Skip to main content

Advertisement

Log in

Biological Modulators in Eosinophilic Diseases

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Eosinophils can regulate local and systemic inflammation, and their presence in higher numbers appears to play an important role in the pathology of various atopic and inflammatory diseases. Eosinophil maturation, recruitment, and survival depend on several cytokine regulators, including interleukin (IL)-5, IL-4, and IL-13 as well as growth factors such as GM-CSF. Over the last decade, the approach to treating eosinophilic diseases has changed greatly. A number of biologic modulators have been developed to target eosinophilic inflammatory pathways, and their usage has resulted in variable clinical improvement in the treatment of eosinophilic-associated conditions. Novel targeted therapies that are safe and effective for treating these disorders are being investigated. This review summarizes the clinical use of biologic agents that have been studied in clinical trials or approved for treating eosinophilic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

mAb:

Monoclonal antibody

HES:

Hypereosinophilic syndrome

CHR:

Complete hematologic response

CMR:

Complete molecular response

CSS:

Churg-Strauss syndrome

EGPA:

Eosinophilic granulomatosis with polyangiitis

NP:

Nasal polyposis

EOE:

Eosinophilic esophagitis

CRTH2:

Chemoattractant receptor homologous molecule expressed on Th2 cells

References

  1. Rothenberg ME, Pomerantz JL, Owen WF Jr, Avraham S, Soberman RJ, Austen KF et al (1988) Characterization of a human eosinophil proteoglycan, and augmentation of its biosynthesis and size by interleukin 3, interleukin 5, and granulocyte/macrophage colony stimulating factor. J Biol Chem 263(27):13901–13908

    CAS  PubMed  Google Scholar 

  2. Sanderson CJ (1992) Interleukin-5, eosinophils, and disease. Blood 79(12):3101–3109

    CAS  PubMed  Google Scholar 

  3. Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P et al (2008) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy J Br Soc Allergy Clin Immunol 38(5):709–750

    Article  CAS  Google Scholar 

  4. Fulkerson PC, Rothenberg ME (2013) Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov 12(2):117–129

    Article  CAS  PubMed  Google Scholar 

  5. Bousquet J, Cabrera P, Berkman N, Buhl R, Holgate S, Wenzel S et al (2005) The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy 60(3):302–308

    Article  CAS  PubMed  Google Scholar 

  6. Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD et al (2001) Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol 108(2):184–190

    Article  CAS  PubMed  Google Scholar 

  7. Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J et al (2011) Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med 154(9):573–582

    Article  PubMed  Google Scholar 

  8. Holgate ST, Chuchalin AG, Hebert J, Lotvall J, Persson GB, Chung KF et al (2004) Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol 34(4):632–638

    Article  CAS  Google Scholar 

  9. Humbert M, Beasley R, Ayres J, Slavin R, Hebert J, Bousquet J et al (2005) Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. Allergy 60(3):309–316

    Article  CAS  PubMed  Google Scholar 

  10. Soler M, Matz J, Townley R, Buhl R, O’Brien J, Fox H et al (2001) The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J 18(2):254–261

    Article  CAS  PubMed  Google Scholar 

  11. Holgate S, Casale T, Wenzel S, Bousquet J, Deniz Y, Reisner C (2005) The anti-inflammatory effects of omalizumab confirm the central role of IgE in allergic inflammation. J Allergy Clin Immunol 115(3):459–465

    Article  CAS  PubMed  Google Scholar 

  12. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A et al (2009) Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med 360(10):973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nair P, Pizzichini MM, Kjarsgaard M, Inman MD, Efthimiadis A, Pizzichini E et al (2009) Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med 360(10):985–993

    Article  CAS  PubMed  Google Scholar 

  14. Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON et al (2012) Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380(9842):651–659

    Article  CAS  PubMed  Google Scholar 

  15. Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L et al (2007) A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med 176(11):1062–1071

    Article  CAS  PubMed  Google Scholar 

  16. Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J et al (2011) Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med 184(10):1125–1132

    Article  CAS  PubMed  Google Scholar 

  17. Kips JC, O’Connor BJ, Langley SJ, Woodcock A, Kerstjens HA, Postma DS et al (2003) Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med 167(12):1655–1659

    Article  PubMed  Google Scholar 

  18. Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R, Katial R et al (2013) Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol 132(5):1086 e5–1096 e5

    Article  PubMed  CAS  Google Scholar 

  19. Wenzel S, Wilbraham D, Fuller R, Getz EB, Longphre M (2007) Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet 370(9596):1422–1431

    Article  CAS  PubMed  Google Scholar 

  20. Corren J, Busse W, Meltzer EO, Mansfield L, Bensch G, Fahrenholz J et al (2010) A randomized, controlled, phase 2 study of AMG 317, an IL-4Ralpha antagonist, in patients with asthma. Am J Respir Crit Care Med 181(8):788–796

    Article  CAS  PubMed  Google Scholar 

  21. Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F et al (2013) Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med 368(26):2455–2466

    Article  CAS  PubMed  Google Scholar 

  22. Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR et al (2011) Lebrikizumab treatment in adults with asthma. N Engl J Med 365(12):1088–1098

    Article  CAS  PubMed  Google Scholar 

  23. Noonan M, Korenblat P, Mosesova S, Scheerens H, Arron JR, Zheng Y et al (2013) Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol 132(3):567 e12–574 e12

    Article  PubMed  CAS  Google Scholar 

  24. Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K et al (2013) A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J 41(2):330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gauvreau GM, Boulet LP, Cockcroft DW, Fitzgerald JM, Carlsten C, Davis BE et al (2011) Effects of interleukin-13 blockade on allergen-induced airway responses in mild atopic asthma. Am J Respir Crit Care Med 183(8):1007–1014

    Article  CAS  PubMed  Google Scholar 

  26. De Boever EH, Ashman C, Cahn AP, Locantore NW, Overend P, Pouliquen IJ et al (2014) Efficacy and safety of an anti-IL-13 mAb in patients with severe asthma: a randomized trial. J Allergy Clin Immunol 133(4):989–996

    Article  PubMed  CAS  Google Scholar 

  27. Gauvreau GM, Boulet LP, Cockcroft DW, Baatjes A, Cote J, Deschesnes F et al (2008) Antisense therapy against CCR3 and the common beta chain attenuates allergen-induced eosinophilic responses. Am J Respir Crit Care Med 177(9):952–958

    Article  CAS  PubMed  Google Scholar 

  28. Neighbour H, Boulet LP, Lemiere C, Sehmi R, Leigh R, Sousa AR et al (2014) Safety and efficacy of an oral CCR3 antagonist in patients with asthma and eosinophilic bronchitis: a randomized, placebo-controlled clinical trial. Clin Exp Allergy J Br Soc Allergy Clin Immunol 44(4):508–516

    Article  CAS  Google Scholar 

  29. Pettipher R, Hunter MG, Perkins CM, Collins LP, Lewis T, Baillet M et al. (2014) Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy

  30. Busse WW, Wenzel SE, Meltzer EO, Kerwin EM, Liu MC, Zhang N et al (2013) Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J Allergy Clin Immunol 131(2):339–345

    Article  CAS  PubMed  Google Scholar 

  31. Beeh KM, Kanniess F, Wagner F, Schilder C, Naudts I, Hammann-Haenni A et al (2013) The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J Allergy Clin Immunol 131(3):866–874

    Article  CAS  PubMed  Google Scholar 

  32. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al (2003) A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348(13):1201–1214

    Article  CAS  PubMed  Google Scholar 

  33. Klion AD, Noel P, Akin C, Law MA, Gilliland DG, Cools J et al (2003) Elevated serum tryptase levels identify a subset of patients with a myeloproliferative variant of idiopathic hypereosinophilic syndrome associated with tissue fibrosis, poor prognosis, and imatinib responsiveness. Blood 101(12):4660–4666

    Article  CAS  PubMed  Google Scholar 

  34. Rothenberg ME, Klion AD, Roufosse FE, Kahn JE, Weller PF, Simon HU et al (2008) Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N Engl J Med 358(12):1215–1228

    Article  CAS  PubMed  Google Scholar 

  35. Roufosse FE, Kahn JE, Gleich GJ, Schwartz LB, Singh AD, Rosenwasser LJ et al (2013) Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J Allergy Clin Immunol 131(2):461 e1-5–467 e1-5

    Article  CAS  Google Scholar 

  36. Klion AD, Law MA, Noel P, Kim YJ, Haverty TP, Nutman TB (2004) Safety and efficacy of the monoclonal anti-interleukin-5 antibody SCH55700 in the treatment of patients with hypereosinophilic syndrome. Blood 103(8):2939–2941

    Article  CAS  PubMed  Google Scholar 

  37. Strati P, Cortes J, Faderl S, Kantarjian H, Verstovsek S (2013) Long-term follow-up of patients with hypereosinophilic syndrome treated with Alemtuzumab, an anti-CD52 antibody. Clin Lymphoma Myeloma Leuk 13(3):287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim S, Marigowda G, Oren E, Israel E, Wechsler ME (2010) Mepolizumab as a steroid-sparing treatment option in patients with Churg-Strauss syndrome. J Allergy Clin Immunol 125(6):1336–1343

    Article  CAS  PubMed  Google Scholar 

  39. Moosig F, Gross WL, Herrmann K, Bremer JP, Hellmich B (2011) Targeting interleukin-5 in refractory and relapsing Churg-Strauss syndrome. Ann Intern Med 155(5):341–343

    Article  PubMed  Google Scholar 

  40. Gevaert P, Calus L, Van Zele T, Blomme K, De Ruyck N, Bauters W et al (2013) Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol 131(1):110 e1–116 e1

    Article  PubMed  CAS  Google Scholar 

  41. Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T, Acke F et al (2011) Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol 128(5):989 e1-8–995 e1-8

    Article  CAS  Google Scholar 

  42. Gevaert P, Lang-Loidolt D, Lackner A, Stammberger H, Staudinger H, Van Zele T et al (2006) Nasal IL-5 levels determine the response to anti-IL-5 treatment in patients with nasal polyps. J Allergy Clin Immunol 118(5):1133–1141

    Article  CAS  PubMed  Google Scholar 

  43. Straumann A, Conus S, Grzonka P, Kita H, Kephart G, Bussmann C et al (2010) Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59(1):21–30

    Article  CAS  PubMed  Google Scholar 

  44. Otani IM, Anilkumar AA, Newbury RO, Bhagat M, Beppu LY, Dohil R et al (2013) Anti-IL-5 therapy reduces mast cell and IL-9 cell numbers in pediatric patients with eosinophilic esophagitis. J Allergy Clin Immunol 131(6):1576–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Assa’ad AH, Gupta SK, Collins MH, Thomson M, Heath AT, Smith DA et al (2011) An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 141(5):1593–1604

    Article  PubMed  CAS  Google Scholar 

  46. Spergel JM, Rothenberg ME, Collins MH, Furuta GT, Markowitz JE, Fuchs G 3rd et al (2012) Reslizumab in children and adolescents with eosinophilic esophagitis: results of a double-blind, randomized, placebo-controlled trial. J Allergy Clin Immunol 129(2):456–463, 63 e1-3

    Article  CAS  PubMed  Google Scholar 

  47. McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM et al (2012) A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med 185(6):612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bousquet J, Chanez P, Lacoste JY, Barneon G, Ghavanian N, Enander I et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323(15):1033–1039

    Article  CAS  PubMed  Google Scholar 

  49. Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P et al (2002) Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet 360(9347):1715–1721

    Article  PubMed  Google Scholar 

  50. Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C, Pizzichini E et al (2006) Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J 27(3):483–494

    Article  CAS  PubMed  Google Scholar 

  51. Holgate ST (2003) The ENFUMOSA cross-sectional European multicentre study of the clinical phenotype of chronic severe asthma. European Network for Understanding Mechanisms of Severe Asthma. Eur Respir J 22(3):470–477

    Article  Google Scholar 

  52. Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA et al (2004) Can guideline-defined asthma control be achieved? The Gaining Optimal Asthma Control study. Am J Respir Crit Care Med 170(8):836–844

    Article  PubMed  Google Scholar 

  53. Chapman KR, Boulet LP, Rea RM, Franssen E (2008) Suboptimal asthma control: prevalence, detection and consequences in general practice. Eur Respir J 31(2):320–325

    Article  CAS  PubMed  Google Scholar 

  54. Bousquet J, Mantzouranis E, Cruz AA, Ait-Khaled N, Baena-Cagnani CE, Bleecker ER et al (2010) Uniform definition of asthma severity, control, and exacerbations: document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol 126(5):926–938

    Article  PubMed  Google Scholar 

  55. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A et al (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127(2):355–360

    Article  PubMed  Google Scholar 

  56. Djukanovic R, Wilson SJ, Kraft M, Jarjour NN, Steel M, Chung KF et al (2004) Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am J Respir Crit Care Med 170(6):583–593

    Article  PubMed  Google Scholar 

  57. van Rensen EL, Evertse CE, van Schadewijk WA, van Wijngaarden S, Ayre G, Mauad T et al (2009) Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy 64(1):72–80

    Article  PubMed  Google Scholar 

  58. Holgate S, Smith N, Massanari M, Jimenez P (2009) Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy 64(12):1728–1736

    Article  CAS  PubMed  Google Scholar 

  59. Casale TB, Bernstein IL, Busse WW, LaForce CF, Tinkelman DG, Stoltz RR et al (1997) Use of an anti-IgE humanized monoclonal antibody in ragweed-induced allergic rhinitis. J Allergy Clin Immunol 100(1):110–121

    Article  CAS  PubMed  Google Scholar 

  60. MacGlashan DW Jr, Bochner BS, Adelman DC, Jardieu PM, Togias A, McKenzie-White J et al (1997) Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J Immunol 158(3):1438–1445

    CAS  PubMed  Google Scholar 

  61. Prussin C, Griffith DT, Boesel KM, Lin H, Foster B, Casale TB (2003) Omalizumab treatment downregulates dendritic cell FcepsilonRI expression. J Allergy Clin Immunol 112(6):1147–1154

    Article  CAS  PubMed  Google Scholar 

  62. Nadeau KC, Schneider LC, Hoyte L, Borras I, Umetsu DT (2011) Rapid oral desensitization in combination with omalizumab therapy in patients with cow’s milk allergy. J Allergy Clin Immunol 127(6):1622–1624

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schneider LC, Rachid R, LeBovidge J, Blood E, Mittal M, Umetsu DT (2013) A pilot study of omalizumab to facilitate rapid oral desensitization in high-risk peanut-allergic patients. J Allergy Clin Immunol 132(6):1368–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Casale TB, Busse WW, Kline JN, Ballas ZK, Moss MH, Townley RG et al (2006) Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J Allergy Clin Immunol 117(1):134–140

    Article  CAS  PubMed  Google Scholar 

  65. Klunker S, Saggar LR, Seyfert-Margolis V, Asare AL, Casale TB, Durham SR et al (2007) Combination treatment with omalizumab and rush immunotherapy for ragweed-induced allergic rhinitis: inhibition of IgE-facilitated allergen binding. J Allergy Clin Immunol 120(3):688–695

    Article  CAS  PubMed  Google Scholar 

  66. Kopp MV, Hamelmann E, Zielen S, Kamin W, Bergmann KC, Sieder C et al (2009) Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol 39(2):271–279

    Article  CAS  Google Scholar 

  67. Massanari M, Nelson H, Casale T, Busse W, Kianifard F, Geba GP et al (2010) Effect of pretreatment with omalizumab on the tolerability of specific immunotherapy in allergic asthma. J Allergy Clin Immunol 125(2):383–389

    Article  CAS  PubMed  Google Scholar 

  68. Galera C, Soohun N, Zankar N, Caimmi S, Gallen C, Demoly P (2009) Severe anaphylaxis to bee venom immunotherapy: efficacy of pretreatment and concurrent treatment with omalizumab. J Investig Allergol Clin Immunol 19(3):225–229

    CAS  PubMed  Google Scholar 

  69. Vashisht P, Casale T (2013) Omalizumab for treatment of allergic rhinitis. Expert Opin Biol Ther 13(6):933–945

    Article  CAS  PubMed  Google Scholar 

  70. Iyengar SR, Hoyte EG, Loza A, Bonaccorso S, Chiang D, Umetsu DT et al (2013) Immunologic effects of omalizumab in children with severe refractory atopic dermatitis: a randomized, placebo-controlled clinical trial. Int Arch Allergy Immunol 162(1):89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jat KR, Walia DK, Khairwa A (2013) Anti-IgE therapy for allergic bronchopulmonary aspergillosis in people with cystic fibrosis. Cochrane Database Syst Rev 9, CD010288

    PubMed  Google Scholar 

  72. Tanou K, Zintzaras E, Kaditis AG (2014) Omalizumab therapy for allergic bronchopulmonary aspergillosis in children with cystic fibrosis: a synthesis of published evidence. Pediatr Pulmonol 49(5):503–507

    Article  PubMed  Google Scholar 

  73. Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF et al (2013) Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med 187(8):804–811

    Article  CAS  PubMed  Google Scholar 

  74. Huang YC, Leyko B, Frieri M (2005) Effects of omalizumab and budesonide on markers of inflammation in human bronchial epithelial cells. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol 95(5):443–451

    Article  CAS  Google Scholar 

  75. Zietkowski Z, Skiepko R, Tomasiak-Lozowska MM, Bodzenta-Lukaszyk A (2010) Anti-IgE therapy with omalizumab decreases endothelin-1 in exhaled breath condensate of patients with severe persistent allergic asthma. Respir Int Rev Thorac Dis 80(6):534–542

    CAS  Google Scholar 

  76. Pelaia G, Vatrella A, Maselli R (2012) The potential of biologics for the treatment of asthma. Nat Rev Drug Discov 11(12):958–972

    Article  CAS  PubMed  Google Scholar 

  77. Korn S, Haasler I, Fliedner F, Becher G, Strohner P, Staatz A et al (2012) Monitoring free serum IgE in severe asthma patients treated with omalizumab. Respir Med 106(11):1494–1500

    Article  PubMed  Google Scholar 

  78. Massanari M, Holgate ST, Busse WW, Jimenez P, Kianifard F, Zeldin R (2010) Effect of omalizumab on peripheral blood eosinophilia in allergic asthma. Respir Med 104(2):188–196

    Article  CAS  PubMed  Google Scholar 

  79. Barnes PJ (2012) Severe asthma: advances in current management and future therapy. J Allergy Clin Immunol 129(1):48–59

    Article  CAS  PubMed  Google Scholar 

  80. Bousquet J, Siergiejko Z, Swiebocka E, Humbert M, Rabe KF, Smith N et al (2011) Persistency of response to omalizumab therapy in severe allergic (IgE-mediated) asthma. Allergy 66(5):671–678

    Article  CAS  PubMed  Google Scholar 

  81. Dal Negro RW, Tognella S, Pradelli L (2012) A 36-month study on the cost/utility of add-on omalizumab in persistent difficult-to-treat atopic asthma in Italy. J Asthma Off J Assoc Care Asthma 49(8):843–848

    Article  CAS  Google Scholar 

  82. Corren J, Casale TB, Lanier B, Buhl R, Holgate S, Jimenez P (2009) Safety and tolerability of omalizumab. Clin Exp Allergy J Br Soc Allergy Clin Immunol 39(6):788–797

    Article  CAS  Google Scholar 

  83. Rodrigo GJ, Neffen H, Castro-Rodriguez JA (2011) Efficacy and safety of subcutaneous omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest 139(1):28–35

    Article  CAS  PubMed  Google Scholar 

  84. Milgrom H, Fowler-Taylor A, Vidaurre CF, Jayawardene S (2011) Safety and tolerability of omalizumab in children with allergic (IgE-mediated) asthma. Curr Med Res Opin 27(1):163–169

    Article  CAS  PubMed  Google Scholar 

  85. Braunstahl GJ, Chen CW, Maykut R, Georgiou P, Peachey G, Bruce J (2013) The eXpeRience registry: the ‘real-world’ effectiveness of omalizumab in allergic asthma. Respir Med 107(8):1141–1151

    Article  PubMed  Google Scholar 

  86. Cox L, Platts-Mills TA, Finegold I, Schwartz LB, Simons FE, Wallace DV et al (2007) American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force Report on omalizumab-associated anaphylaxis. J Allergy Clin Immunol 120(6):1373–1377

    Article  CAS  PubMed  Google Scholar 

  87. Sampson HA, Munoz-Furlong A, Campbell RL, Adkinson NF Jr, Bock SA, Branum A et al (2006) Second symposium on the definition and management of anaphylaxis: summary report—Second National Institute of Allergy and Infectious Disease/Food Allergy and Anaphylaxis Network symposium. J Allergy Clin Immunol 117(2):391–397

    Article  PubMed  Google Scholar 

  88. Cox L, Lieberman P, Wallace D, Simons FE, Finegold I, Platts-Mills T et al (2011) American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma & Immunology Omalizumab-Associated Anaphylaxis Joint Task Force follow-up report. J Allergy Clin Immunol 128(1):210–212

    Article  PubMed  Google Scholar 

  89. Fernandez C, Busse W, Reisner C, Gupta N (2005) Clinical data do not suggest a causal relationship between omalizumab therapy and cancer. Proc Am Thorac Soc 2:A359

    Google Scholar 

  90. Busse W, Buhl R, Fernandez Vidaurre C, Blogg M, Zhu J, Eisner MD et al (2012) Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol 129(4):983 e6–989 e6

    Article  PubMed  CAS  Google Scholar 

  91. Long A, Rahmaoui A, Rothman KJ, Guinan E, Eisner M, Bradley MS et al. (2014) Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol (in press)

  92. Lanier B, Bridges T, Kulus M, Taylor AF, Berhane I, Vidaurre CF (2009) Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. J Allergy Clin Immunol 124(6):1210–1216

    Article  CAS  PubMed  Google Scholar 

  93. Baena-Cagnani CE, Gomez RM (2014) Current status of therapy with omalizumab in children. Curr Opin Allergy Clin Immunol 14(2):149–154

    Article  CAS  PubMed  Google Scholar 

  94. Burch J, Griffin S, McKenna C, Walker S, Paton J, Wright K et al (2012) Omalizumab for the treatment of severe persistent allergic asthma in children aged 6–11 years: a NICE single technology appraisal. PharmacoEconomics 30(11):991–1004

    Article  PubMed  Google Scholar 

  95. Rothenberg ME, Hogan SP (2006) The eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  96. Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM et al (2000) Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356(9248):2144–2148

    Article  CAS  PubMed  Google Scholar 

  97. Plotz SG, Simon HU, Darsow U, Simon D, Vassina E, Yousefi S et al (2003) Use of an anti-interleukin-5 antibody in the hypereosinophilic syndrome with eosinophilic dermatitis. N Engl J Med 349(24):2334–2339

    Article  PubMed  Google Scholar 

  98. Garrett JK, Jameson SC, Thomson B, Collins MH, Wagoner LE, Freese DK et al (2004) Anti-interleukin-5 (mepolizumab) therapy for hypereosinophilic syndromes. J Allergy Clin Immunol 113(1):115–119

    Article  CAS  PubMed  Google Scholar 

  99. Wenzel SE (2009) Eosinophils in asthma—closing the loop or opening the door? N Engl J Med 360(10):1026–1028

    Article  CAS  PubMed  Google Scholar 

  100. Hashimoto S, Bel EH (2012) Targeting IL-5 in severe asthma: a DREAM come true? Lancet 380(9842):626–627

    Article  PubMed  Google Scholar 

  101. Gleich GJ (2009) Anti-interleukin-5 therapy and severe asthma. N Engl J Med 360(24):2577, author reply 8

    CAS  PubMed  Google Scholar 

  102. Stein ML, Villanueva JM, Buckmeier BK, Yamada Y, Filipovich AH, Assa’ad AH et al (2008) Anti-IL-5 (mepolizumab) therapy reduces eosinophil activation ex vivo and increases IL-5 and IL-5 receptor levels. J Allergy Clin Immunol 121(6):1473–1483, 83 e1-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Haldar P, Brightling CE, Singapuri A, Hargadon B, Gupta S, Monteiro W et al (2014) Outcomes after cessation of mepolizumab therapy in severe eosinophilic asthma: a 12-month follow-up analysis. J Allergy Clin Immunol 133(3):921–923

    Article  CAS  PubMed  Google Scholar 

  104. Kim YJ, Prussin C, Martin B, Law MA, Haverty TP, Nutman TB et al (2004) Rebound eosinophilia after treatment of hypereosinophilic syndrome and eosinophilic gastroenteritis with monoclonal anti-IL-5 antibody SCH55700. J Allergy Clin Immunol 114(6):1449–1455

    Article  CAS  PubMed  Google Scholar 

  105. Koike M, Nakamura K, Furuya A, Iida A, Anazawa H, Takatsu K et al (2009) Establishment of humanized anti-interleukin-5 receptor alpha chain monoclonal antibodies having a potent neutralizing activity. Hum Antibodies 18(1–2):17–27

    CAS  PubMed  Google Scholar 

  106. Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK, Damschroder MM et al (2010) MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J Allergy Clin Immunol 125(6):1344 e2–1353 e2

    Article  PubMed  CAS  Google Scholar 

  107. Wechsler ME, Fulkerson PC, Bochner BS, Gauvreau GM, Gleich GJ, Henkel T et al (2012) Novel targeted therapies for eosinophilic disorders. J Allergy Clin Immunol 130(3):563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R et al (2010) Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol 125(6):1237 e2–1244 e2

    Article  PubMed  CAS  Google Scholar 

  109. Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202:175–190

    Article  CAS  PubMed  Google Scholar 

  110. Chatila TA (2004) Interleukin-4 receptor signaling pathways in asthma pathogenesis. Trends Mol Med 10(10):493–499

    Article  CAS  PubMed  Google Scholar 

  111. Getz EB, Fisher DM, Fuller R (2009) Human pharmacokinetics/pharmacodynamics of an interleukin-4 and interleukin-13 dual antagonist in asthma. J Clin Pharmacol 49:1025–1036

    Article  CAS  Google Scholar 

  112. Wenzel SE, Ind PW, Otulana BA, Bleecker ER, Kuna P, Yen YP (2010) Inhaled pitrakinra, an IL-4/IL-13 antagonist, reduced exacerbations in patients with eosinophilic asthma. Eur Respir J Suppl 36:P3982

    Google Scholar 

  113. Wenzel SE, Ind PW, Otulana BA, Bowden A, Puthukkerial S, Tomkinson A (2011) A phase 2b study of inhaled pitrakinra, an Il-4/Il-13 antagonist, successfully identified responder subpopulations of patient with uncontrolled asthma. Am J Respir Crit Care Med 183:A6179

    Google Scholar 

  114. Slager RE, Otulana BA, Hawkins GA, Yen YP, Peters SP, Wenzel SE et al (2012) IL-4 receptor polymorphisms predict reduction in asthma exacerbations during response to an anti-IL-4 receptor alpha antagonist. J Allergy Clin Immunol 130(2):516 e4–522 e4

    Article  PubMed  CAS  Google Scholar 

  115. Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111(4):677–690, quiz 91

    Article  CAS  PubMed  Google Scholar 

  116. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J et al (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103(6):779–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Spahn JD, Szefler SJ, Surs W, Doherty DE, Nimmagadda SR, Leung DY (1996) A novel action of IL-13: induction of diminished monocyte glucocorticoid receptor-binding affinity. J Immunol 157(6):2654–2659

    CAS  PubMed  Google Scholar 

  118. Kraft M, Hamid Q, Chrousos GP, Martin RJ, Leung DY (2001) Decreased steroid responsiveness at night in nocturnal asthma. Is the macrophage responsible? Am J Respir Crit Care Med 163(5):1219–1225

    Article  CAS  PubMed  Google Scholar 

  119. Saha SK, Berry MA, Parker D, Siddiqui S, Morgan A, May R et al (2008) Increased sputum and bronchial biopsy IL-13 expression in severe asthma. J Allergy Clin Immunol 121(3):685–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jia G, Erickson RW, Choy DF, Mosesova S, Wu LC, Solberg OD et al (2012) Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol 130(3):647 e10–654 e10

    Article  PubMed  CAS  Google Scholar 

  121. Kanemitsu Y, Matsumoto H, Izuhara K, Tohda Y, Kita H, Horiguchi T et al (2013) Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol 132(2):305 e3–312 e3

    Article  PubMed  CAS  Google Scholar 

  122. Gotlib J (2014) World Health Organization-defined eosinophilic disorders: 2014 update on diagnosis, risk stratification, and management. Am J Hematol 89(3):325–337

    Article  CAS  PubMed  Google Scholar 

  123. Klion AD, Bochner BS, Gleich GJ, Nutman TB, Rothenberg ME, Simon HU et al (2006) Approaches to the treatment of hypereosinophilic syndromes: a workshop summary report. J Allergy Clin Immunol 117(6):1292–1302

    Article  PubMed  Google Scholar 

  124. Ogbogu PU, Bochner BS, Butterfield JH, Gleich GJ, Huss-Marp J, Kahn JE et al (2009) Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J Allergy Clin Immunol 124(6):1319 e3–1325 e3

    Article  PubMed  CAS  Google Scholar 

  125. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037

    Article  CAS  PubMed  Google Scholar 

  126. Schaller JL, Burkland GA (2001) Case report: rapid and complete control of idiopathic hypereosinophilia with imatinib mesylate. Med Gen Med 3(5):9

    CAS  Google Scholar 

  127. Ault P, Cortes J, Koller C, Kaled ES, Kantarjian H (2002) Response of idiopathic hypereosinophilic syndrome to treatment with imatinib mesylate. Leuk Res 26(9):881–884

    Article  CAS  PubMed  Google Scholar 

  128. Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH (2002) Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 359(9317):1577–1578

    Article  CAS  PubMed  Google Scholar 

  129. Pardanani A, Reeder T, Porrata LF, Li CY, Tazelaar HD, Baxter EJ et al (2003) Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood 101(9):3391–3397

    Article  CAS  PubMed  Google Scholar 

  130. Cortes J, Ault P, Koller C, Thomas D, Ferrajoli A, Wierda W et al (2003) Efficacy of imatinib mesylate in the treatment of idiopathic hypereosinophilic syndrome. Blood 101(12):4714–4716

    Article  CAS  PubMed  Google Scholar 

  131. Griffin JH, Leung J, Bruner RJ, Caligiuri MA, Briesewitz R (2003) Discovery of a fusion kinase in EOL-1 cells and idiopathic hypereosinophilic syndrome. Proc Natl Acad Sci U S A 100(13):7830–7835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Klion AD, Robyn J, Akin C, Noel P, Brown M, Law M et al (2004) Molecular remission and reversal of myelofibrosis in response to imatinib mesylate treatment in patients with the myeloproliferative variant of hypereosinophilic syndrome. Blood 103(2):473–478

    Article  CAS  PubMed  Google Scholar 

  133. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S et al (2007) The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica 92(9):1173–1179

    Article  CAS  PubMed  Google Scholar 

  134. Jovanovic JV, Score J, Waghorn K, Cilloni D, Gottardi E, Metzgeroth G et al (2007) Low-dose imatinib mesylate leads to rapid induction of major molecular responses and achievement of complete molecular remission in FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 109(11):4635–4640

    Article  CAS  PubMed  Google Scholar 

  135. Legrand F, Renneville A, Macintyre E, Mastrilli S, Ackermann F, Cayuela JM et al. (2013) The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine

  136. Pardanani A, D’Souza A, Knudson RA, Hanson CA, Ketterling RP, Tefferi A (2012) Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia: survival and clinical outcome. Leukemia 26(11):2439–2441

    Article  CAS  PubMed  Google Scholar 

  137. Helbig G, Stella-Holowiecka B, Majewski M, Calbecka M, Gajkowska J, Klimkiewicz R et al (2008) A single weekly dose of imatinib is sufficient to induce and maintain remission of chronic eosinophilic leukaemia in FIP1L1-PDGFRA-expressing patients. Br J Haematol 141(2):200–204

    Article  CAS  PubMed  Google Scholar 

  138. Klion AD, Robyn J, Maric I, Fu W, Schmid L, Lemery S et al (2007) Relapse following discontinuation of imatinib mesylate therapy for FIP1L1/PDGFRA-positive chronic eosinophilic leukemia: implications for optimal dosing. Blood 110(10):3552–3556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hochhaus A, La Rosee P (2004) Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia 18(8):1321–1331

    Article  CAS  PubMed  Google Scholar 

  140. Pardanani A, Ketterling RP, Li CY, Patnaik MM, Wolanskyj AP, Elliott MA et al (2006) FIP1L1-PDGFRA in eosinophilic disorders: prevalence in routine clinical practice, long-term experience with imatinib therapy, and a critical review of the literature. Leuk Res 30(8):965–970

    Article  CAS  PubMed  Google Scholar 

  141. Klion AD (2009) How I, treat hypereosinophilic syndromes. Blood 114(18):3736–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J (2005) Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 19(2):286–287

    Article  CAS  Google Scholar 

  143. Ohnishi H, Kandabashi K, Maeda Y, Kawamura M, Watanabe T (2006) Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from Langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 134(5):547–549

    Article  CAS  PubMed  Google Scholar 

  144. Pardanani A, Ketterling RP, Brockman SR, Flynn HC, Paternoster SF, Shearer BM et al (2003) CHIC2 deletion, a surrogate for FIP1L1-PDGFRA fusion, occurs in systemic mastocytosis associated with eosinophilia and predicts response to imatinib mesylate therapy. Blood 102(9):3093–3096

    Article  CAS  PubMed  Google Scholar 

  145. Pitini V, Arrigo C, Azzarello D, La Gattuta G, Amata C, Righi M et al (2003) Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood 102(9):3456–3457, author reply 7

    Article  CAS  PubMed  Google Scholar 

  146. Verstovsek S, Tefferi A, Kantarjian H, Manshouri T, Luthra R, Pardanani A et al (2009) Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res Off J Am Assoc Cancer Res 15(1):368–373

    Article  CAS  Google Scholar 

  147. Schnabel A, Csernok E, Braun J, Gross WL (1999) Inflammatory cells and cellular activation in the lower respiratory tract in Churg-Strauss syndrome. Thorax 54(9):771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kahn JE, Grandpeix-Guyodo C, Marroun I, Catherinot E, Mellot F, Roufosse F et al (2010) Sustained response to mepolizumab in refractory Churg-Strauss syndrome. J Allergy Clin Immunol 125(1):267–270

    Article  CAS  PubMed  Google Scholar 

  149. Bachert C, Vignola AM, Gevaert P, Leynaert B, Van Cauwenberge P, Bousquet J (2004) Allergic rhinitis, rhinosinusitis, and asthma: one airway disease. Immunol Allergy Clin N Am 24(1):19–43

    Article  Google Scholar 

  150. Bachert C, Gevaert P, Holtappels G, Johansson SG, van Cauwenberge P (2001) Total and specific IgE in nasal polyps is related to local eosinophilic inflammation. J Allergy Clin Immunol 107(4):607–614

    Article  CAS  PubMed  Google Scholar 

  151. Fokkens W, Lund V, Mullol J (2007) European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl (20):1–136

  152. Van Zele T, Gevaert P, Watelet JB, Claeys G, Holtappels G, Claeys C et al (2004) Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. J Allergy Clin Immunol 114(4):981–983

    Article  PubMed  CAS  Google Scholar 

  153. Bateman ND, Shahi A, Feeley KM, Woolford TJ (2005) Activated eosinophils in nasal polyps: a comparison of asthmatic and non-asthmatic patients. Clin Otolaryngol Off J ENT-UK Off J Neth Soc Otorhinolaryngol Cervicofac Surg 30(3):221–225

    CAS  Google Scholar 

  154. Bachert C, Zhang N, Holtappels G, De Lobel L, van Cauwenberge P, Liu S et al (2010) Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. J Allergy Clin Immunol 126(5):962–968, 8 e1-6

    Article  CAS  PubMed  Google Scholar 

  155. Pinto JM, Mehta N, DiTineo M, Wang J, Baroody FM, Naclerio RM (2010) A randomized, double-blind, placebo-controlled trial of anti-IgE for chronic rhinosinusitis. Rhinology 48(3):318–324

    CAS  PubMed  Google Scholar 

  156. Liacouras CA, Furuta GT, Hirano I, Atkins D, Attwood SE, Bonis PA et al (2011) Eosinophilic esophagitis: updated consensus recommendations for children and adults. J Allergy Clin Immunol 128(1):3 e6–20 e6, quiz 1–2

    Article  PubMed  Google Scholar 

  157. Abonia JP, Rothenberg ME (2012) Eosinophilic esophagitis: rapidly advancing insights. Annu Rev Med 63:421–434

    Article  CAS  PubMed  Google Scholar 

  158. Jyonouchi S, Brown-Whitehorn TA, Spergel JM (2009) Association of eosinophilic gastrointestinal disorders with other atopic disorders. Immunol Allergy Clin N Am 29(1):85–97

    Article  Google Scholar 

  159. Blanchard C, Wang N, Stringer KF, Mishra A, Fulkerson PC, Abonia JP et al (2006) Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J Clin Invest 116(2):536–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Blanchard C, Stucke EM, Rodriguez-Jimenez B, Burwinkel K, Collins MH, Ahrens A et al (2011) A striking local esophageal cytokine expression profile in eosinophilic esophagitis. J Allergy Clin Immunol 127(1):208–217, 17 e1-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Stein ML, Collins MH, Villanueva JM, Kushner JP, Putnam PE, Buckmeier BK et al (2006) Anti-IL-5 (mepolizumab) therapy for eosinophilic esophagitis. J Allergy Clin Immunol 118(6):1312–1319

    Article  CAS  PubMed  Google Scholar 

  162. Pentiuk S, Putnam PE, Collins MH, Rothenberg ME (2009) Dissociation between symptoms and histological severity in pediatric eosinophilic esophagitis. J Pediatr Gastroenterol Nutr 48(2):152–160

    Article  PubMed  PubMed Central  Google Scholar 

  163. Dohil R, Newbury R, Fox L, Bastian J, Aceves S (2010) Oral viscous budesonide is effective in children with eosinophilic esophagitis in a randomized, placebo-controlled trial. Gastroenterology 139(2):418–429

    Article  CAS  PubMed  Google Scholar 

  164. Fulkerson PC, Fischetti CA, McBride ML, Hassman LM, Hogan SP, Rothenberg ME (2006) A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc Natl Acad Sci U S A 103(44):16418–16423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Waddell A, Ahrens R, Steinbrecher K, Donovan B, Rothenberg ME, Munitz A et al (2011) Colonic eosinophilic inflammation in experimental colitis is mediated by Ly6C(high) CCR2(+) inflammatory monocyte/macrophage-derived CCL11. J Immunol 186(10):5993–6003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Justice JP, Borchers MT, Crosby JR, Hines EM, Shen HH, Ochkur SI et al (2003) Ablation of eosinophils leads to a reduction of allergen-induced pulmonary pathology. Am J Physiol Lung Cell Mol Physiol 284(1):L169–L178

    Article  CAS  PubMed  Google Scholar 

  167. Komai M, Tanaka H, Nagao K, Ishizaki M, Kajiwara D, Miura T et al (2010) A novel CC-chemokine receptor 3 antagonist, Ki19003, inhibits airway eosinophilia and subepithelial/peribronchial fibrosis induced by repeated antigen challenge in mice. J Pharmacol Sci 112(2):203–213

    Article  CAS  PubMed  Google Scholar 

  168. Royer JF, Schratl P, Lorenz S, Kostenis E, Ulven T, Schuligoi R et al (2007) A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst. Allergy 62(12):1401–1409

    Article  CAS  PubMed  Google Scholar 

  169. Schratl P, Royer JF, Kostenis E, Ulven T, Sturm EM, Waldhoer M et al (2007) The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking. J Immunol 179(7):4792–4799

    Article  CAS  PubMed  Google Scholar 

  170. Sugimoto H, Shichijo M, Iino T, Manabe Y, Watanabe A, Shimazaki M et al (2003) An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J Pharmacol Exp Ther 305(1):347–352

    Article  CAS  PubMed  Google Scholar 

  171. Schuligoi R, Sturm E, Luschnig P, Konya V, Philipose S, Sedej M et al (2010) CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases. Pharmacology 85(6):372–382

    Article  CAS  PubMed  Google Scholar 

  172. Barnes N, Pavord I, Chuchalin A, Bell J, Hunter M, Lewis T et al (2012) A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol 42(1):38–48

    Article  CAS  Google Scholar 

  173. Straumann A, Hoesli S, Bussmann C, Stuck M, Perkins M, Collins LP et al (2013) Anti-eosinophil activity and clinical efficacy of the CRTH2 antagonist OC000459 in eosinophilic esophagitis. Allergy 68(3):375–385

    Article  CAS  PubMed  Google Scholar 

  174. Nutku E, Aizawa H, Hudson SA, Bochner BS (2003) Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 101(12):5014–5020

    Article  CAS  PubMed  Google Scholar 

  175. Verjan Garcia N, Umemoto E, Saito Y, Yamasaki M, Hata E, Matozaki T et al (2011) SIRPalpha/CD172a regulates eosinophil homeostasis. J Immunol 187(5):2268–2277

    Article  CAS  PubMed  Google Scholar 

  176. Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS (2012) Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther 135(3):327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zimmermann N, McBride ML, Yamada Y, Hudson SA, Jones C, Cromie KD et al (2008) Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy 63(9):1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Munitz A, Bachelet I, Levi-Schaffer F (2006) Reversal of airway inflammation and remodeling in asthma by a bispecific antibody fragment linking CCR3 to CD300a. J Allergy Clin Immunol 118(5):1082–1089

    Article  CAS  PubMed  Google Scholar 

  179. Casale TB, Stokes JR (2011) Future forms of immunotherapy. J Allergy Clin Immunol 127(1):8–15, quiz 6–7

    Article  PubMed  Google Scholar 

  180. Senti G, Johansen P, Haug S, Bull C, Gottschaller C, Muller P et al (2009) Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: a phase I/IIa clinical trial. Clin Exp Allergy J Br Soc Allergy Clin Immunol 39(4):562–570

    Article  CAS  Google Scholar 

  181. Klimek L, Willers J, Hammann-Haenni A, Pfaar O, Stocker H, Mueller P et al (2011) Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: a phase IIb study. Clin Exp Allergy J Br Soc Allergy Clin Immunol 41(9):1305–1312

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jane Carver for reviewing this manuscript.

Conflict of Interest

Panida Sriaroon and Mark Ballow declare that they have no conflict of interest relevant to the topic discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panida Sriaroon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriaroon, P., Ballow, M. Biological Modulators in Eosinophilic Diseases. Clinic Rev Allerg Immunol 50, 252–272 (2016). https://doi.org/10.1007/s12016-014-8444-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8444-9

Keywords

Navigation