streck, E. L. (2009). Mitochondrial dysfunction and psychiatric disorders. Neurochemical Research, 34, 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, A., Hasan, A., Gruber, O., & Falkai, P. (2011). Schizophrenia as a disorder of disconnectivity. European Archives of Psychiatry and Clinical Neuroscience, 261(Suppl 2), 150–154.

    Article  Google Scholar 

  • Schmitt, A., Otto, S., Jatzko, A., Ruf, M., Demirakca, T., Tost, H., et al. (2009a). Parieto-prefrontal dysfunction during visuo-auditory information processing in elderly, chronic schizophrenic patients and medication effects. Revista Psiquiatrica Clinica., 36, 89–96.

    Article  Google Scholar 

  • Schmitt, A., Steyskal, C., Bernstein, H.-G., Schneider-Axmann, T., Parlapani, E., Schaeffer, E. L., et al. (2009b). Stereologic investigation of the posterior part of the hippocampus in schizophrenia. Acta Neuropathologica, 117, 395–407.

    Article  PubMed  Google Scholar 

  • Schubert, K. O., Föcking, M., Prehn, J. H. M. & Cotter, D. R. (2011). Hypothesis review: are clathrin-mediated endocytosis and clathrin-dependent membrane and protein trafficking core pathophysiological processes in schizophrenia and bipolar disorder? Molecular Psychiatry advance online publication 11 Oct 2011; doi:10.1038/mp.2011.123.

  • Segal, D., Koschnick, J. R., Slegers, L. H., & Hof, P. R. (2007). Oligodendrocyte pathophysiology: a new view of schizophrenia. International Journal of Neuropsychopharmacology, 10, 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Selemon, L. D., & Rajkowska, G. (2003) Cellular pathology in the dorsolateral prefrontal cortex distinguishes schizophrenia from bipolar disorder. Curr Mol Med, 60, 69–77.

    Google Scholar 

  • Smalla, K. H., Mikhaylova, M., Sahin, J., Bernstein, H.-G., Bogerts, B., Schmitt, A., et al. (2008). A comparison of the synaptic proteome in human chronic schizophrenia and rat ketamine psychosis suggest that prohibitin is involved in the synaptic pathology of schizophrenia. Molecular Psychiatry., 13, 878–896.

    Article  PubMed  CAS  Google Scholar 

  • Sripathi, S. R., He, W., Atkinson, C. L., Smith, J. J., Liu, Z., Elledge, B. M., et al. (2011). Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress. Biochemistry, 50, 8342–8351.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, J., Bernstein, H.-G., Bogerts, B., Gos, T., Richter-Landsberg, C., Wunderlich, M. T., et al. (2008). S100B is expressed in, and released from, OLN-93 oligodendrocytes: Influence of serum and glucose deprivation. Neuroscience, 154, 496–503.

    Article  PubMed  CAS  Google Scholar 

  • Steiner, J., Mawrin, C., Ziegeler, A., Bielau, H., Ullrich, O., Bernstein, H.-G., et al. (2006). Distribution of HLA-DR positive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathologica, 112, 305–316.

    Article  PubMed  CAS  Google Scholar 

  • Theiss, A. L., & Sitaraman, S. V. (2011). The role and therapeutic potential of prohibitin in disease. Biochimica et Biophysica Acta, 1813, 1137–1143.

    Article  PubMed  CAS  Google Scholar 

  • Uranova, N. A., Orlovskaya, D. D., Vikhreva, O. V., Zimina, I. S., & Rakhmanova, V. I. (2001). Morphometric study of ultrastructural changes in oligodendroglial cells in the postmortem brain in endogenous psychoses. Vestnik Rossiskoy Akadamii Medicinskych Nauk, 7, 42–48.

    Google Scholar 

  • Uranova, N. A., Vostrikov, V. M., Orlovskaya, D. D., & Rachmanova, V. I. (2004). Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophrenia Research, 67, 269–275.

    Article  PubMed  Google Scholar 

  • Walterfang, M., Velakoulis, D., Whitford, T. J., & Pantelis, C. (2011). Understanding aberrant white matter development in schizophrenia: an avenue for therapy? Expert Reviews in Neurotherapeutics, 11, 971–987.

    Article  Google Scholar 

  • Yang, Y., Fung, S. J., Rothwell, A., Tianmei, S., & Weickert, C. S. (2011). Increased interstitial white matter neuron density in the dorsolateral prefrontal cortex of people with schizophrenia. Biological Psychiatry, 69, 63–70.

    Article  PubMed  Google Scholar 

  • Zech, M., Roberts, G. W., Bogerts, B., Crow, T. J., & Polak, J. M. (1986). Neuropeptides in the amygdala of controls, schizophrenics and patients suffering from Huntington’s Chorea: an immunohistochemical study. Acta Neuropathol, 71, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, P., Qian, L., D’Aurelio, M., Cho, S., Wang, G., Manfredi, G., et al. (2012). Prohibitin reduces mitochondrial free radical production and protects brain cells from different injury modalities. Journal of Neuroscience, 35, 583–592.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to kindly thank Prof. Dr. C. Richter-Landsberg (University of Oldenburg, Germany) for providing the OLN-93 cell line.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Gert Bernstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernstein, HG., Smalla, KH., Dürrschmidt, D. et al. Increased Density of Prohibitin-Immunoreactive Oligodendrocytes in the Dorsolateral Prefrontal White Matter of Subjects with Schizophrenia Suggests Extraneuronal Roles for the Protein in the Disease. Neuromol Med 14, 270–280 (2012). https://doi.org/10.1007/s12017-012-8185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8185-y

Keywords

Navigation