Skip to main content

Advertisement

Log in

The Role of Stem Cell DNA Methylation in Colorectal Carcinogenesis

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Stems cells of the colon crypt are the origin of colon mature cells. Colorectal cancer cells are also suggested to originate from crypt stem cells undergoing a series of epigenetic and genetic alterations. Aberrant methylation plays important roles in early carcinogenesis and lead to altered gene expression and regulation, resulting in accumulation of damages to cell function and ultimately, malignant transformation. Aberrances in hypermethylation and hypomethylation act in different mechanism through the regulation of various genes during CSC carcinogenesis, and both of them play crucial roles in stem cell differentiation towards cancer cells. A large majority of epigenetic and genetic abnormalities that work coordinately in colorectal carcinogenesis are related to cell growth and division, indicating that the intrinsic abnormalities of CRC lie in dysregulation of basic cellular processes. Detection of abnormal methylation can be used in cancer screening and early detection, while reversal of aberrant methylation using drugs may have potential in cancer therapy. This review will provide an overview on the roles of aberrant methylation and a summary of genes that are affected during CRC carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33, 245–254.

    Article  CAS  PubMed  Google Scholar 

  2. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Roostaee, A., Benoit, Y. D., Boudjadi, S., & Beaulieu, J. F. (2016). Epigenetics in intestinal epithelial cell renewal. Journal of Cellular Physiology, 2016.

  4. Houghton, J., Morozov, A., Smirnova, I., & Wang, T. C. (2006). Stem cells and cancer. Seminars in Cancer Biology, 2007(17), 191–203.

    Google Scholar 

  5. Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737.

    Article  CAS  PubMed  Google Scholar 

  7. Lobo, N. A., Shimono, Y., Qian, D., & Clarke, M. F. (2007). The biology of cancer stem cells. Annual Review of Cell and Developmental Biology, 23, 675–699.

    Article  CAS  PubMed  Google Scholar 

  8. Potten, C. S., Gandara, R., Mahida, Y. R., Loeffler, M., & Wright, N. A. (2009). The stem cells of small intestinal crypts: where are they? Cell Proliferation, 42, 731–750.

    Article  CAS  PubMed  Google Scholar 

  9. Medema, J. P., & Vermeulen, L. (2011). Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature, 474, 318–326.

    Article  CAS  PubMed  Google Scholar 

  10. Markowitz, S. D., & Bertagnolli, M. M. (2009). Molecular origins of cancer: molecular basis of colorectal cancer. The New England Journal of Medicine, 361, 2449–2460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baylin, S. B., & Ohm, J. E. (2006). Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nature Reviews. Cancer, 6, 107–116.

    Article  CAS  PubMed  Google Scholar 

  12. Song, L., Li, Y., He, B., & Gong, Y. (2015). Development of small molecules targeting the Wnt signaling pathway in cancer stem cells for the treatment of colorectal cancer. Clinical Colorectal Cancer, 14, 133–145.

    Article  PubMed  Google Scholar 

  13. Jones, P. L., Veenstra, G. J., Wade, P. A., et al. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genetics, 19, 187–191.

    Article  CAS  PubMed  Google Scholar 

  14. Nan, X., Ng, H. H., Johnson, C. A., et al. (1998). Transcriptionalrepression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–389.

    Article  CAS  PubMed  Google Scholar 

  15. Irizarry, R. A., Ladd-Acosta, C., Wen, B., et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41, 178–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elliott, E. N., & Kaestner, K. H. (2015). Epigenetic regulation of the intestinal epithelium. Cellular and Molecular Life Sciences, 72, 4139–4156.

    Article  CAS  PubMed  Google Scholar 

  17. Fearon, E. R. (2011). Molecular genetics of colorectal cancer. Annual Review of Pathology, 6, 479–507.

    Article  CAS  PubMed  Google Scholar 

  18. Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96, 8681–8686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weisenberger, D. J., Siegmund, K. D., Campan, M., et al. (2006). CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genetics, 38, 787–793.

    Article  CAS  PubMed  Google Scholar 

  20. Network, C. G. A. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487, 330–337.

    Article  CAS  Google Scholar 

  21. Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552–556.

    Article  CAS  PubMed  Google Scholar 

  22. Robert, M. F., Morin, S., Beaulieu, N., et al. (2003). DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genetics, 33, 61–65.

    Article  CAS  PubMed  Google Scholar 

  23. Hammoud, S. S., Cairns, B. R., & Jones, D. A. (2013). Epigenetic regulation of colon cancer and intestinal stem cells. Current Opinion in Cell Biology, 25, 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301, 89–92.

    Article  CAS  PubMed  Google Scholar 

  25. Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., et al. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Research, 11, 6883–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goelz, S. E., Vogelstein, B., Hamilton, S. R., & Feinberg, A. P. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228, 187–190.

    Article  CAS  PubMed  Google Scholar 

  27. Feinberg, A. P., Gehrke, C. W., Kuo, K. C., & Ehrlich, M. (1988). Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Research, 48, 1159–1161.

    CAS  PubMed  Google Scholar 

  28. Chen, R. Z., Pettersson, U., Beard, C., Jackson-Grusby, L., & Jaenisch, R. (1998). DNA hypomethylation leads to elevated mutation rates. Nature, 395, 89–93.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura, N., & Takenaga, K. (1998). Hypomethylation of the metastasis-associated S100 A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clinical & Experimental Metastasis, 16, 471–479.

    Article  CAS  Google Scholar 

  30. Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1997). DNA methylation and genetic instability in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 94, 2545–2550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eads, C. A., Danenberg, K. D., Kawakami, K., Saltz, L. B., Danenberg, P. V., & Laird, P. W. (1999). CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Research, 59, 2302–2306.

    CAS  PubMed  Google Scholar 

  32. Cormier, R. T., & Dove, W. F. (2000). Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance allele. Cancer Research, 60, 3965–3970.

    CAS  PubMed  Google Scholar 

  33. Eads, C. A., Nickel, A. E., & Laird, P. W. (2002). Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt1-hypomorphic mice. Cancer Research, 62, 1296–1299.

    CAS  PubMed  Google Scholar 

  34. Loriot, A., Parvizi, G. K., Reister, S., & De Smet, C. (2012). Silencing of cancer-germline genes in human preimplantation embryos: evidence for active de novo DNA methylation in stem cells. Biochemical and Biophysical Research Communications, 417(1), 187–191.

    Article  CAS  PubMed  Google Scholar 

  35. Trowbridge, J. J., Sinha, A. U., Zhu, N., Li, M., Armstrong, S. A., & Orkin, S. H. (2012). Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes & Development, 26, 344–349.

    Article  CAS  Google Scholar 

  36. Trowbridge, J. J., & Orkin, S. H. (2011). Dnmt3a silences hematopoietic stem cell self-renewal. Nature Genetics, 44, 13–14.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang, R. P., Shao, J. Z., & Xiang, L. X. (2011). GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. The Journal of Biological Chemistry, 286, 41083–41094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhuang, J., Jones, A., Lee, S. H., et al. (2012). The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women's cancer. PLoS Genetics, 8, e1002517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nazor, K. L., Altun, G., Lynch, C., et al. (2012). Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell, 10, 620–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. The, M. T., Gemenetzidis, E., Patel, D., et al. (2012). FOXM1 induces a global methylation signature that mimics the cancer epigenome in head and neck squamous cell carcinoma. PloS One, 7, e34329.

    Article  CAS  Google Scholar 

  41. Tsujii, M. (2013). Cyclooxygenase, cancer stem cells and DNA methylation play important roles in colorectal carcinogenesis. Digestion, 87, 12–16.

    Article  CAS  PubMed  Google Scholar 

  42. Migliore, L., Migheli, F., Spisni, R., & Coppedè, F. (2011). Genetics, cytogenetics, and epigenetics of colorectal cancer. Journal of Biomedicine & Biotechnology, 2011, 792362.

    Article  CAS  Google Scholar 

  43. Migheli, F., & Migliore, L. (2011). Epigenetics of colorectal cancer. Clinical Genetics, 81, 312–318.

    Article  CAS  Google Scholar 

  44. Ku, J. L., Kang, S. B., Shin, Y. K., et al. (2004). Promoter hypermethylation downregulates RUNX3 gene expression in colorectal cancer cell lines. Oncogene, 23, 6736–6742.

    Article  CAS  PubMed  Google Scholar 

  45. Goel, A., Arnold, C. N., Tassone, P., et al. (2004). Epigenetic inactivation of RUNX3 in microsatellite unstable sporadic colon cancers. International Journal of Cancer, 112, 754–759.

    Article  CAS  PubMed  Google Scholar 

  46. Tan, S. H., Ida, H., Lau, Q. C., et al. (2007). Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncology Reports, 18, 1225–1230.

    CAS  PubMed  Google Scholar 

  47. Kawakami, K., Ruszkiewicz, A., Bennett, G., Moore, J., Watanabe, G., & Iacopetta, B. (2003). The folate pool in colorectal cancers is associated with DNA hypermethylation and with a polymorphism in methylenetetrahydrofolate reductase. Clinical Cancer Research, 9, 5860–5865.

    CAS  PubMed  Google Scholar 

  48. Lee, S., Hwang, K. S., Lee, H. J., Kim, J. S., & Kang, G. H. (2004). Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Laboratory Investigation, 84, 884–893.

    Article  CAS  PubMed  Google Scholar 

  49. Gryfe, R., Swallow, C., Bapat, B., Redston, M., Gallinger, S., & Couture, J. (1997). Molecular biology of colorectal cancer. Current Problems in Cancer, 21, 233–300.

    Article  CAS  PubMed  Google Scholar 

  50. Liang, J. T., Chang, K. J., Chen, J. C., et al. (1999). Hypermethylation of the p16 gene in sporadic T3N0M0 stage colorectal cancers: association with DNA replication error and shorter survival. Oncology, 57, 149–156.

    Article  CAS  PubMed  Google Scholar 

  51. Strathdee, G., Appleton, K., Illand, M., et al. (2001). Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. The American Journal of Pathology, 158, 1121–1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, X. L., Yu, J., & Zhang, H. Y. (2004). Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World Journal of Gastroenterology, 10, 3441–3454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mossman, D., & Scott, R. J. (2011). Long term transcriptional reactivation of epigenetically silenced genes in colorectal cancer cells requires DNA hypomethylation and histone acetylation. PloS One, 6, e23127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van Engeland, M., Roemen, G. M., Brink, M., et al. (2002). K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene, 21, 3792–3795.

    Article  PubMed  Google Scholar 

  55. Wagner, K. J., Cooper, W. N., Grundy, R. G., et al. (2002). Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms' tumour and colorectal cancer. Oncogene, 21, 7277–7282.

    Article  CAS  PubMed  Google Scholar 

  56. Esteller, M., Tortola, S., Toyota, M., et al. (2000). Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Research, 60, 129–133.

    CAS  PubMed  Google Scholar 

  57. Corn, P. G., Summers, M. K., Fogt, F., et al. (2003). Frequent hypermethylation of the 5' CpG island of the mitotic stress checkpoint gene Chfr in colorectal and non-small cell lung cancer. Carcinogenesis, 24, 47–51.

    Article  CAS  PubMed  Google Scholar 

  58. Brandes, J. C., van Engeland, M., Wouters, K. A., Weijenberg, M. P., & Herman, J. G. (2005). CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis, 26, 1152–1156.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Y., Ye, X., Geng, J., & Chen, L. (2010). Epigenetic inactivation of deleted in lung and esophageal cancer 1 gene by promoter methylation in gastric and colorectal adenocarcinoma. Hepato-Gastroenterology, 57, 1614–1619.

    CAS  PubMed  Google Scholar 

  60. Guo, Y., Shu, L., Zhang, C., Su, Z. Y., & Kong, A. N. (2015). Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochemical Pharmacology, 94, 69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hiranuma, C., Kawakami, K., Oyama, K., Ota, N., Omura, K., & Watanabe, G. (2004). Hypermethylation of the MYOD1 gene is a novel prognostic factor in patients with colorectal cancer. International Journal of Molecular Medicine, 13, 413–417.

    CAS  PubMed  Google Scholar 

  62. Arasaradnam, R. P., Quraishi, M. N., Commane, D., Mathers, J. C., & Bradburn, M. (2012). MYOD-1 in normal colonic mucosa--role as a putative biomarker? BMC Research Notes, 5, 240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fosbrink, M., Cudrici, C., Niculescu, F., et al. (2005). Overexpression of RGC-32 in colon cancer and other tumors. Experimental and Molecular Pathology, 78, 116–122.

    Article  CAS  PubMed  Google Scholar 

  64. Vlaicu, S. I., Tegla, C. A., Cudrici, C. D., et al. (2010). Epigenetic modifications induced by RGC-32 in colon cancer. Experimental and Molecular Pathology, 88, 67–76.

    Article  CAS  PubMed  Google Scholar 

  65. Kim, Y. I., Pogribny, I. P., Salomon, R. N., et al. (1996). Exon-specific DNA hypomethylation of the p53 gene of rat colon induced by dimethylhydrazine. Modulation by dietary folate. The American Journal of Pathology, 149, 1129–1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Wasson, G. R., McGlynn, A. P., McNulty, H., et al. (2006). Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. The Journal of Nutrition, 136, 2748–2753.

    CAS  PubMed  Google Scholar 

  67. Luo, L., Chen, W. D., & Pretlow, T. P. (2005). CpG island methylation in aberrant crypt foci and cancers from the same patients. International Journal of Cancer, 115, 747–751.

    Article  CAS  PubMed  Google Scholar 

  68. Choi, J. S., Kim, K. H., & Jeon, Y. K. (2009). Promoter hypermethylation of the ADAM23 gene in colorectal cancer cell lines and cancer tissues. International Journal of Cancer, 124, 1258–1262.

    Article  CAS  PubMed  Google Scholar 

  69. Sandhu, S., Wu, X., & Nabi, Z. (2012). Loss of HLTF function promotes intestinal carcinogenesis. Molecular Cancer, 11, 18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smirnov, D. A., Foulk, B. W., Doyle, G. V., Connelly, M. C., Terstappen, L. W., & O'Hara, S. M. (2006). Global gene expression profiling of circulating endothelial cells in patients with metastatic carcinomas. Cancer Research, 66, 2918–2922.

    Article  CAS  PubMed  Google Scholar 

  71. Ogino, S., Kawasaki, T., Nosho, K., et al. (2008). LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. International Journal of Cancer, 122, 2767–2773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kawakami, K., Matsunoki, A., Kaneko, M., Saito, K., Watanabe, G., & Minamoto, T. (2011). Long interspersed nuclear element-1 hypomethylation is a potential biomarker for the prediction of response to oral fluoropyrimidines in microsatellite stable and CpG island methylator phenotype-negative colorectal cancer. Cancer Science, 102, 166–174.

    Article  CAS  PubMed  Google Scholar 

  73. Belkhiri, A., & El-Rifai, W. (2014). 5-methylcytosine hydroxylation-mediated LINE-1 hypomethylation: a novel mechanism of proto-oncogenes activation in colorectal cancer? Gut, 63, 538–539.

    Article  CAS  PubMed  Google Scholar 

  74. Tang, J. T., Wang, Z. H., & Fang, J. Y. (2015). Assessing the potential value of long interspersed element-1 hypomethylation in colorectal cancer: evidence from retrospective studies. Onco Targets and Theraphy, 8, 3265–3276.

    Article  Google Scholar 

  75. Bernet, A., Mazelin, L., Coissieux, M. M., et al. (2007). Inactivation of the UNC5C netrin-1 receptor is associated with tumor progression in colorectal malignancies. Gastroenterology, 133, 1840–1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin, S. K., Nagasaka, T., Jung, B. H., et al. (2007). Epigenetic and genetic alterations in netrin-1 receptors UNC5C and DCC in human colon cancer. Gastroenterology, 133, 1849–1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hibi, K., Mizukami, H., Shirahata, A., Goto, T., Sakata, M., & Sanada, Y. (2009). Aberrant methylation of the netrin-1 receptor genes UNC5C and DCC detected in advanced colorectal cancer. World Journal of Surgery, 33, 1053–1057.

    Article  PubMed  Google Scholar 

  78. Mokarram, P., Kumar, K., Brim, H., et al. (2009). Distinct high-profile methylated genes in colorectal cancer. PloS One, 4, e7012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gerecke, C., Scholtka, B., Löwenstein, Y., et al. (2015). Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer. Journal of Cancer Research and Clinical Oncology, 141, 2097–2107.

    Article  CAS  PubMed  Google Scholar 

  80. Rasmussen, S. L., Krarup, H. B., Sunesen, K. G., Pedersen, I. S., Madsen, P. H., & Thorlacius-Ussing, O. (2016). Hypermethylated DNA as a biomarker for colorectal cancer: a systematic review. Colorectal Disease, 18, 549–561.

    Article  CAS  PubMed  Google Scholar 

  81. Yi, J. M., Dhir, M., Van Neste, L., et al. (2011). Genomic and epigenomic integration identifies a prognostic signature in colon cancer. Clinical Cancer Research, 17, 1535–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grützmann, R., Molnar, B., Pilarsky, C., et al. (2008). Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PloS One, 3, e3759.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wasserkort, R., Kalmar, A., Valcz, G., et al. (2013). Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer, 13, 398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Menigatti, M., Pedroni, M., Verrone, A. M., et al. (2007). O6-methylguanine-DNA methyltransferase promoter hypermethylation in colorectal carcinogenesis. Oncology Reports, 17, 1421–1427.

    CAS  PubMed  Google Scholar 

  85. Esteller, M., Hamilton, S. R., Burger, P. C., Baylin, S. B., & Herman, J. G. (1999). Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Research, 59, 793–797.

    CAS  PubMed  Google Scholar 

  86. Esteller, M., Risques, R. A., Toyota, M., et al. (2001). Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to a:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Research, 61, 4689–4692.

    CAS  PubMed  Google Scholar 

  87. Cunningham, J. M., Christensen, E. R., Tester, D. J., et al. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Research, 58, 3455–3460.

    CAS  PubMed  Google Scholar 

  88. Wheeler, J. M., Beck, N. E., Kim, H. C., Tomlinson, I. P., Mortensen, N. J., & Bodmer, W. F. (1999). Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proceedings of the National Academy of Sciences of the United States of America, 96, 10296–10301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wheeler, J. M., Loukola, A., Aaltonen, L. A., Mortensen, N. J., & Bodmer, W. F. (2000). The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers. Journal of Medical Genetics, 37, 588–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Balbinotti, R. A., Ribeiro, U., Sakai, P., et al. (2007). hMLH1, hMSH2 and cyclooxygenase-2 (cox-2) in sporadic colorectal polyps. Anticancer Research, 27, 4465–4471.

    PubMed  Google Scholar 

  91. Oue, N., Motoshita, J., Yokozaki, H., et al. (2002). Distinct promoter hypermethylation of p16INK4a, CDH1, and RAR-beta in intestinal, diffuse-adherent, and diffuse-scattered type gastric carcinomas. The Journal of Pathology, 198, 55–59.

    Article  CAS  PubMed  Google Scholar 

  92. Ando, T., Sugai, T., Habano, W., Jiao, Y. F., & Suzuki, K. (2005). Analysis of SMAD4/DPC4 gene alterations in multiploid colorectal carcinomas. Journal of Gastroenterology, 40, 708–715.

    Article  CAS  PubMed  Google Scholar 

  93. Sameer, A. S., & Siddiqi, M. A. (2011). SMAD4 promoter hypermethylation in Kashmiri colorectal cancer cases. Saudi Journal of Gastroenterology, 17, 297.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bai, A. H., Tong, J. H., To, K.F., et al. (2004). Promoter hypermethylation of tumor-related genes in the progression of colorectal neoplasia. International Journal of Cancer, 112, 846–853.

    Article  CAS  PubMed  Google Scholar 

  95. Abdel-Rahman, W. M., Nieminen, T. T., Shoman, S., Eissa, S., & Peltomaki, P. (2014). Loss of p15INK4b expression in colorectal cancer is linked to ethnic origin. Asian Pacific Journal of Cancer Prevention, 15, 2083–2087.

    Article  PubMed  Google Scholar 

  96. Hibi, K., Sakata, M., Sakuraba, K., et al. (2008). Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer. Anticancer Research, 28, 1581–1584.

    CAS  PubMed  Google Scholar 

  97. Sakata, M., Kitamura, Y. H., Sakuraba, K., et al. (2009). Methylation of HACE1 in gastric carcinoma. Anticancer Research, 29, 2231–2233.

    CAS  PubMed  Google Scholar 

  98. Nagasaka, T., Sasamoto, H., Notohara, K., et al. (2004). Colorectal cancer with mutation in BRAF, KRAS, and wild-type with respect to both oncogenes showing different patterns of DNA methylation. Journal of Clinical Oncology, 22, 4584–4594.

    Article  CAS  PubMed  Google Scholar 

  99. Castells, A., Payá, A., Alenda, C., et al. (2006). Cyclooxygenase 2 expression in colorectal cancer with DNA mismatch repair deficiency. Clinical Cancer Research, 12, 1686–1692.

    Article  CAS  PubMed  Google Scholar 

  100. Wheeler, J. M., Kim, H. C., Efstathiou, J. A., Ilyas, M., Mortensen, N. J., & Bodmer, W. F. (2001). Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut, 48, 367–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Walsh, M. D., Clendenning, M., Williamson, E., et al. (2013). Expression of MUC2, MUC5AC, MUC5B, and MUC6 mucins in colorectal cancers and their association with the CpG island methylator phenotype. Modern Pathology, 26, 1642–1656.

    Article  CAS  PubMed  Google Scholar 

  102. Renaud, F., Mariette, C., Vincent, A., et al. (2016). The serrated neoplasia pathway of colorectal tumors: identification of MUC5AC hypomethylation as an early marker of polyps with malignant potential. International Journal of Cancer, 138, 1472–1481.

    Article  CAS  PubMed  Google Scholar 

  103. Kawamura, Y. I., Toyota, M., Kawashima, R., et al. (2008). DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology, 135, 142–151.e3.

    Article  CAS  PubMed  Google Scholar 

  104. Hiltunen, M. O., Alhonen, L., Koistinaho, J., et al. (1997). Hypermethylation of the APC (adenomatous polyposis coli) gene promoter region in human colorectal carcinoma. International Journal of Cancer, 70, 644–648.

    Article  CAS  PubMed  Google Scholar 

  105. Kim, J. C., Koo, K. H., Roh, S. A., et al. (2003). Genetic and epigenetic changes in the APC gene in sporadic colorectal carcinoma with synchronous adenoma. International Journal of Colorectal Disease, 18, 203–209.

    PubMed  Google Scholar 

  106. Arnold, C. N., Goel, A., Niedzwiecki, D., et al. (2004). APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q. Cancer Biology & Therapy, 3, 960–964.

    Article  CAS  Google Scholar 

  107. Hiltunen, M. O., Koistinaho, J., Alhonen, L., et al. (1997). Hypermethylation of the WT1 and calcitonin gene promoter regions at chromosome 11p in human colorectal cancer. British Journal of Cancer, 76, 1124–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, H., Zhu, Y. Q., Wu, Y. Q., Zhang, P., & Qi, J. (2014). Detection of promoter hypermethylation of Wnt antagonist genes in fecal samples for diagnosis of early colorectal cancer. World Journal of Gastroenterology, 20, 6329–6335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ostman, A., & Augsten, M. (2009). Cancer-associated fibroblasts and tumor growth–bystanders turning into key players. Current Opinion in Genetics & Development, 19, 67–73.

    Article  CAS  Google Scholar 

  110. Mishra, P. J., Mishra, P. J., Humeniuk, R., et al. (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Research, 68, 4331–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mader, E. K., Maeyama, Y., Lin, Y., et al. (2009). Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clinical Cancer Research, 15, 7246–7255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Spaeth, E. L., Dembinski, J. L., Sasser, A. K., et al. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PloS One, 4, e4992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Zeki, S. S., Graham, T. A., & Wright, N. A. (2011). Stem cells and their implications for colorectal cancer. Nature Reviews. Gastroenterology & Hepatology, 8, 90–100.

    Article  Google Scholar 

  114. Kong, D., Li, Y., Wang, Z., & Sarkar, F. H. (2011). Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers (Basel), 3, 716–729.

    Article  Google Scholar 

  115. Thiery, J. P., Acloque, H., Huang, Y. J. R., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.

    Article  CAS  PubMed  Google Scholar 

  116. Galván, J. A., Helbling, M., Koelzer, V. H., et al. (2015). TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer. Oncotarget, 6, 874–885.

    Article  PubMed  Google Scholar 

  117. Tange, S., Oktyabri, D., Terashima, M., Ishimura, A., & Suzuki, T. (2014). JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PloS One, 9, e115684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Valcz, G., Patai, A. V., Kalmár, A., et al. (2014). Myofibroblast-derived SFRP1 as potential inhibitor of colorectal carcinoma field effect. PloS One, 9, e106143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Weygant, N., Qu, D., May, R., et al. (2015). DCLK1 is a broadly dysregulated target against epithelial-mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget, 6, 2193–2205.

    Article  PubMed  Google Scholar 

  120. Kang, X. C., Chen, M. L., Yang, F., et al. (2016). Promoter methylation and expression of SOCS-1 affect clinical outcome and epithelial-mesenchymal transition in colorectal cancer. Biomedicine & Pharmacotherapy, 80, 23–29.

    Article  CAS  Google Scholar 

  121. Song, L., & Li, Y. (2015). SEPT9: a specific circulating biomarker for colorectal cancer. Advances in Clinical Chemistry, 72, 171–204.

    Article  PubMed  Google Scholar 

  122. Li, Y., Song, L., Gong, Y., & He, B. (2014). Detection of colorectal cancer by DNA methylation biomarker SEPT9: past, present and future. Biomarkers in Medicine, 8, 755–769.

    Article  CAS  PubMed  Google Scholar 

  123. Greenspan, E. J., Jablonski, M. A., Rajan, T. V., Levine, J., Belinsky, G. S., & Rosenberg, D. W. (2006). Epigenetic alterations in RASSF1A in human aberrant crypt foci. Carcinogenesis, 27, 1316–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abouzeid, H. E., Kassem, A. M., Abdel Wahab, A. H., El-mezayen, H. A., Sharad, H., & Abdel Rahman, S. (2011). Promoter hypermethylation of RASSF1A, MGMT, and HIC-1 genes in benign and malignant colorectal tumors. Tumour Biology, 32, 845–852.

    Article  PubMed  Google Scholar 

  125. Cassinotti, E., Melson, J., Liggett, T., et al. (2012). DNA methylation patterns in blood of patients with colorectal cancer and adenomatous colorectal polyps. International Journal of Cancer, 131, 1153–1157.

    Article  CAS  PubMed  Google Scholar 

  126. Kriegl, L., Neumann, J., Vieth, M., et al. (2011). Up and downregulation of p16 (Ink4a) expression in BRAF-mutated polyps/adenomas indicates a senescence barrier in the serrated route to colon cancer. Modern Pathology, 24, 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  127. Minoo, P., Baker, K., Goswami, R., et al. (2006). Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut, 55, 1467–1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sakamoto, J., Fujiya, M., Okamoto, K., et al. (2010). Immunoprecipitation of nucleosomal DNA is a novel procedure to improve the sensitivity of serum screening for the p16 hypermethylation associated with colon cancer. Cancer Epidemiology, 34, 194–199.

    Article  CAS  PubMed  Google Scholar 

  129. Zheng, Y., Zhang, Y. W., & Chen, L. B. (2010). Analysis of RUNX3 promoter hypermethylation in the serum DNA of gastric and colorectal adenocarcinoma patients. Journal of Medical Postgraduates, 3, 016.

    Google Scholar 

  130. Ye, X. B., Zhang, Y. W., & Chen, L. B. (2010). Methylation status of DLEC1 promoter in colorectal cancer patients and its clinical relevance. Academic Journal of Second Military Medical University Acad, 31, 842.

    Article  CAS  Google Scholar 

  131. Church, T. R., Wandell, M., Lofton-Day, C., et al. (2014). Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut, 63, 317–325.

    Article  CAS  PubMed  Google Scholar 

  132. Potter, N. T., Hurban, P., White, M. N., et al. (2014). Validation of a real-time PCR-based qualitative assay for the detection of methylated SEPT9 DNA in human plasma. Clinical Chemistry, 60, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  133. Li, H., Chiappinelli, K. B., Guzzetta, A. A., et al. (2014). Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers. Oncotarget, 5, 587–598.

    Article  PubMed  PubMed Central  Google Scholar 

  134. His, L. C., Xi, X., Wu, Y., & Lippman, S. M. (2005). The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Molecular Cancer Therapeutics, 4, 1740–1746.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Beijing Municipal Science and Technology Project (capital public health project) No. Z151100003915092 sponsored by the Beijing Municipal Science and Technology Commission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lele Song or Yuemin Li.

Ethics declarations

Conflict of Interests

The authors claim no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Li, Y. The Role of Stem Cell DNA Methylation in Colorectal Carcinogenesis. Stem Cell Rev and Rep 12, 573–583 (2016). https://doi.org/10.1007/s12015-016-9672-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9672-6

Keywords

Navigation