Skip to main content

Advertisement

Log in

Beyond Genetics: What Causes Type 1 Diabetes

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is an autoimmune disease resulting from T cell-mediated β cell destruction in the pancreas of genetically susceptible individuals. Extensive familial and population genetic studies uncovered the strong linkage and association between HLA gene variants and T1D. Non-HLA genes have also been associated with T1D, such as INS, CTLA4, and PTPN22. T1D is considered as one of the most heritable common diseases. However, evidence that monozygotic twins have incomplete concordance of disease susceptibility provides convincing proof that environmental factors also play important roles in the pathogenesis of the disease. Environmental factors can induce the alterations of gene expression via epigenetic mechanisms. Epigenetic modifications refer to the alterations in gene expression without changes of the DNA sequence, but instead occur as a result of DNA methylation, histone modifications, and miRNA regulation. Aberrant epigenetic modifications will cause the dysregulation of gene expression, thus leading to a variety of human diseases. There are significant differences in DNA methylation, histone modifications, and miRNA profiling found in T1D patients compared with healthy individuals. Epigenetic modifications contribute to the pathogenesis of T1D mainly by regulating the expression of susceptible genes in T1D. These susceptible genes are involved in antigen presentation (such as HLA), immune tolerance (such as FOXP3 and CTLA4), autoreactive T cell response (such as GAD65), and β cell functions (such as INS). A better understanding of epigenetic mechanisms for regulating susceptible genes of T1D will help identify candidates that target epigenetic pathways to control and/or prevent T1D. Knowledge of epigenetic changes in T1D also provides us with potential biomarkers for diagnosis, prognostication, personalized treatment, and prevention of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stankov K, Benc D, Draskovic D (2013) Genetic and epigenetic factors in etiology of diabetes mellitus type 1. Pediatrics 132(6):1112–1122

    Article  PubMed  Google Scholar 

  2. Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9(5):A355–A365

    Article  PubMed  Google Scholar 

  3. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39(3):481–497

    Article  Google Scholar 

  4. Zhang H, Xia W, Yu Q et al (2008) Increasing incidence of type 1 diabetes in children aged 0-14 years in Harbin, China (1990-2000). Primary Care Diabetes 2(3):121–126

    Article  PubMed  Google Scholar 

  5. Canivell S, Gomis R (2014) Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun Rev 13(4–5):403–407

    Article  CAS  PubMed  Google Scholar 

  6. Hanafusa T, Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab. Jan 2007; 3(1):36–45; quiz 32p following 69.

  7. Pozzilli P, Di Mario U (2001) Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 24(8):1460–1467

    Article  CAS  PubMed  Google Scholar 

  8. Bach JF (1994) Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev 15(4):516–542

    Article  CAS  PubMed  Google Scholar 

  9. Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet. Nov 30 1974; 2(7892):1279–1283.

  10. Eisenbarth GS, Type I (1986) Diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314(21):1360–1368

    Article  CAS  PubMed  Google Scholar 

  11. Steck AK, Dong F, Waugh K et al (2016) Predictors of slow progression to diabetes in children with multiple islet autoantibodies. J Autoimmun 72:113–117

    Article  CAS  PubMed  Google Scholar 

  12. Morran MP, Omenn GS, Pietropaolo M (2008) Immunology and genetics of type 1 diabetes. Mount Sinai J Med , New York 75(4):314–327

    Article  Google Scholar 

  13. Zerif E, Maalem A, Gaudreau S, et al. (2016) Constitutively active Stat 5b signaling confers tolerogenic functions to dendritic cells of NOD mice and halts diabetes progression. Journal of autoimmunity

  14. Hedegaard CJ, Krakauer M, Bendtzen K, Lund H, Sellebjerg F, Nielsen CH (2008) T helper cell type 1 (Th1), Th2 and Th17 responses to myelin basic protein and disease activity in multiple sclerosis. Immunology 125(2):161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Buckner JH, Nepom GT (2016) Obstacles and opportunities for targeting the effector T cell response in type 1 diabetes. J Autoimmun 71:44–50

    Article  CAS  PubMed  Google Scholar 

  16. Wilcox NS, Rui J, Hebrok M, Herold KC (2016) Life and death of beta cells in type 1 diabetes: a comprehensive review. J Autoimmun 71:51–58

    Article  CAS  PubMed  Google Scholar 

  17. Saunders D, Powers AC (2016) Replicative capacity of beta-cells and type 1 diabetes. J Autoimmun 71:59–68

    Article  CAS  PubMed  Google Scholar 

  18. Shao S, He F, Yang Y, Yuan G, Zhang M, Yu X (2012) Th17 cells in type 1 diabetes. Cell Immunol 280(1):16–21

    Article  CAS  PubMed  Google Scholar 

  19. Shevach EM. Certified professionals: CD4(+)CD25(+) suppressor T cells. J Exp Med. Jun 4 2001; 193(11):F41–F46.

  20. Kuhn C, Besancon A, Lemoine S et al (2016) Regulatory mechanisms of immune tolerance in type 1 diabetes and their failures. J Autoimmun 71:69–77

    Article  CAS  PubMed  Google Scholar 

  21. Hamilton-Williams EE, Bergot AS, Reeves PL, Steptoe RJ (2016) Maintenance of peripheral tolerance to islet antigens. J Autoimmun 72:118–125

    Article  CAS  PubMed  Google Scholar 

  22. Hamel Y, Mauvais FX, Pham HP et al (2016) A unique CD8(+) T lymphocyte signature in pediatric type 1 diabetes. J Autoimmun 73:54–63

    Article  CAS  PubMed  Google Scholar 

  23. Kuhn C, Rezende RM, da Cunha AP, et al. (2016) Mucosal administration of CD3-specific monoclonal antibody inhibits diabetes in NOD mice and in a preclinical mouse model transgenic for the CD3 epsilon chain. J Autoimmun. Oct 10

  24. Imagawa A, Hanafusa T, Miyagawa J, Matsuzawa Y. A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM study group. N Engl J Med. Feb 3 2000; 342(5):301–307.

  25. Imagawa A, Hanafusa T, Uchigata Y et al (Aug 2003) Fulminant type 1 diabetes: a nationwide survey in Japan. Diabetes Care 26(8):2345–2352

    Article  PubMed  Google Scholar 

  26. Kotani R, Nagata M, Imagawa A et al (Jul 2004) T lymphocyte response against pancreatic beta cell antigens in fulminant type 1 diabetes. Diabetologia 47(7):1285–1291

    Article  CAS  PubMed  Google Scholar 

  27. Haseda F, Imagawa A, Murase-Mishiba Y, et al. Low CTLA-4 expression in CD4+ helper T-cells in patients with fulminant type 1 diabetes. Immunol Lett. Sep 30 2011; 139(1–2):80–86.

  28. Wang Z, Zheng Y, Hou C et al (2013) DNA methylation impairs TLR9 induced Foxp 3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–59

    Article  PubMed  CAS  Google Scholar 

  29. Groop LC, Bottazzo GF, Doniach D (1986) Islet cell antibodies identify latent type I diabetes in patients aged 35-75 years at diagnosis. Diabetes 35(2):237–241

    Article  CAS  PubMed  Google Scholar 

  30. Brahmkshatriya PP, Mehta AA, Saboo BD, Goyal RK (2012) Characteristics and prevalence of latent autoimmune diabetes in adults (LADA). ISRN Pharmacol 2012:580202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Liu L, Li X, Xiang Y et al (2015) Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China study 3). Diabetes Care 38(1):16–21

    Article  CAS  PubMed  Google Scholar 

  32. Zhou Z, Xiang Y, Ji L et al (2013) Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62(2):543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brooks-Worrell BM, Juneja R, Minokadeh A, Greenbaum CJ, Palmer JP (1999) Cellular immune responses to human islet proteins in antibody-positive type 2 diabetic patients. Diabetes 48(5):983–988

    Article  CAS  PubMed  Google Scholar 

  34. Yang Z, Zhou Z, Huang G et al (2007) The CD4(+) regulatory T-cells is decreased in adults with latent autoimmune diabetes. Diabetes Res Clin Pract 76(1):126–131

    Article  CAS  PubMed  Google Scholar 

  35. Noble JA, Erlich HA (2012) Genetics of type 1 diabetes. Cold Spring Harbor Perspect Med 2(1):a007732

    Article  Google Scholar 

  36. Ounissi-Benkalha H, Polychronakos C (2008) The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 14(6):268–275

    Article  CAS  PubMed  Google Scholar 

  37. Pociot F, Akolkar B, Concannon P et al (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59(7):1561–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomson G, Valdes AM, Noble JA et al (2007) Relative predispositional effects of HLA class II DRB1-DQB1 haplotypes and genotypes on type 1 diabetes: a meta-analysis. Tissue Antigens 70(2):110–127

    Article  CAS  PubMed  Google Scholar 

  39. Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T (2007) Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 77(Suppl 1):S116–S121

    Article  CAS  PubMed  Google Scholar 

  40. Kawabata Y, Ikegami H, Kawaguchi Y et al (2002) Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. Diabetes 51(2):545–551

    Article  CAS  PubMed  Google Scholar 

  41. Zhang XM, Wang HY, Luo YY, Ji LN. HLA-DQ, DR allele polymorphism of type 1 diabetes in the Chinese population: a meta-analysis. Chin Med J. Apr 20 2009; 122(8):980–986.

  42. Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature. Dec 6 2007; 450(7171):887–892.

  43. Morahan G (2012) Insights into type 1 diabetes provided by genetic analyses. Curr Opin Endocrinol, Diabetes, Obes 19(4):263–270

    Article  CAS  Google Scholar 

  44. Kawasaki E, Eguchi K (2006) Genetics of fulminant type 1 diabetes. Ann N Y Acad Sci 1079:24–30

    Article  CAS  PubMed  Google Scholar 

  45. Zheng C, Zhou Z, Yang L et al (2011) Fulminant type 1 diabetes mellitus exhibits distinct clinical and autoimmunity features from classical type 1 diabetes mellitus in Chinese. Diabetes Metab Res Rev 27(1):70–78

    Article  CAS  PubMed  Google Scholar 

  46. Kawasaki E, Imagawa A, Makino H et al (2008) Differences in the contribution of the CTLA4 gene to susceptibility to fulminant and type 1A diabetes in Japanese patients. Diabetes Care 31(8):1608–1610

    Article  PubMed  PubMed Central  Google Scholar 

  47. Desai M, Zeggini E, Horton VA et al (2007) An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 50(1):68–73

    Article  CAS  PubMed  Google Scholar 

  48. Lin J, Zhou ZG, Wang JP, Zhang C, Huang G. From type 1, through LADA, to type 2 diabetes: a continuous spectrum?. Ann N Y Acad Sci. Dec 2008; 1150:99–102.

  49. Howson JM, Rosinger S, Smyth DJ, Boehm BO, Todd JA (2011) Genetic analysis of adult-onset autoimmune diabetes. Diabetes 60(10):2645–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patterson CC, Gyurus E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55(8):2142–2147

    Article  CAS  PubMed  Google Scholar 

  51. Assan R, Perronne C, Assan D et al (1995) Pentamidine-induced derangements of glucose homeostasis. Determinant roles of renal failure and drug accumulation. A study of 128 patients. Diabetes Care 18(1):47–55

    Article  CAS  PubMed  Google Scholar 

  52. Longnecker MP, Daniels JL (2001) Environmental contaminants as etiologic factors for diabetes. Environ Health Perspect 109(Suppl 6):871–876

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wilson GL, Mossman BT, Craighead JE (1983) Use of pancreatic beta cells in culture to identify diabetogenic N-nitroso compounds. In vitro 19(1):25–30

    Article  CAS  PubMed  Google Scholar 

  54. Ebner K, Brewster DW, Matsumura F (1988) Effects of 2, 3,7, 8-tetrachlorodibenzo-p-dioxin on serum insulin and glucose levels in the rabbit. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes 23(5):427–438

    CAS  PubMed  Google Scholar 

  55. Enan E, Matsumura F (1994) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-induced changes in glucose transporting activity in guinea pigs, mice, and rats in vivo and in vitro. J Biochem Toxicol 9(2):97–106

    Article  CAS  PubMed  Google Scholar 

  56. Langer P, Tajtakova M, Guretzki HJ et al (2002) High prevalence of anti-glutamic acid decarboxylase (anti-GAD) antibodies in employees at a polychlorinated biphenyl production factory. Arch Environ Health 57(5):412–415

    Article  CAS  PubMed  Google Scholar 

  57. Hu Y, Jin P, Peng J, Zhang X, Wong FS, Wen L (2016) Different immunological responses to early-life antibiotic exposure affecting autoimmune diabetes development in NOD mice. J Autoimmun 72:47–56

    Article  CAS  PubMed  Google Scholar 

  58. Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW (2002) Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes 3(4):184–188

    Article  PubMed  Google Scholar 

  59. Butalia S, Kaplan GG, Khokhar B, Rabi DM. Environmental Risk Factors and Type 1 Diabetes: Past, Present, and Future. Canadian journal of diabetes. Aug 18 2016.

  60. Sepa A, Ludvigsson J (2006) Psychological stress and the risk of diabetes-related autoimmunity: a review article. Neuroimmunomodulation 13(5–6):301–308

    CAS  PubMed  Google Scholar 

  61. Nielsen PR, Kragstrup TW, Deleuran BW, Benros ME (2016) Infections as risk factor for autoimmune diseases—a nationwide study. J Autoimmun 74:176–181

    Article  PubMed  Google Scholar 

  62. van der Werf N, Kroese FG, Rozing J, Hillebrands JL (2007) Viral infections as potential triggers of type 1 diabetes. Diabetes Metab Res Rev 23(3):169–183

    Article  PubMed  CAS  Google Scholar 

  63. Paun A, Yau C, Danska JS (2016) Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun 71:10–18

    Article  CAS  PubMed  Google Scholar 

  64. Ferris ST, Carrero JA, Unanue ER (2016) Antigen presentation events during the initiation of autoimmune diabetes in the NOD mouse. J Autoimmun 71:19–25

    Article  CAS  PubMed  Google Scholar 

  65. Pearson JA, Wong FS, Wen L (Jan 2016) The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 66:76–88

    Article  CAS  PubMed  Google Scholar 

  66. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. Oct 23 2008; 455(7216):1109–1113.

  67. Peng J, Narasimhan S, Marchesi JR, Benson A, Wong FS, Wen L (2014) Long term effect of gut microbiota transfer on diabetes development. J Autoimmun 53:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Javierre BM, Hernando H, Ballestar E (2011) Environmental triggers and epigenetic deregulation in autoimmune disease. Discov Med 12(67):535–545

    PubMed  Google Scholar 

  69. Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47(2):174–192

    Article  CAS  PubMed  Google Scholar 

  70. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    Article  CAS  PubMed  Google Scholar 

  71. Dang MN, Buzzetti R, Pozzilli P (2013) Epigenetics in autoimmune diseases with focus on type 1 diabetes. Diabetes Metab Res Rev 29(1):8–18

    Article  CAS  PubMed  Google Scholar 

  72. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. Feb 23 2007; 128(4):669–681.

  73. Irizarry RA, Ladd-Acosta C, Wen B et al (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41(2):178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karouzakis E, Gay RE, Michel BA, Gay S, Neidhart M (2009) DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 60(12):3613–3622

    Article  CAS  PubMed  Google Scholar 

  75. Richardson B, Scheinbart L, Strahler J, Gross L, Hanash S, Johnson M (1990) Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum 33(11):1665–1673

    Article  CAS  PubMed  Google Scholar 

  76. Lu Q, Kaplan M, Ray D, Zacharek S, Gutsch D, Richardson B (2002) Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus. Arthritis Rheum 46(5):1282–1291

    Article  CAS  PubMed  Google Scholar 

  77. Lu Q, Wu A, Ray D et al (2003) DNA methylation and chromatin structure regulate T cell perforin gene expression. J Immunol 170(10):5124–5132

    Article  CAS  PubMed  Google Scholar 

  78. Lu Q, Wu A, Richardson BC (2005) Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs. J Immunol 174(10):6212–6219

    Article  CAS  PubMed  Google Scholar 

  79. Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179(9):6352–6358

    Article  CAS  PubMed  Google Scholar 

  80. Takami N, Osawa K, Miura Y et al (2006) Hypermethylated promoter region of DR3, the death. Receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum 54(3):779–787

    Article  CAS  PubMed  Google Scholar 

  81. Nile CJ, Read RC, Akil M, Duff GW, Wilson AG (2008) Methylation status of a single CpG site in the IL6 promoter is related to IL6 messenger RNA levels and rheumatoid arthritis. Arthritis Rheum 58(9):2686–2693

    Article  PubMed  Google Scholar 

  82. Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genet 3:33

    Google Scholar 

  83. Fradin D, Le Fur S, Mille C et al (2012) Association of the CpG methylation pattern of the proximal insulin gene promoter with type 1 diabetes. PLoS One 7(5):e36278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC (2016) Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia 59(5):1021–1029

    Article  CAS  PubMed  Google Scholar 

  85. Fisher MM, Perez Chumbiauca CN, Mather KJ, Mirmira RG, Tersey SA (2013) Detection of islet beta-cell death in vivo by multiplex PCR analysis of differentially methylated DNA. Endocrinology 154(9):3476–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Belot MP, Fradin D, Mai N et al (2013) CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS One 8(7):e68093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Husseiny MI, Kaye A, Zebadua E, Kandeel F, Ferreri K (2014) Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLoS One 9(4):e94591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A 108(47):19018–19023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fisher MM, Watkins RA, Blum J et al (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64(11):3867–3872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Olsen JA, Kenna LA, Spelios MG, Hessner MJ, Akirav EM (2016) Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes. PLoS One 11(4):e0152662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Li Y, Zhao M, Hou C et al (Nov 2011) Abnormal DNA methylation in CD4+ T cells from people with latent autoimmune diabetes in adults. Diabetes Res Clin Pract 94(2):242–248

    Article  CAS  PubMed  Google Scholar 

  92. Marks PA, Xu WS (2009) Histone deacetylase inhibitors: potential in cancer therapy. J Cell Biochem 107(4):600–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brooks WH, Le Dantec C, Pers JO, Youinou P, Renaudineau Y (2010) Epigenetics and autoimmunity. J Autoimmun 34(3):J207–J219

    Article  CAS  PubMed  Google Scholar 

  94. Hu N, Qiu X, Luo Y et al (2008) Abnormal histone modification patterns in lupus CD4+ T cells. J Rheumatol 35(5):804–810

    CAS  PubMed  Google Scholar 

  95. Manabe H, Nasu Y, Komiyama T et al (2008) Inhibition of histone deacetylase down-regulates the expression of hypoxia-induced vascular endothelial growth factor by rheumatoid synovial fibroblasts. Inflamm Res: Off J Eur Histamine Res Soc … [et al.]. 57(1):4–10

    Article  CAS  Google Scholar 

  96. Nishida K, Komiyama T, Miyazawa S et al (2004) Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p 21(WAF1/Cip1) expression. Arthritis Rheum 50(10):3365–3376

    Article  CAS  PubMed  Google Scholar 

  97. Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28(4):177–187

    Article  CAS  PubMed  Google Scholar 

  98. Miao F, Chen Z, Zhang L et al (2012) Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem 287(20):16335–16345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen SS, Jenkins AJ, Majewski H (2009) Elevated plasma prostaglandins and acetylated histone in monocytes in type 1 diabetes patients. Diabet Med: J Bri Diabet Assoc 26(2):182–186

    Article  CAS  Google Scholar 

  100. Skov S, Rieneck K, Bovin LF et al (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101(4):1430–1438

    Article  CAS  PubMed  Google Scholar 

  101. Patel T, Patel V, Singh R, Jayaraman S (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 89(5):640–649

    Article  CAS  PubMed  Google Scholar 

  102. You S, Slehoffer G, Barriot S, Bach JF, Chatenoud L (2004) Unique role of CD4 + CD62L+ regulatory T cells in the control of autoimmune diabetes in T cell receptor transgenic mice. Proc Natl Acad Sci U S A 101(Suppl 2):14580–14585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57(12):3189–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brasacchio D, Okabe J, Tikellis C et al (2009) Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5):1229–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bartel DP (2004) Micro RNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  106. Tomankova T, Petrek M, Gallo J, Kriegova E. Micro RNAs: emerging regulators of immune-mediated diseases. Scandinavian journal of immunology. Oct 11 2011.

  107. Lu Q (2013) The critical importance of epigenetics in autoimmunity. J Autoimmun 41:1–5

    Article  PubMed  CAS  Google Scholar 

  108. Stagakis E, Bertsias G, Verginis P et al (2011) Identification of novel micro RNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann Rheum Dis 70(8):1496–1506

    Article  CAS  PubMed  Google Scholar 

  109. Pan W, Zhu S, Yuan M et al (2010) Micro RNA-21 and micro RNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 184(12):6773–6781

    Article  CAS  PubMed  Google Scholar 

  110. Zhao S, Wang Y, Liang Y et al (2011) Micro RNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63(5):1376–1386

    Article  CAS  PubMed  Google Scholar 

  111. Ding S, Liang Y, Zhao M et al (2012) Decreased micro RNA-142-3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus. Arthritis Rheum 64(9):2953–2963

    Article  CAS  PubMed  Google Scholar 

  112. Tang Y, Luo X, Cui H et al (2009) Micro RNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60(4):1065–1075

    Article  CAS  PubMed  Google Scholar 

  113. Li J, Wan Y, Guo Q et al (2010) Altered micro RNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res Ther 12(3):R81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Zhang Y, Feng ZP, Naselli G et al (2016) Micro RNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J Autoimmun 68:52–61

    Article  CAS  PubMed  Google Scholar 

  115. Zhang Y, Feng ZP, Naselli G et al (2016) Corrigendum to ’Micro RNAs in CD4+ T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes’ [J. Autoimmun. 68C (2016) 52-61]. J Autoimmun 73:130

    Article  PubMed  Google Scholar 

  116. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F (2011) Increased expression of micro RNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27(8):862–866

    Article  CAS  PubMed  Google Scholar 

  117. Salas-Perez F, Codner E, Valencia E, Pizarro C, Carrasco E, Perez-Bravo F (2013) Micro RNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218(5):733–737

    Article  CAS  PubMed  Google Scholar 

  118. Yang M, Ye L, Wang B et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7(2):158–165

    Article  CAS  PubMed  Google Scholar 

  119. Hezova R, Slaby O, Faltejskova P et al (2010) Micro RNA-342, microRNA-191 and micro RNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260(2):70–74

    Article  CAS  PubMed  Google Scholar 

  120. Ruan Q, Wang T, Kameswaran V et al (2011) The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 108(29):12030–12035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roggli E, Britan A, Gattesco S et al (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Roggli E, Gattesco S, Caille D et al (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61(7):1742–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zheng Y, Wang Z, Tu Y et al (2015) miR-101a and miR-30b contribute to inflammatory cytokine-mediated beta-cell dysfunction. Lab Investig; J Techn Methods Pathol 95(12):1387–1397

    Article  CAS  Google Scholar 

  124. Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608

    Article  CAS  PubMed  Google Scholar 

  125. Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362

    PubMed  PubMed Central  Google Scholar 

  126. Alper CA, Husain Z, Larsen CE et al (2006) Incomplete penetrance of susceptibility genes for MHC-determined immunoglobulin deficiencies in monozygotic twins discordant for type 1 diabetes. J Autoimmun 27(2):89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rakyan VK, Beyan H, Down TA et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Stefan M, Zhang W, Concepcion E, Yi Z, Tomer Y (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 50:33–37

    Article  CAS  PubMed  Google Scholar 

  129. Elboudwarej E, Cole M, Briggs FB et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun 68:23–29

    Article  CAS  PubMed  Google Scholar 

  130. Garyu JW, Meffre E, Cotsapas C, Herold KC (2016) Progress and challenges for treating type 1 diabetes. J Autoimmun 71:1–9

    Article  CAS  PubMed  Google Scholar 

  131. Ehlers MR (2016) Strategies for clinical trials in type 1 diabetes. J Autoimmun 71:88–96

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. M. Eric Gershwin for the help with this manuscript. This work was supported by the National Natural Science Foundation of China (Grant Nos. 81300648 and 81170725), Hunan Provincial Natural Science Foundation of China (15JJ3132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Xie, Z., Lu, Q. et al. Beyond Genetics: What Causes Type 1 Diabetes. Clinic Rev Allerg Immunol 52, 273–286 (2017). https://doi.org/10.1007/s12016-016-8592-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-016-8592-1

Keywords

Navigation