Skip to main content

Advertisement

Log in

Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Devreotes, P., & Horwitz, A. R. (2015). Signaling networks that regulate cell migration. Cold Spring Harbor Perspectives in Biology, 7(8), a005959.

    Article  PubMed  Google Scholar 

  2. Haeger, A., Wolf, K., Zegers, M. M., & Friedl, P. (2015). Collective cell migration: guidance principles and hierarchies. Trends in Cell Biology, 25(9), 556–566.

    Article  PubMed  Google Scholar 

  3. Lara Rodriguez, L., & Schneider, I. C. (2013). Directed cell migration in multi-cue environments. Integrative Biology: Quantitative Biosciences from Nano to Macro, 5(11), 1306–1323.

    Article  CAS  Google Scholar 

  4. Shaw, T. J., & Martin, P. (2016). Wound repair: a showcase for cell plasticity and migration. Current Opinion in Cell Biology, 42, 29–37.

    Article  CAS  PubMed  Google Scholar 

  5. Visvader, J. E., & Clevers, H. (2016). Tissue-specific designs of stem cell hierarchies. Nature Cell Biology, 18(4), 349–355.

    Article  CAS  PubMed  Google Scholar 

  6. Lalli, G. (2014). Extracellular signals controlling neuroblast migration in the postnatal brain. Advances in Experimental Medicine and Biology, 800, 149–180.

    Article  CAS  PubMed  Google Scholar 

  7. Magnon, C., Lucas, D., & Frenette, P. S. (2011). Trafficking of stem cells. Methods in Molecular Biology (Clifton, NJ), 750, 3–24.

    Article  CAS  Google Scholar 

  8. Urao, N., & Ushio-Fukai, M. (2013). Redox regulation of stem/progenitor cells and bone marrow niche. Free Radical Biology & Medicine, 54, 26–39.

    Article  CAS  Google Scholar 

  9. Xin, T., Greco, V., & Myung, P. (2016). Hardwiring stem cell communication through tissue structure. Cell, 164(6), 1212–1225.

    Article  CAS  PubMed  Google Scholar 

  10. Fox, I. J., Daley, G. Q., Goldman, S. A., Huard, J., Kamp, T. J., & Trucco, M. (2014). Stem cell therapy. Use of differentiated pluripotent stem cells as replacement therapy for treating disease. Science, 345(6199), 1247391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nguyen, P. K., Riegler, J., & Wu, J. C. (2014). Stem cell imaging: from bench to bedside. Cell Stem Cell, 14(4), 431–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Srijaya, T. C., Ramasamy, T. S., & Kasim, N. H. (2014). Advancing stem cell therapy from bench to bedside: lessons from drug therapies. Journal of Translational Medicine, 12, 243.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bonig, H., & Papayannopoulou, T. (2013). Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia, 27(1), 24–31.

    Article  CAS  PubMed  Google Scholar 

  14. Boulais, P. E., & Frenette, P. S. (2015). Making sense of hematopoietic stem cell niches. Blood, 125(17), 2621–2629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Golan, K., Vagima, Y., Goichberg, P., Gur-Cohen, S., & Lapidot, T. (2011). MT1-MMP and RECK: opposite and essential roles in hematopoietic stem and progenitor cell retention and migration. Journal of Molecular Medicine (Berlin, Germany), 89(12), 1167–1174.

    Article  CAS  Google Scholar 

  16. Gur-Cohen, S., Kollet, O., Graf, C., Esmon, C.T., Ruf, W., Lapidot, T. (2016). Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Annals of the New York Academy of Sciences. doi:10.1111/nyas.13013.

  17. Hoggatt, J., Speth, J. M., & Pelus, L. M. (2013). Concise review: sowing the seeds of a fruitful harvest: hematopoietic stem cell mobilization. Stem Cells (Dayton, Ohio), 31(12), 2599–2606.

    Article  CAS  Google Scholar 

  18. Kollet, O., Canaani, J., Kalinkovich, A., & Lapidot, T. (2012). Regulatory cross talks of bone cells, hematopoietic stem cells and the nervous system maintain hematopoiesis. Inflammation & Allergy: Drug Targets, 11(3), 170–180.

    Article  CAS  PubMed  Google Scholar 

  19. Lapid, K., Glait-Santar, C., Gur-Cohen, S., Canaani, J., Kollet, O., & Lapidot, T. (2008). Egress and mobilization of hematopoietic stem and progenitor cells: A dynamic multi-facet process. Cambridge, MA: StemBook.

    Google Scholar 

  20. Mazo, I. B., Massberg, S., & von Andrian, U. H. (2011). Hematopoietic stem and progenitor cell trafficking. Trends in Immunology, 32(10), 493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Birbrair, A., Frenette, P.S. (2016). Niche heterogeneity in the bone marrow. Annals of the New York Academy of Sciences. doi:10.1111/nyas.13016.

  22. Mendelson, A., & Frenette, P. S. (2014). Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 20(8), 833–846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scadden, D. T. (2014). Nice neighborhood: emerging concepts of the stem cell niche. Cell, 157(1), 41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abkowitz, J. L., Robinson, A. E., Kale, S., Long, M. W., & Chen, J. (2003). Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood, 102(4), 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  26. Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E. A., et al. (2007). Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell, 131(5), 994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L., & Weissman, I. L. (2001). Physiological migration of hematopoietic stem and progenitor cells. Science, 294(5548), 1933–1936.

    Article  CAS  PubMed  Google Scholar 

  28. Casanova-Acebes, M., Pitaval, C., Weiss, L. A., Nombela-Arrieta, C., Chevre, R., A-González, N., et al. (2013). Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 153(5), 1025–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kollet, O., Vagima, Y., D’Uva, G., Golan, K., Canaani, J., Itkin, T., et al. (2013). Physiologic corticosterone oscillations regulate murine hematopoietic stem/progenitor cell proliferation and CXCL12 expression by bone marrow stromal progenitors. Leukemia, 27(10), 2006–2015.

    Article  CAS  PubMed  Google Scholar 

  30. Mendez-Ferrer, S., Lucas, D., Battista, M., & Frenette, P. S. (2008). Haematopoietic stem cell release is regulated by circadian oscillations. Nature, 452(7186), 442–447.

    Article  CAS  PubMed  Google Scholar 

  31. Kobayashi, H., Suda, T., & Takubo, K. (2016). How hematopoietic stem/progenitors and their niche sense and respond to infectious stress. Experimental Hematology, 44(2), 92–100.

    Article  CAS  PubMed  Google Scholar 

  32. Schuettpelz, L. G., & Link, D. C. (2013). Regulation of hematopoietic stem cell activity by inflammation. Frontiers in Immunology, 4, 204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Badami, C. D., Livingston, D. H., Sifri, Z. C., Caputo, F. J., Bonilla, L., Mohr, A. M., & Deitch, E. A. (2007). Hematopoietic progenitor cells mobilize to the site of injury after trauma and hemorrhagic shock in rats. The Journal of Trauma, 63(3), 596–600. discussion 600–592.

    Article  PubMed  Google Scholar 

  34. Dalakas, E., Newsome, P. N., Harrison, D. J., & Plevris, J. N. (2005). Hematopoietic stem cell trafficking in liver injury. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 19(10), 1225–1231.

    Article  CAS  Google Scholar 

  35. Kollet, O., Shivtiel, S., Chen, Y. Q., Suriawinata, J., Thung, S. N., Dabeva, M. D., et al. (2003). HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. The Journal of Clinical Investigation, 112(2), 160–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mocco, J., Afzal, A., Ansari, S., Wolfe, A., Caldwell, K., Connolly, E. S., & Scott, E. W. (2014). SDF1-a facilitates Lin-/Sca1+ cell homing following murine experimental cerebral ischemia. PloS One, 9(1), e85615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dutta, P., Sager, H. B., Stengel, K. R., Naxerova, K., Courties, G., Saez, B., et al. (2015). Myocardial Infarction Activates CCR2(+) Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 16(5), 477–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klyachkin, Y. M., Karapetyan, A. V., Ratajczak, M. Z., & Abdel-Latif, A. (2014). The role of bioactive lipids in stem cell mobilization and homing: novel therapeutics for myocardial ischemia. BioMed Research International, 2014, 653543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Cipriani, P., Ruscitti, P., & Giacomelli, R. (2015). Stem cell therapies for systemic sclerosis. British Journal of Haematology, 168(3), 328–337.

    Article  CAS  PubMed  Google Scholar 

  40. Maeshima, A., Nakasatomi, M., & Nojima, Y. (2014). Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy. BioMed Research International, 2014, 595493.

    PubMed  PubMed Central  Google Scholar 

  41. Margini, C., Vukotic, R., Brodosi, L., Bernardi, M., & Andreone, P. (2014). Bone marrow derived stem cells for the treatment of end-stage liver disease. World Journal of Gastroenterology, 20(27), 9098–9105.

    PubMed  PubMed Central  Google Scholar 

  42. Porada, C. D., Atala, A. J., & Almeida-Porada, G. (2015). The hematopoietic system in the context of regenerative medicine. Methods, 99, 44–61.

    Article  PubMed  CAS  Google Scholar 

  43. Barker, N. (2014). Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature Reviews Molecular Cell Biology, 15(1), 19–33.

    Article  CAS  PubMed  Google Scholar 

  44. Clevers, H. (2013). The intestinal crypt, a prototype stem cell compartment. Cell, 154(2), 274–284.

    Article  CAS  PubMed  Google Scholar 

  45. Stange, D. E., & Clevers, H. (2013). Concise review: the yin and yang of intestinal (cancer) stem cells and their progenitors. Stem Cells (Dayton, Ohio), 31(11), 2287–2295.

    Article  CAS  Google Scholar 

  46. Vanuytsel, T., Senger, S., Fasano, A., & Shea-Donohue, T. (2013). Major signaling pathways in intestinal stem cells. Biochimica et Biophysica Acta, 1830(2), 2410–2426.

    Article  CAS  PubMed  Google Scholar 

  47. Sancho, R., Cremona, C. A., & Behrens, A. (2015). Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Reports, 16(5), 571–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tan, S., & Barker, N. (2015). Epithelial stem cells and intestinal cancer. Seminars in Cancer Biology, 32, 40–53.

    Article  CAS  PubMed  Google Scholar 

  49. Vermeulen, L., & Snippert, H. J. (2014). Stem cell dynamics in homeostasis and cancer of the intestine. Nature Reviews Cancer, 14(7), 468–480.

    Article  CAS  PubMed  Google Scholar 

  50. Zeuner, A., Todaro, M., Stassi, G., & De Maria, R. (2014). Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell, 15(6), 692–705.

    Article  CAS  PubMed  Google Scholar 

  51. Sakthianandeswaren, A., Christie, M., D’Andreti, C., Tsui, C., Jorissen, R. N., Li, S., et al. (2011). PHLDA1 expression marks the putative epithelial stem cells and contributes to intestinal tumorigenesis. Cancer Research, 71(10), 3709–3719.

    Article  CAS  PubMed  Google Scholar 

  52. Arwert, E. N., Hoste, E., & Watt, F. M. (2012). Epithelial stem cells, wound healing and cancer. Nature Reviews Cancer, 12(3), 170–180.

    Article  CAS  PubMed  Google Scholar 

  53. Blanpain, C., & Fuchs, E. (2014). Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science, 344(6189), 1242281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hsu, Y. C., Li, L., & Fuchs, E. (2014). Emerging interactions between skin stem cells and their niches. Nature Medicine, 20(8), 847–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kretzschmar, K., Watt, F.M. (2014). Markers of epidermal stem cell subpopulations in adult mammalian skin. Cold Spring Harbor Perspectives in Medicine. doi:10.1101/cshperspect.a013631.

  56. Mesa, K. R., Rompolas, P., & Greco, V. (2015). The dynamic Duo: niche/stem cell interdependency. Stem Cell Reports, 4(6), 961–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Plikus, M. V., Gay, D. L., Treffeisen, E., Wang, A., Supapannachart, R. J., & Cotsarelis, G. (2012). Epithelial stem cells and implications for wound repair. Seminars in Cell & Developmental Biology, 23(9), 946–953.

    Article  CAS  Google Scholar 

  58. Rompolas, P., & Greco, V. (2014). Stem cell dynamics in the hair follicle niche. Seminars in Cell & Developmental Biology, 25–26, 34–42.

    Article  Google Scholar 

  59. Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R. J., & Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine, 11(12), 1351–1354.

    Article  CAS  PubMed  Google Scholar 

  60. Mascre, G., Dekoninck, S., Drogat, B., Youssef, K. K., Brohee, S., Sotiropoulou, P. A., et al. (2012). Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature, 489(7415), 257–262.

    Article  CAS  PubMed  Google Scholar 

  61. Page, M. E., Lombard, P., Ng, F., Gottgens, B., & Jensen, K. B. (2013). The epidermis comprises autonomous compartments maintained by distinct stem cell populations. Cell Stem Cell, 13(4), 471–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W. E., Rendl, M., & Fuchs, E. (2004). Defining the epithelial stem cell niche in skin. Science, 303(5656), 359–363.

    Article  CAS  PubMed  Google Scholar 

  63. Wu, X., Shen, Q. T., Oristian, D. S., Lu, C. P., Zheng, Q., Wang, H. W., & Fuchs, E. (2011). Skin stem cells orchestrate directional migration by regulating microtubule-ACF7 connections through GSK3beta. Cell, 144(3), 341–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Flores, I., Cayuela, M. L., & Blasco, M. A. (2005). Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 309(5738), 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  65. Chou, W. C., Takeo, M., Rabbani, P., Hu, H., Lee, W., Chung, Y. R., et al. (2013). Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nature Medicine, 19(7), 924–929.

    Article  CAS  PubMed  Google Scholar 

  66. Almada, A. E., & Wagers, A. J. (2016). Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease. Nature Reviews Molecular Cell Biology, 17(5), 267–279.

    Article  CAS  PubMed  Google Scholar 

  67. Blau, H. M., Cosgrove, B. D., & Ho, A. T. (2015). The central role of muscle stem cells in regenerative failure with aging. Nature Medicine, 21(8), 854–862.

    Article  CAS  PubMed  Google Scholar 

  68. Brack, A. S., & Munoz-Canoves, P. (2015). The ins and outs of muscle stem cell aging. Skeletal Muscle, 6, 1.

    Article  PubMed  Google Scholar 

  69. Cerletti, M., Shadrach, J. L., Jurga, S., Sherwood, R., & Wagers, A. J. (2008). Regulation and function of skeletal muscle stem cells. Cold Spring Harbor Symposia on Quantitative Biology, 73, 317–322.

    Article  CAS  PubMed  Google Scholar 

  70. Conboy, I. M., & Rando, T. A. (2005). Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle, 4(3), 407–410.

    Article  CAS  PubMed  Google Scholar 

  71. Dumont, N. A., Bentzinger, C. F., Sincennes, M. C., & Rudnicki, M. A. (2015). Satellite cells and skeletal muscle regeneration. Comprehensive Physiology, 5(3), 1027–1059.

    Article  PubMed  Google Scholar 

  72. Sincennes, M. C., Brun, C. E., & Rudnicki, M. A. (2016). Concise review: epigenetic regulation of myogenesis in health and disease. Stem Cells Translational Medicine, 5(3), 282–290.

    Article  PubMed  Google Scholar 

  73. Tierney, M.T., Sacco, A. (2016). Satellite cell heterogeneity in skeletal muscle homeostasis. Trends in Cell Biology. doi:10.1016/j.tcb.2016.02.004.

  74. Webster, M. T., Manor, U., Lippincott-Schwartz, J., & Fan, C. M. (2016). Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell, 18(2), 243–252.

    Article  CAS  PubMed  Google Scholar 

  75. Neuhaus, P., Oustanina, S., Loch, T., Kruger, M., Bober, E., Dono, R., et al. (2003). Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Molecular and Cellular Biology, 23(17), 6037–6048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Collins-Hooper, H., Woolley, T. E., Dyson, L., Patel, A., Potter, P., Baker, R. E., et al. (2012). Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells (Dayton, Ohio), 30(6), 1182–1195.

    Article  CAS  Google Scholar 

  77. Bond, A. M., Ming, G. L., & Song, H. (2015). Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell, 17(4), 385–395.

    Article  CAS  PubMed  Google Scholar 

  78. Capilla-Gonzalez, V., Lavell, E., Quinones-Hinojosa, A., & Guerrero-Cazares, H. (2015). Regulation of subventricular zone-derived cells migration in the adult brain. Advances in Experimental Medicine and Biology, 853, 1–21.

    Article  PubMed  Google Scholar 

  79. De Filippis, L., & Binda, E. (2012). Concise review: self-renewal in the central nervous system: neural stem cells from embryo to adult. Stem Cells Translational Medicine, 1(4), 298–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lim, D. A., & Alvarez-Buylla, A. (2014). Adult neural stem cells stake their ground. Trends in Neurosciences, 37(10), 563–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maki, T., Liang, A. C., Miyamoto, N., Lo, E. H., & Arai, K. (2013). Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases. Frontiers in Cellular Neuroscience, 7, 275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Merino, J. J., Bellver-Landete, V., Oset-Gasque, M. J., & Cubelos, B. (2014). Review: CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration: focus in CNS repair. Journal of Cellular Physiology, 230(1), 27–42.

    Article  CAS  Google Scholar 

  83. Ibrahim, S., Hu, W., Wang, X., Gao, X., He, C., & Chen, J. (2016). Traumatic brain injury causes aberrant migration of adult-born neurons in the hippocampus. Scientific Reports, 6, 21793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Capilla-Gonzalez, V., Herranz-Perez, V., & Garcia-Verdugo, J. M. (2015). The aged brain: genesis and fate of residual progenitor cells in the subventricular zone. Frontiers in Cellular Neuroscience, 9, 365.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Aboody, K. S., Brown, A., Rainov, N. G., Bower, K. A., Liu, S., Yang, W., et al. (2000). Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12846–12851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Carney, B. J., & Shah, K. (2011). Migration and fate of therapeutic stem cells in different brain disease models. Neuroscience, 197, 37–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vishwakarma, S. K., Bardia, A., Tiwari, S. K., Paspala, S. A., & Khan, A. A. (2014). Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. Journal of Advanced Research, 5(3), 277–294.

    Article  PubMed  Google Scholar 

  88. Chou, C. H., Fan, H. C., & Hueng, D. Y. (2015). Potential of neural stem cell-based therapy for Parkinson’s disease. Parkinson’s Disease, 2015, 571475.

    PubMed  PubMed Central  Google Scholar 

  89. Dunnett, S. B., & Rosser, A. E. (2014). Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease. Neurobiology of Disease, 61, 79–89.

    Article  PubMed  Google Scholar 

  90. Goldman, S. A. (2016). Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell, 18(2), 174–188.

    Article  CAS  PubMed  Google Scholar 

  91. Bentzinger, C. F., Wang, Y. X., Dumont, N. A., & Rudnicki, M. A. (2013). Cellular dynamics in the muscle satellite cell niche. EMBO Reports, 14(12), 1062–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bjornsson, C. S., Apostolopoulou, M., Tian, Y., & Temple, S. (2015). It takes a village: constructing the neurogenic niche. Developmental Cell, 32(4), 435–446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, H. R., Byun, S. Y., Kwon, S. H., & Park, K. C. (2015). Niche interactions in epidermal stem cells. World Journal of Stem Cells, 7(2), 495–501.

    Article  PubMed  PubMed Central  Google Scholar 

  94. DeCarolis, N.A., Kirby, E.D., Wyss-Coray, T., Palmer, T.D. (2015). The role of the microenvironmental niche in declining stem-cell functions associated with biological aging. Cold Spring Harbor Perspectives in Medicine. doi:10.1101/cshperspect.a025874.

  95. Lane, S. W., Williams, D. A., & Watt, F. M. (2014). Modulating the stem cell niche for tissue regeneration. Nature Biotechnology, 32(8), 795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tan, D. W., & Barker, N. (2014). Intestinal stem cells and their defining niche. Current Topics in Developmental Biology, 107, 77–107.

    Article  CAS  PubMed  Google Scholar 

  97. Thomas, K., Engler, A. J., & Meyer, G. A. (2015). Extracellular matrix regulation in the muscle satellite cell niche. Connective Tissue Research, 56(1), 1–8.

    Article  PubMed  CAS  Google Scholar 

  98. Bear, J. E., & Haugh, J. M. (2014). Directed migration of mesenchymal cells: where signaling and the cytoskeleton meet. Current Opinion in Cell Biology, 30, 74–82.

    Article  CAS  PubMed  Google Scholar 

  99. Sarris, M., & Sixt, M. (2015). Navigating in tissue mazes: chemoattractant interpretation in complex environments. Current Opinion in Cell Biology, 36, 93–102.

    Article  CAS  PubMed  Google Scholar 

  100. Wang, J., & Knaut, H. (2014). Chemokine signaling in development and disease. Development, 141(22), 4199–4205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karpova, D., & Bonig, H. (2015). Concise review: CXCR4/CXCL12 signaling in immature hematopoiesis--lessons from pharmacological and genetic models. Stem Cells (Dayton, Ohio), 33(8), 2391–2399.

    Article  CAS  Google Scholar 

  102. Nagasawa, T. (2015). CXCL12/SDF-1 and CXCR4. Frontiers in Immunology, 6, 301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 283(5403), 845–848.

    Article  CAS  PubMed  Google Scholar 

  104. Gallagher, K. A., Liu, Z. J., Xiao, M., Chen, H., Goldstein, L. J., Buerk, D. G., et al. (2007). Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. The Journal of Clinical Investigation, 117(5), 1249–1259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jaerve, A., Schira, J., & Muller, H. W. (2012). Concise review: the potential of stromal cell-derived factor 1 and its receptors to promote stem cell functions in spinal cord repair. Stem Cells Translational Medicine, 1(10), 732–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pan, S., Dangaria, S., Gopinathan, G., Yan, X., Lu, X., Kolokythas, A., et al. (2013). SCF promotes dental pulp progenitor migration, neovascularization, and collagen remodeling - potential applications as a homing factor in dental pulp regeneration. Stem Cell Reviews, 9(5), 655–667.

    Article  CAS  PubMed  Google Scholar 

  107. Jalili, A., Shirvaikar, N., Marquez-Curtis, L. A., Turner, A. R., & Janowska-Wieczorek, A. (2010). The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem Cells and Development, 19(8), 1143–1151.

    Article  CAS  PubMed  Google Scholar 

  108. Tesio, M., Golan, K., Corso, S., Giordano, S., Schajnovitz, A., Vagima, Y., et al. (2011). Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 117(2), 419–428.

    Article  CAS  PubMed  Google Scholar 

  109. Bischoff, R. (1997). Chemotaxis of skeletal muscle satellite cells. Developmental Dynamics: an Official Publication of the American Association of Anatomists, 208(4), 505–515.

    Article  CAS  Google Scholar 

  110. Ishido, M., & Kasuga, N. (2012). In vivo real-time imaging of exogenous HGF-triggered cell migration in rat intact soleus muscles. Acta Histochemica et Cytochemica, 45(3), 193–199.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Li, J., & Johnson, S. E. (2013). Ephrin-A5 promotes bovine muscle progenitor cell migration before mitotic activation. Journal of Animal Science, 91(3), 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  112. Siegel, A. L., Atchison, K., Fisher, K. E., Davis, G. E., & Cornelison, D. D. (2009). 3D timelapse analysis of muscle satellite cell motility. Stem Cells (Dayton, Ohio), 27(10), 2527–2538.

    Article  CAS  Google Scholar 

  113. Webster, M. T., & Fan, C. M. (2013). c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PloS One, 8(11), e81757.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Binder, B. Y., Williams, P. A., Silva, E. A., & Leach, J. K. (2015). Lysophosphatidic acid and sphingosine-1-phosphate: a concise review of biological function and applications for tissue engineering. Tissue Engineering. Part B, Reviews, 21(6), 531–542.

    Article  CAS  PubMed  Google Scholar 

  115. Kunkel, G. T., Maceyka, M., Milstien, S., & Spiegel, S. (2013). Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nature Reviews Drug Discovery, 12(9), 688–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Maceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60.

    Article  CAS  PubMed  Google Scholar 

  117. Proia, R. L., & Hla, T. (2015). Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. The Journal of Clinical Investigation, 125(4), 1379–1387.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ratajczak, M. Z., Suszynska, M., Borkowska, S., Ratajczak, J., & Schneider, G. (2014). The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells. Expert Opinion on Therapeutic Targets, 18(1), 95–107.

    Article  CAS  PubMed  Google Scholar 

  119. Tsujiuchi, T., Hirane, M., Dong, Y., & Fukushima, N. (2014). Diverse effects of LPA receptors on cell motile activities of cancer cells. Journal of Receptor and Signal Transduction Research, 34(3), 149–153.

    Article  CAS  PubMed  Google Scholar 

  120. Walker, T. L., Overall, R. W., Vogler, S., Sykes, A. M., Ruhwald, S., Lasse, D., et al. (2016). Lysophosphatidic acid receptor is a functional marker of adult hippocampal precursor cells. Stem Cell Reports, 6(4), 552–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Golan, K., Kollet, O., & Lapidot, T. (2013). Dynamic cross talk between S1P and CXCL12 regulates hematopoietic stem cells migration, development and bone remodeling. Pharmaceuticals (Basel, Switzerland), 6(9), 1145–1169.

    Article  CAS  Google Scholar 

  122. Pebay, A., Bonder, C. S., & Pitson, S. M. (2007). Stem cell regulation by lysophospholipids. Prostaglandins & Other Lipid Mediators, 84(3–4), 83–97.

    Article  CAS  Google Scholar 

  123. Adamiak, M., Borkowska, S., Wysoczynski, M., Suszynska, M., Kucia, M., Rokosh, G., et al. (2015). Evidence for the involvement of sphingosine-1-phosphate in the homing and engraftment of hematopoietic stem cells to bone marrow. Oncotarget, 6(22), 18819–18828.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bendall, L. J., & Basnett, J. (2013). Role of sphingosine 1-phosphate in trafficking and mobilization of hematopoietic stem cells. Current Opinion in Hematology, 20(4), 281–288.

    Article  CAS  PubMed  Google Scholar 

  125. Golan, K., Vagima, Y., Ludin, A., Itkin, T., Cohen-Gur, S., Kalinkovich, A., et al. (2012). S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood, 119(11), 2478–2488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Karapetyan, A. V., Klyachkin, Y. M., Selim, S., Sunkara, M., Ziada, K. M., Cohen, D. A., et al. (2013). Bioactive lipids and cationic antimicrobial peptides as new potential regulators for trafficking of bone marrow-derived stem cells in patients with acute myocardial infarction. Stem Cells and Development, 22(11), 1645–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Calise, S., Blescia, S., Cencetti, F., Bernacchioni, C., Donati, C., & Bruni, P. (2012). Sphingosine 1-phosphate stimulates proliferation and migration of satellite cells: role of S1P receptors. Biochimica et Biophysica Acta, 1823(2), 439–450.

    Article  CAS  PubMed  Google Scholar 

  128. Cencetti, F., Bruno, G., Blescia, S., Bernacchioni, C., Bruni, P., & Donati, C. (2014). Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1-phosphate axis. The FEBS Journal, 281(19), 4467–4478.

    Article  CAS  PubMed  Google Scholar 

  129. Ishii, M., Egen, J. G., Klauschen, F., Meier-Schellersheim, M., Saeki, Y., Vacher, J., Proia, R. L., & Germain, R. N. (2009). Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature, 458(7237), 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ishii, M., Kikuta, J., Shimazu, Y., Meier-Schellersheim, M., & Germain, R. N. (2010). Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. The Journal of Experimental Medicine, 207(13), 2793–2798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Novgorodov, A. S., El-Alwani, M., Bielawski, J., Obeid, L. M., & Gudz, T. I. (2007). Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 21(7), 1503–1514.

    Article  CAS  Google Scholar 

  132. Kimura, A., Ohmori, T., Kashiwakura, Y., Ohkawa, R., Madoiwa, S., Mimuro, J., et al. (2008). Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke; A Journal of Cerebral Circulation, 39(12), 3411–3417.

    Article  CAS  PubMed  Google Scholar 

  133. Blanc, C. A., Grist, J. J., Rosen, H., Sears-Kraxberger, I., Steward, O., & Lane, T. E. (2015). Sphingosine-1-phosphate receptor antagonism enhances proliferation and migration of engrafted neural progenitor cells in a model of viral-induced demyelination. The American Journal of Pathology, 185(10), 2819–2832.

    Article  CAS  PubMed  Google Scholar 

  134. Boyd, A. W., Bartlett, P. F., & Lackmann, M. (2014). Therapeutic targeting of EPH receptors and their ligands. Nature Reviews Drug Discovery, 13(1), 39–62.

    Article  CAS  PubMed  Google Scholar 

  135. Coulthard, M. G., Morgan, M., Woodruff, T. M., Arumugam, T. V., Taylor, S. M., Carpenter, T. C., et al. (2012). Eph/Ephrin signaling in injury and inflammation. The American Journal of Pathology, 181(5), 1493–1503.

    Article  CAS  PubMed  Google Scholar 

  136. Gucciardo, E., Sugiyama, N., & Lehti, K. (2014). Eph- and ephrin-dependent mechanisms in tumor and stem cell dynamics. Cellular and Molecular Life Sciences: CMLS, 71(19), 3685–3710.

    Article  CAS  PubMed  Google Scholar 

  137. Kania, A., & Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nature Reviews Molecular Cell Biology, 17(4), 240–256.

    Article  CAS  PubMed  Google Scholar 

  138. Klein, R., & Kania, A. (2014). Ephrin signalling in the developing nervous system. Current Opinion in Neurobiology, 27C, 16–24.

    Article  CAS  Google Scholar 

  139. Laussu, J., Khuong, A., Gautrais, J., & Davy, A. (2014). Beyond boundaries--Eph:ephrin signaling in neurogenesis. Cell Adhesion & Migration, 8(4), 349–359.

    Article  CAS  Google Scholar 

  140. Lisabeth, E.M., Falivelli, G., Pasquale, E.B. (2013). Eph receptor signaling and ephrins. Cold Spring Harbor Perspectives in Biology. doi:10.1101/cshperspect.a009159.

  141. Nikolov, D. B., Xu, K., & Himanen, J. P. (2014). Homotypic receptor-receptor interactions regulating Eph signaling. Cell Adhesion & Migration, 8(4), 360–365.

    Article  Google Scholar 

  142. Park, I., & Lee, H. S. (2015). EphB/ephrinB signaling in cell adhesion and migration. Molecules and Cells, 38(1), 14–19.

    Article  PubMed  CAS  Google Scholar 

  143. Pasquale, E. B. (2010). Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Reviews Cancer, 10(3), 165–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pitulescu, M. E., & Adams, R. H. (2010). Eph/ephrin molecules--a hub for signaling and endocytosis. Genes & Development, 24(22), 2480–2492.

    Article  CAS  Google Scholar 

  145. Wilkinson, D. G. (2014). Regulation of cell differentiation by Eph receptor and ephrin signaling. Cell Adhesion & Migration, 8(4), 339–348.

    Article  Google Scholar 

  146. Ting, M. J., Day, B. W., Spanevello, M. D., & Boyd, A. W. (2010). Activation of ephrin A proteins influences hematopoietic stem cell adhesion and trafficking patterns. Experimental Hematology, 38(11), 1087–1098.

    Article  CAS  PubMed  Google Scholar 

  147. Nguyen, T.M., Arthur, A., Gronthos, S. (2016). The role of Eph/ephrin molecules in stromal-hematopoietic interactions. International Journal of Hematology, 103(2), 145–154.

  148. Nguyen, T. M., Arthur, A., Panagopoulos, R., Paton, S., Hayball, J. D., Zannettino, A. C., et al. (2015). EphB4 expressing stromal cells exhibit an enhanced capacity for hematopoietic stem cell maintenance. Stem Cells (Dayton, Ohio), 33(9), 2838–2849.

    Article  CAS  Google Scholar 

  149. Okubo, T., Yanai, N., & Obinata, M. (2006). Stromal cells modulate ephrinB2 expression and transmigration of hematopoietic cells. Experimental Hematology, 34(3), 330–338.

    Article  CAS  PubMed  Google Scholar 

  150. Stokowski, A., Shi, S., Sun, T., Bartold, P. M., Koblar, S. A., & Gronthos, S. (2007). EphB/ephrin-B interaction mediates adult stem cell attachment, spreading, and migration: implications for dental tissue repair. Stem Cells (Dayton, Ohio), 25(1), 156–164.

    Article  CAS  Google Scholar 

  151. Arthur, A., Koblar, S., Shi, S., & Gronthos, S. (2009). Eph/ephrinB mediate dental pulp stem cell mobilization and function. Journal of Dental Research, 88(9), 829–834.

    Article  CAS  PubMed  Google Scholar 

  152. Conover, J. C., Doetsch, F., Garcia-Verdugo, J. M., Gale, N. W., Yancopoulos, G. D., & Alvarez-Buylla, A. (2000). Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neuroscience, 3(11), 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  153. Catchpole, T., & Henkemeyer, M. (2011). EphB2 tyrosine kinase-dependent forward signaling in migration of neuronal progenitors that populate and form a distinct region of the dentate niche. Journal of Neuroscience, 31(32), 11472–11483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chumley, M. J., Catchpole, T., Silvany, R. E., Kernie, S. G., & Henkemeyer, M. (2007). EphB receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. Journal of Neuroscience, 27(49), 13481–13490.

    Article  CAS  PubMed  Google Scholar 

  155. Holmberg, J., Armulik, A., Senti, K. A., Edoff, K., Spalding, K., Momma, S., et al. (2005). Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes & Development, 19(4), 462–471.

    Article  CAS  Google Scholar 

  156. Parrinello, S., Napoli, I., Ribeiro, S., Wingfield Digby, P., Fedorova, M., Parkinson, D. B., et al. (2010). EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell, 143(1), 145–155.

    Article  CAS  PubMed  Google Scholar 

  157. Stark, D. A., Karvas, R. M., Siegel, A. L., & Cornelison, D. D. (2011). Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development, 138(24), 5279–5289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gu, J. M., Wang, D. J., Peterson, J. M., Shintaku, J., Liyanarachchi, S., Coppola, V., et al. (2016). An NF-kappaB - EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates. Developmental Cell, 36(2), 215–224.

    Article  CAS  PubMed  Google Scholar 

  159. Goichberg, P., Bai, Y., D’Amario, D., Ferreira-Martins, J., Fiorini, C., Zheng, H., et al. (2011). The ephrin A1-EphA2 system promotes cardiac stem cell migration after infarction. Circulation Research, 108(9), 1071–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Goichberg, P., Kannappan, R., Cimini, M., Bai, Y., Sanada, F., Sorrentino, A., et al. (2013). Age-associated defects in EphA2 signaling impair the migration of human cardiac progenitor cells. Circulation, 128(20), 2211–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Dries, J. L., Kent, S. D., & Virag, J. A. (2011). Intramyocardial administration of chimeric ephrinA1-Fc promotes tissue salvage following myocardial infarction in mice. The Journal of Physiology, 589(Pt 7), 1725–1740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. DuSablon, A., Kent, S., Coburn, A., & Virag, J. (2014). EphA2-receptor deficiency exacerbates myocardial infarction and reduces survival in hyperglycemic mice. Cardiovascular Diabetology, 13, 114.

    Article  PubMed  PubMed Central  Google Scholar 

  163. O’Neal, W. T., Griffin, W. F., Kent, S. D., Faiz, F., Hodges, J., Vuncannon, J., & Virag, J. A. (2014). Deletion of the EphA2 receptor exacerbates myocardial injury and the progression of ischemic cardiomyopathy. Frontiers in Physiology, 5, 132.

    PubMed  PubMed Central  Google Scholar 

  164. Popov, C., Kohler, J., & Docheva, D. (2015). Activation of EphA4 and EphB2 Reverse Signaling Restores the Age-Associated Reduction of Self-Renewal, Migration, and Actin Turnover in Human Tendon Stem/Progenitor Cells. Frontiers in Aging Neuroscience, 7, 246.

    PubMed  Google Scholar 

  165. Batlle, E., Henderson, J. T., Beghtel, H., van den Born, M. M., Sancho, E., Huls, G., et al. (2002). Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 111(2), 251–263.

    Article  CAS  PubMed  Google Scholar 

  166. Genander, M., & Frisen, J. (2010). Eph receptors tangled up in two: Independent control of cell positioning and proliferation. Cell Cycle, 9(10), 1865–1866.

    Article  CAS  PubMed  Google Scholar 

  167. Genander, M. (2012). Eph and ephrins in epithelial stem cell niches and cancer. Cell Adhesion & Migration, 6(2), 126–130.

    Article  Google Scholar 

  168. Holmberg, J., Genander, M., Halford, M. M., Anneren, C., Sondell, M., Chumley, M. J., et al. (2006). EphB receptors coordinate migration and proliferation in the intestinal stem cell niche. Cell, 125(6), 1151–1163.

    Article  CAS  PubMed  Google Scholar 

  169. Perez White, B. E., & Getsios, S. (2014). Eph receptor and ephrin function in breast, gut, and skin epithelia. Cell Adhesion & Migration, 8(4), 327–338.

    Article  Google Scholar 

  170. Wijeratne, D. T., Rodger, J., Wood, F. M., & Fear, M. W. (2016). The role of Eph receptors and Ephrins in the skin. International Journal of Dermatology, 55(1), 3–10.

    Article  CAS  PubMed  Google Scholar 

  171. Genander, M., Halford, M. M., Xu, N. J., Eriksson, M., Yu, Z., Qiu, Z., et al. (2009). Dissociation of EphB2 signaling pathways mediating progenitor cell proliferation and tumor suppression. Cell, 139(4), 679–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Miao, H., Nickel, C. H., Cantley, L. G., Bruggeman, L. A., Bennardo, L. N., & Wang, B. (2003). EphA kinase activation regulates HGF-induced epithelial branching morphogenesis. The Journal of Cell Biology, 162(7), 1281–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lu, Q., Sun, E. E., Klein, R. S., & Flanagan, J. G. (2001). Ephrin-B reverse signaling is mediated by a novel PDZ-RGS protein and selectively inhibits G protein-coupled chemoattraction. Cell, 105(1), 69–79.

    Article  CAS  PubMed  Google Scholar 

  174. Vaught, D., Chen, J., & Brantley-Sieders, D. M. (2009). Regulation of mammary gland branching morphogenesis by EphA2 receptor tyrosine kinase. Molecular Biology of the Cell, 20(10), 2572–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Dejana, E., & Giampietro, C. (2012). Vascular endothelial-cadherin and vascular stability. Current Opinion in Hematology, 19(3), 218–223.

    Article  CAS  PubMed  Google Scholar 

  176. Geiger, B., & Ayalon, O. (1992). Cadherins. Annual Review of Cell Biology, 8, 307–332.

    Article  CAS  PubMed  Google Scholar 

  177. Lecuit, T., & Yap, A. S. (2015). E-cadherin junctions as active mechanical integrators in tissue dynamics. Nature Cell Biology, 17(5), 533–539.

    Article  CAS  PubMed  Google Scholar 

  178. Miyamoto, Y., Sakane, F., & Hashimoto, K. (2015). N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adhesion & Migration, 9(3), 183–192.

    Article  CAS  Google Scholar 

  179. van Roy, F. (2014). Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nature Reviews Cancer, 14(2), 121–134.

    Article  PubMed  CAS  Google Scholar 

  180. Chen, J. Y., Miyanishi, M., Wang, S. K., Yamazaki, S., Sinha, R., Kao, K. S., et al. (2016). Hoxb5 marks long-term haematopoietic stem cells and reveals a homogenous perivascular niche. Nature, 530(7589), 223–227.

    Article  CAS  PubMed  Google Scholar 

  181. Lay, K., Kume, T., Fuchs, E. (2016). FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proceedings of the National Academy of Sciences of the United States of America, 13(11), E1506–E1515.

  182. Porlan, E., Marti-Prado, B., Morante-Redolat, J. M., Consiglio, A., Delgado, A. C., Kypta, R., et al. (2014). MT5-MMP regulates adult neural stem cell functional quiescence through the cleavage of N-cadherin. Nature Cell Biology, 16(7), 629–638.

    Article  CAS  PubMed  Google Scholar 

  183. Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960), 836–841.

    Article  CAS  PubMed  Google Scholar 

  184. Klingener, M., Chavali, M., Singh, J., McMillan, N., Coomes, A., Dempsey, P. J., et al. (2014). N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions. Journal of Neuroscience, 34(29), 9590–9606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Gonzalez-Nieto, D., Chang, K. H., Fasciani, I., Nayak, R., Fernandez-Garcia, L., Barrio, L. C., & Cancelas, J. A. (2015). Connexins: intercellular signal transmitters in lymphohematopoietic tissues. International Review of Cell and Molecular Biology, 318, 27–62.

    Article  PubMed  Google Scholar 

  186. Meier, C., & Rosenkranz, K. (2014). Cx43 expression and function in the nervous system-implications for stem cell mediated regeneration. Frontiers in Physiology, 5, 106.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Salmina, A. B., Morgun, A. V., Kuvacheva, N. V., Lopatina, O. L., Komleva, Y. K., Malinovskaya, N. A., & Pozhilenkova, E. A. (2014). Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Reviews in the Neurosciences, 25(1), 97–111.

    Article  CAS  PubMed  Google Scholar 

  188. Gonzalez-Nieto, D., Li, L., Kohler, A., Ghiaur, G., Ishikawa, E., Sengupta, A., et al. (2012). Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood, 119(22), 5144–5154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schajnovitz, A., Itkin, T., D’Uva, G., Kalinkovich, A., Golan, K., Ludin, A., et al. (2011). CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nature Immunology, 12(5), 391–398.

    Article  CAS  PubMed  Google Scholar 

  190. Papayannopoulou, T. (2003). Bone marrow homing: the players, the playfield, and their evolving roles. Current Opinion in Hematology, 10(3), 214–219.

    Article  PubMed  Google Scholar 

  191. Sahin, A. O., & Buitenhuis, M. (2012). Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhesion & Migration, 6(1), 39–48.

    Article  Google Scholar 

  192. Leiva, M., Quintana, J. A., Ligos, J. M., & Hidalgo, A. (2016). Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFbeta availability. Nature Communications, 7, 10222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Winkler, I. G., Barbier, V., Nowlan, B., Jacobsen, R. N., Forristal, C. E., Patton, J. T., et al. (2012). Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nature Medicine, 18(11), 1651–1657.

    Article  CAS  PubMed  Google Scholar 

  194. Chavakis, E., & Dimmeler, S. (2011). Homing of progenitor cells to ischemic tissues. Antioxidants & Redox Signaling, 15(4), 967–980.

    Article  CAS  Google Scholar 

  195. Sackstein, R. (2011). The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. Current Opinion in Hematology, 18(4), 239–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Sackstein, R. (2012). Engineering cellular trafficking via glycosyltransferase-programmed stereosubstitution. Annals of the New York Academy of Sciences, 1253, 193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Abdi, R., Moore, R., Sakai, S., Donnelly, C. B., Mounayar, M., & Sackstein, R. (2015). HCELL expression on murine MSC licenses pancreatotropism and confers durable reversal of autoimmune diabetes in NOD mice. Stem Cells (Dayton, Ohio), 33(5), 1523–1531.

    Article  CAS  Google Scholar 

  198. Merzaban, J. S., Imitola, J., Starossom, S. C., Zhu, B., Wang, Y., Lee, J., et al. (2015). Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology, 25(12), 1392–1409.

    Article  PubMed  Google Scholar 

  199. Akhmanova, M., Osidak, E., Domogatsky, S., Rodin, S., & Domogatskaya, A. (2015). Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells International, 2015, 167025.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(Pt 24), 4195–4200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Freedman, B. R., Bade, N. D., Riggin, C. N., Zhang, S., Haines, P. G., Ong, K. L., & Janmey, P. A. (2015). The (dys)functional extracellular matrix. Biochimica et Biophysica Acta, 1853(11 Pt B), 3153–3164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Handorf, A. M., Zhou, Y., Halanski, M. A., & Li, W. J. (2015). Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis, 11(1), 1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Hynes, R. O., & Naba, A. (2012). Overview of the matrisome--an inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in Biology, 4(1), a004903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.

    Article  CAS  PubMed  Google Scholar 

  205. Daley, W. P., & Yamada, K. M. (2013). ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Current Opinion in Genetics & Development, 23(4), 408–414.

    Article  CAS  Google Scholar 

  206. Happe, C. L., & Engler, A. J. (2016). Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circulation Research, 118(2), 296–310.

    Article  CAS  PubMed  Google Scholar 

  207. Mammoto, T., Mammoto, A., & Ingber, D. E. (2013). Mechanobiology and developmental control. Annual Review of Cell and Developmental Biology, 29, 27–61.

    Article  CAS  PubMed  Google Scholar 

  208. Walters, N. J., & Gentleman, E. (2015). Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Acta Biomaterialia, 11, 3–16.

    Article  CAS  PubMed  Google Scholar 

  209. Chandra, P., & Lee, S. J. (2015). Synthetic extracellular microenvironment for modulating stem cell behaviors. Biomarker Insights, 10(Suppl 1), 105–116.

    PubMed  PubMed Central  Google Scholar 

  210. Chen, W., Shao, Y., Li, X., Zhao, G., & Fu, J. (2014). Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today, 9(6), 759–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Dalby, M. J., Gadegaard, N., & Oreffo, R. O. (2014). Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nature Materials, 13(6), 558–569.

    Article  CAS  PubMed  Google Scholar 

  212. Dingal, P. C., & Discher, D. E. (2014). Combining insoluble and soluble factors to steer stem cell fate. Nature Materials, 13(6), 532–537.

    Article  CAS  PubMed  Google Scholar 

  213. Faissner, A., & Reinhard, J. (2015). The extracellular matrix compartment of neural stem and glial progenitor cells. Glia, 63(8), 1330–1349.

    Article  PubMed  Google Scholar 

  214. Humphrey, J. D., Dufresne, E. R., & Schwartz, M. A. (2014). Mechanotransduction and extracellular matrix homeostasis. Nature Reviews Molecular Cell Biology, 15(12), 802–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Huttenlocher, A., & Horwitz, A. R. (2011). Integrins in cell migration. Cold Spring Harbor Perspectives in Biology, 3(9), a005074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.

    Article  CAS  PubMed  Google Scholar 

  217. Miranti, C. K., & Brugge, J. S. (2002). Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biology, 4(4), E83–E90.

    Article  CAS  PubMed  Google Scholar 

  218. Schwartz, M. A. (2010). Integrins and extracellular matrix in mechanotransduction. Cold Spring Harbor Perspectives in Biology, 2(12), a005066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Winograd-Katz, S. E., Fassler, R., Geiger, B., & Legate, K. R. (2014). The integrin adhesome: from genes and proteins to human disease. Nature Reviews Molecular Cell Biology, 15(4), 273–288.

    Article  CAS  PubMed  Google Scholar 

  220. Wolfenson, H., Lavelin, I., & Geiger, B. (2013). Dynamic regulation of the structure and functions of integrin adhesions. Developmental Cell, 24(5), 447–458.

    Article  CAS  PubMed  Google Scholar 

  221. Milner, R., Edwards, G., Streuli, C., & Ffrench-Constant, C. (1996). A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. Journal of Neuroscience, 16(22), 7240–7252.

    CAS  PubMed  Google Scholar 

  222. Ernst, N., Yay, A., Biro, T., Tiede, S., Humphries, M., Paus, R., & Kloepper, J. E. (2013). beta1 integrin signaling maintains human epithelial progenitor cell survival in situ and controls proliferation, apoptosis and migration of their progeny. PloS One, 8(12), e84356.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Schofield, K. P., Rushton, G., Humphries, M. J., Dexter, T. M., & Gallagher, J. T. (1997). Influence of interleukin-3 and other growth factors on alpha4beta1 integrin-mediated adhesion and migration of human hematopoietic progenitor cells. Blood, 90(5), 1858–1866.

    CAS  PubMed  Google Scholar 

  224. Strobel, E. S., Mobest, D., von Kleist, S., Dangel, M., Ries, S., Mertelsmann, R., & Henschler, R. (1997). Adhesion and migration are differentially regulated in hematopoietic progenitor cells by cytokines and extracellular matrix. Blood, 90(9), 3524–3532.

    CAS  PubMed  Google Scholar 

  225. Gu, Y. C., Kortesmaa, J., Tryggvason, K., Persson, J., Ekblom, P., Jacobsen, S. E., & Ekblom, M. (2003). Laminin isoform-specific promotion of adhesion and migration of human bone marrow progenitor cells. Blood, 101(3), 877–885.

    Article  CAS  PubMed  Google Scholar 

  226. Muth, C. A., Steinl, C., Klein, G., & Lee-Thedieck, C. (2013). Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PloS One, 8(2), e54778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Bershadsky, A., Kozlov, M., & Geiger, B. (2006). Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Current Opinion in Cell Biology, 18(5), 472–481.

    Article  CAS  PubMed  Google Scholar 

  228. Doyle, A.D., Yamada, K.M. (2016). Mechanosensing via cell-matrix adhesions in 3D microenvironments. Experimental Cell Research, 343(1), 60–66.

  229. Geiger, B., Spatz, J. P., & Bershadsky, A. D. (2009). Environmental sensing through focal adhesions. Nature Reviews Molecular Cell Biology, 10(1), 21–33.

    Article  CAS  PubMed  Google Scholar 

  230. Bellas, E., & Chen, C. S. (2014). Forms, forces, and stem cell fate. Current Opinion in Cell Biology, 31, 92–97.

    Article  CAS  PubMed  Google Scholar 

  231. Holst, J., Watson, S., Lord, M. S., Eamegdool, S. S., Bax, D. V., Nivison-Smith, L. B., et al. (2010). Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 28(10), 1123–1128.

    Article  CAS  PubMed  Google Scholar 

  232. Lee-Thedieck, C., Rauch, N., Fiammengo, R., Klein, G., & Spatz, J. P. (2012). Impact of substrate elasticity on human hematopoietic stem and progenitor cell adhesion and motility. Journal of Cell Science, 125(Pt 16), 3765–3775.

    Article  CAS  PubMed  Google Scholar 

  233. Ehrbar, M., Sala, A., Lienemann, P., Ranga, A., Mosiewicz, K., Bittermann, A., et al. (2011). Elucidating the role of matrix stiffness in 3D cell migration and remodeling. Biophysical Journal, 100(2), 284–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yang, K., Jung, K., Ko, E., Kim, J., Park, K. I., & Cho, S. W. (2013). Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. ACS Applied Materials & Interfaces, 5(21), 10529–10540.

    Article  CAS  Google Scholar 

  235. Magnusson, A. K., Linderholm, P., Vieider, C., Ulfendahl, M., & Erlandsson, A. (2008). Surface protein patterns govern morphology, proliferation, and expression of cellular markers but have no effect on physiological properties of cortical precursor cells. Journal of Neuroscience Research, 86(11), 2363–2375.

    Article  CAS  PubMed  Google Scholar 

  236. Ruiz, A., Buzanska, L., Gilliland, D., Rauscher, H., Sirghi, L., Sobanski, T., et al. (2008). Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials, 29(36), 4766–4774.

    Article  CAS  PubMed  Google Scholar 

  237. Joo, S., Kim, J. Y., Lee, E., Hong, N., Sun, W., & Nam, Y. (2015). Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells. Scientific Reports, 5, 13043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. DeMali, K. A., Sun, X., & Bui, G. A. (2014). Force transmission at cell-cell and cell-matrix adhesions. Biochemistry, 53(49), 7706–7717.

    Article  CAS  PubMed  Google Scholar 

  239. Gasparski, A. N., & Beningo, K. A. (2015). Mechanoreception at the cell membrane: More than the integrins. Archives of Biochemistry and Biophysics, 586, 20–26.

    Article  CAS  PubMed  Google Scholar 

  240. Priya, R., & Yap, A. S. (2015). Active tension: the role of cadherin adhesion and signaling in generating junctional contractility. Current Topics in Developmental Biology, 112, 65–102.

    Article  PubMed  Google Scholar 

  241. Zoller, M. (2015). CD44, hyaluronan, the hematopoietic stem cell, and leukemia-initiating cells. Frontiers in Immunology, 6, 235.

    PubMed  PubMed Central  Google Scholar 

  242. Avigdor, A., Goichberg, P., Shivtiel, S., Dar, A., Peled, A., Samira, S., et al. (2004). CD44 and hyaluronic acid cooperate with SDF-1 in the trafficking of human CD34+ stem/progenitor cells to bone marrow. Blood, 103(8), 2981–2989.

    Article  CAS  PubMed  Google Scholar 

  243. Vagima, Y., Avigdor, A., Goichberg, P., Shivtiel, S., Tesio, M., Kalinkovich, A., et al. (2009). MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. The Journal of Clinical Investigation, 119(3), 492–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Healy, L., May, G., Gale, K., Grosveld, F., Greaves, M., & Enver, T. (1995). The stem cell antigen CD34 functions as a regulator of hemopoietic cell adhesion. Proceedings of the National Academy of Sciences of the United States of America, 92(26), 12240–12244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Nielsen, J. S., & McNagny, K. M. (2009). CD34 is a key regulator of hematopoietic stem cell trafficking to bone marrow and mast cell progenitor trafficking in the periphery. Microcirculation, 16(6), 487–496.

    Article  CAS  PubMed  Google Scholar 

  246. Alfaro, L. A., Dick, S. A., Siegel, A. L., Anonuevo, A. S., McNagny, K. M., Megeney, L. A., et al. (2011). CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells (Dayton, Ohio), 29(12), 2030–2041.

    Article  CAS  PubMed Central  Google Scholar 

  247. Ettinger, A., & Wittmann, T. (2014). Fluorescence live cell imaging. Methods in Cell Biology, 123, 77–94.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Fink, J., Andersson-Rolf, A., & Koo, B. K. (2015). Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 48(12), 655–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kupfer, M. E., & Ogle, B. M. (2015). Advanced imaging approaches for regenerative medicine: Emerging technologies for monitoring stem cell fate in vitro and in vivo. Biotechnology Journal, 10(10), 1515–1528.

    Article  CAS  PubMed  Google Scholar 

  250. Vande Velde, G., Couillard-Despres, S., Aigner, L., Himmelreich, U., & van der Linden, A. (2012). In situ labeling and imaging of endogenous neural stem cell proliferation and migration. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4(6), 663–679.

    CAS  PubMed  Google Scholar 

  251. Wang, J., & Jokerst, J. V. (2016). Stem cell imaging: tools to improve cell delivery and viability. Stem Cells International, 2016, 9240652.

    PubMed  PubMed Central  Google Scholar 

  252. Weissleder, R., & Nahrendorf, M. (2015). Advancing biomedical imaging. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14424–14428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Vaz, R., Martins, G. G., Thorsteinsdottir, S., & Rodrigues, G. (2012). Fibronectin promotes migration, alignment and fusion in an in vitro myoblast cell model. Cell and Tissue Research, 348(3), 569–578.

    Article  CAS  PubMed  Google Scholar 

  254. Bentzinger, C. F., von Maltzahn, J., Dumont, N. A., Stark, D. A., Wang, Y. X., Nhan, K., et al. (2014). Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. The Journal of Cell Biology, 205(1), 97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Brown, S., & Greco, V. (2014). Stem cells in the wild: understanding the World of stem cells through intravital imaging. Cell Stem Cell, 15(6), 683–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Pittet, M. J., & Weissleder, R. (2011). Intravital imaging. Cell, 147(5), 983–991.

    Article  CAS  PubMed  Google Scholar 

  257. Weigert, R. (2014). Advances in intravital microscopy: from basic to clinical research. Netherlands: Springer.

  258. Mazo, I. B., Gutierrez-Ramos, J. C., Frenette, P. S., Hynes, R. O., Wagner, D. D., & von Andrian, U. H. (1998). Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. The Journal of Experimental Medicine, 188(3), 465–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Carlson, A. L., Fujisaki, J., Wu, J., Runnels, J. M., Turcotte, R., Spencer, J. A., et al. (2013). Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PloS One, 8(8), e69257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Khorshed, R. A., Hawkins, E. D., Duarte, D., Scott, M. K., Akinduro, O. A., Rashidi, N. M., et al. (2015). Automated Identification and Localization of Hematopoietic Stem Cells in 3D Intravital Microscopy Data. Stem Cell Reports, 5(1), 139–153.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Lo Celso, C., Fleming, H. E., Wu, J. W., Zhao, C. X., Miake-Lye, S., Fujisaki, J., et al. (2009). Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature, 457(7225), 92–96.

    Article  CAS  PubMed  Google Scholar 

  262. Lo Celso, C., Lin, C. P., & Scadden, D. T. (2011). In vivo imaging of transplanted hematopoietic stem and progenitor cells in mouse calvarium bone marrow. Nature Protocols, 6(1), 1–14.

    Article  PubMed  CAS  Google Scholar 

  263. Scott, M. K., Akinduro, O., & Lo Celso, C. (2014). In vivo 4-dimensional tracking of hematopoietic stem and progenitor cells in adult mouse calvarial bone marrow. Journal of Visualized Experiments: JoVE, 91, e51683.

    PubMed  Google Scholar 

  264. Itkin, T., Gur-Cohen, S., Spencer, J. A., Schajnovitz, A., Ramasamy, S. K., Kusumbe, A. P., et al. (2016). Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature, 532(7599), 323–328.

    Article  CAS  PubMed  Google Scholar 

  265. Ishido, M., & Kasuga, N. (2011). In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. Histochemistry and Cell Biology, 135(1), 21–26.

    Article  CAS  PubMed  Google Scholar 

  266. Kovalchuk, Y., Homma, R., Liang, Y., Maslyukov, A., Hermes, M., Thestrup, T., et al. (2015). In vivo odourant response properties of migrating adult-born neurons in the mouse olfactory bulb. Nature Communications, 6, 6349.

    Article  CAS  PubMed  Google Scholar 

  267. Mesa, K. R., Rompolas, P., Zito, G., Myung, P., Sun, T. Y., Brown, S., et al. (2015). Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature, 522(7554), 94–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Pineda, C. M., Park, S., Mesa, K. R., Wolfel, M., Gonzalez, D. G., Haberman, A. M., et al. (2015). Intravital imaging of hair follicle regeneration in the mouse. Nature Protocols, 10(7), 1116–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Rompolas, P., Deschene, E. R., Zito, G., Gonzalez, D. G., Saotome, I., Haberman, A. M., & Greco, V. (2012). Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature, 487(7408), 496–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Rompolas, P., Mesa, K. R., & Greco, V. (2013). Spatial organization within a niche as a determinant of stem-cell fate. Nature, 502(7472), 513–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Nam, S. C., Kim, Y., Dryanovski, D., Walker, A., Goings, G., Woolfrey, K., et al. (2007). Dynamic features of postnatal subventricular zone cell motility: a two-photon time-lapse study. The Journal of Comparative Neurology, 505(2), 190–208.

    Article  PubMed  Google Scholar 

  272. James, R., Kim, Y., Hockberger, P. E., & Szele, F. G. (2011). Subventricular zone cell migration: lessons from quantitative two-photon microscopy. Frontiers in Neuroscience, 5, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Ortega, F., & Costa, M. R. (2016). Live imaging of adult neural stem cells in rodents. Frontiers in Neuroscience, 10, 78.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Sonego, M., Zhou, Y., Oudin, M.J., Doherty, P., Lalli, G. (2013). In vivo postnatal electroporation and time-lapse imaging of neuroblast migration in mouse acute brain slices. Journal of visualized experiments: JoVE. doi:10.3791/50905.

  275. Cao, L., Pu, J., Scott, R. H., Ching, J., & McCaig, C. D. (2015). Physiological electrical signals promote chain migration of neuroblasts by up-regulating P2Y1 purinergic receptors and enhancing cell adhesion. Stem Cell Reviews, 11(1), 75–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant-in-Aid from the American Heart Association. The author thanks Dr. Tsvee Lapidot from the Weizmann Institute of Science, Rehovot, Israel and Dr. Marcello Rota from the New York Medical College, Valhalla, NY for their critical reading of the manuscript and insightful comments. The author apologizes to authors whose work was not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polina Goichberg.

Ethics declarations

Conflicts of Interest

The author indicates no potential conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goichberg, P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev and Rep 12, 421–437 (2016). https://doi.org/10.1007/s12015-016-9663-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9663-7

Keywords

Navigation