Skip to main content

Advertisement

Log in

Molecular Physiognomies and Applications of Adipose-Derived Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Adipose-derived stromal/stem cells (ASC) are multipotent with abilities to differentiate into multiple lineages including connective tissue and neural cells. Despite unlimited opportunity and needs for human and veterinary regenerative medicine, applications of adipose-derived stromal/stem cells are at present very limited. Furthermore, the fundamental biological factors regulating stemness in ASC and their stable differentiation into other tissue cells are not fully understood. The objective of this review was to provide an update on the current knowledge of the nature and isolation, molecular and epigenetic determinants of the potency, and applications of adipose-derived stromal/stem cells, as well as challenges and future directions. The first quarter of the review focuses on the nature of ASC, namely their definition, origin, isolation and sorting methods and multilineage differentiation potential, often with a comparison to mesenchymal stem cells of bone marrow. Due to the indisputable role of epigenetic regulation on cell identities, epigenetic modifications (DNA methylation, chromatin remodeling and microRNAs) are described broadly in stem cells but with a focus on ASC. The final sections provide insights into the current and potential applications of ASC in human and veterinary regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  2. da Silva Meirelles, L., Chagastelles, P. C., & Nardi, N. B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science, 119(Pt 11), 2204–2213.

    Article  PubMed  Google Scholar 

  3. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  4. Mizuno, H. (2009). Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. Journal of Nippon Medical School Nippon Ika Daigaku Zasshi, 76(2), 56–66.

    Article  PubMed  Google Scholar 

  5. Fraser, J. K., Schreiber, R., Strem, B., et al. (2006). Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S33–S37.

    Article  CAS  PubMed  Google Scholar 

  6. Gimble, J., & Guilak, F. (2003). Adipose-derived adult stem cells: ısolation, characterization, and differentiation potential. Cytotherapy, 5(5), 362–369.

    Article  PubMed  Google Scholar 

  7. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100(9), 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  8. Gir, P., Oni, G., Brown, S. A., Mojallal, A., & Rohrich, R. J. (2012). Human adipose stem cells: current clinical applications. Plastic and Reconstructive Surgery, 129(6), 1277–1290.

    Article  CAS  PubMed  Google Scholar 

  9. Gimble, J. M., Grayson, W., Guilak, F., Lopez, M. J., & Vunjak-Novakovic, G. (2011). Adipose tissue as a stem cell source for musculoskeletal regeneration. Frontiers in Bioscience (Scholar Edition), 3, 69–81.

    Article  Google Scholar 

  10. Monaco, E., Bionaz, M., Sobreira de Lima, A., Hurley, W. L., Loor, J. J., & Wheeler, M. B. (2010). Selection and reliability of internal reference genes for quantitative PCR verification of transcriptomics during the differentiation process of porcine adult mesenchymal stem cells. Stem Cell Research & Therapy, 1(1), 7.

    Article  Google Scholar 

  11. Sági, B., Maraghechi, P., Urbán, V. S., et al. (2012). Positional identity of murine mesenchymal stem cells resident in different organs is determined in the postsegmentation mesoderm. Stem Cells and Development, 21(5), 814–828.

    Article  PubMed  Google Scholar 

  12. Sugii, S., Kida, Y., Kawamura, T., et al. (2010). Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3558–3563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Zuk, P. A., Zhu, M., Mizuno, H., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7(2), 211–228.

    Article  CAS  PubMed  Google Scholar 

  14. Bourin, P., Bunnell, B. A., Casteilla, L., et al. (2013). Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the international federation for adipose therapeutics and science (IFATS) and the international society for cellular therapy (ISCT). Cytotherapy, 15(6), 641–648.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Gronthos, S., & Zannettino, A. C. W. (2011). Methods for the purification and characterization of human adipose-derived stem cells. Methods in Molecular Biology (Clifton, N.J.), 702, 109–120.

    Article  CAS  Google Scholar 

  16. Lin, G., Garcia, M., Ning, H., et al. (2008). Defining stem and progenitor cells within adipose tissue. Stem Cells and Development, 17(6), 1053–1063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Baglioni, S., Francalanci, M., Squecco, R., et al. (2009). Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 23(10), 3494–3505.

    Article  CAS  Google Scholar 

  18. Vishnubalaji, R., Al-Nbaheen, M., Kadalmani, B., Aldahmash, A., & Ramesh, T. (2012). Comparative investigation of the differentiation capability of bone-marrow- and adipose-derived mesenchymal stem cells by qualitative and quantitative analysis. Cell and Tissue Research, 347(2), 419–427.

    Article  PubMed  Google Scholar 

  19. Lin, C.-S., Xin, Z.-C., Dai, J., & Lue, T. F. (2013). Commonly used mesenchymal stem cell markers and tracking labels: limitations and challenges. Histology and Histopathology, 28(9), 1109–1116.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Sousa, B. R., Parreira, R. C., Fonseca, E. A., et al. (2014). Human adult stem cells from diverse origins: an overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 85(1), 43–77.

    Article  Google Scholar 

  21. González-Cruz, R. D., Fonseca, V. C., & Darling, E. M. (2012). Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109(24), E1523–E1529.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Izadpanah, R., Kaushal, D., Kriedt, C., et al. (2008). Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Research, 68(11), 4229–4238.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Berdasco, M., Melguizo, C., Prados, J., et al. (2012). DNA methylation plasticity of human adipose-derived stem cells in lineage commitment. The American Journal of Pathology, 181(6), 2079–2093.

    Article  CAS  PubMed  Google Scholar 

  24. Sørensen, A. L., Timoskainen, S., West, F. D., et al. (2010). Lineage-specific promoter DNA methylation patterns segregate adult progenitor cell types. Stem Cells and Development, 19(8), 1257–1266.

    Article  PubMed  Google Scholar 

  25. Boulland, J.-L., Mastrangelopoulou, M., Boquest, A. C., et al. (2013). Epigenetic regulation of nestin expression during neurogenic differentiation of adipose tissue stem cells. Stem Cells and Development, 22(7), 1042–1052.

    Article  CAS  PubMed  Google Scholar 

  26. Kuijk, E. W., de Sousa, C., Lopes, S. M., Geijsen, N., Macklon, N., & Roelen, B. A. J. (2011). The different shades of mammalian pluripotent stem cells. Human Reproduction Update, 17(2), 254–271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hackett, J. A., Zylicz, J. J., & Surani, M. A. (2012). Parallel mechanisms of epigenetic reprogramming in the germline. Trends in Genetics: TIG, 28(4), 164–174.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, R., Shao, J., & Xiang, L. (2011). GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. The Journal of Biological Chemistry, 286(47), 41083–41094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Samavarchi-Tehrani, P., Golipour, A., David, L., et al. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1), 64–77.

    Article  CAS  PubMed  Google Scholar 

  30. Seeliger, C., Culmes, M., Schyschka, L., et al. (2013). Decrease of global methylation improves significantly hepatic differentiation of Ad-MSCs: possible future application for urea detoxification. Cell Transplantation, 22(1), 119–131.

    Article  CAS  PubMed  Google Scholar 

  31. Mikkelsen, T. S., Ku, M., Jaffe, D. B., et al. (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153), 553–560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Fisher, C. L., & Fisher, A. G. (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Current Opinion in Genetics & Development, 21(2), 140–146.

    Article  CAS  Google Scholar 

  33. Ernst, J., Kheradpour, P., Mikkelsen, T. S., et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345), 43–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Li, M., Liu, G.-H., & Izpisua Belmonte, J. C. (2012). Navigating the epigenetic landscape of pluripotent stem cells. Nature Reviews Molecular Cell Biology, 13(8), 524–535.

    Article  CAS  PubMed  Google Scholar 

  35. Lund, E., Oldenburg, A. R., Delbarre, E., et al. (2013). Lamin A/C-promoter interactions specify chromatin state-dependent transcription outcomes. Genome Research, 23(10), 1580–1589.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hu, X., Fu, Y., Zhang, X., et al. (2014). Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells. Development, Growth & Differentiation, 56(3), 206–213.

    Article  CAS  Google Scholar 

  37. Noer, A., Lindeman, L. C., & Collas, P. (2009). Histone H3 modifications associated with differentiation and long-term culture of mesenchymal adipose stem cells. Stem Cells and Development, 18(5), 725–736.

    Article  CAS  PubMed  Google Scholar 

  38. Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504–507.

    Article  PubMed  Google Scholar 

  39. Li, M. A., & He, L. (2012). microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 34(8), 670–680.

    Article  Google Scholar 

  40. Ragni, E., Montemurro, T., Montelatici, E., et al. (2013). Differential microRNA signature of human mesenchymal stem cells from different sources reveals an “environmental-niche memory” for bone marrow stem cells. Experimental Cell Research, 319(10), 1562–1574.

    Article  CAS  PubMed  Google Scholar 

  41. Xu, N., Papagiannakopoulos, T., Pan, G., Thomson, J. A., & Kosik, K. S. (2009). MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell, 137(4), 647–658.

    Article  CAS  PubMed  Google Scholar 

  42. Adegani, F. J., Langroudi, L., Arefian, E., Shafiee, A., Dinarvand, P., & Soleimani, M. (2013). A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells. Molecular Biology Reports, 40(5), 3693–3703.

    Article  CAS  PubMed  Google Scholar 

  43. Xu, C.-X., Xu, M., Tan, L., et al. (2012). MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. The Journal of Biological Chemistry, 287(42), 34970–34978.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Jabbarzadeh, E., Starnes, T., Khan, Y. M., et al. (2008). Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach. Proceedings of the National Academy of Sciences of the United States of America, 105(32), 11099–11104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Nii, M., Lai, J. H., Keeney, M., et al. (2013). The effects of interactive mechanical and biochemical niche signaling on osteogenic differentiation of adipose-derived stem cells using combinatorial hydrogels. Acta Biomaterialia, 9(3), 5475–5483.

    Article  CAS  PubMed  Google Scholar 

  46. Uysal, C. A., Tobita, M., Hyakusoku, H., & Mizuno, H. (2014). The effect of bone-marrow-derived stem cells and adipose-derived stem cells on wound contraction and epithelization. Advances in Wound Care, 3(6), 405–413.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Tobita, M., Uysal, A. C., Ogawa, R., Hyakusoku, H., & Mizuno, H. (2008). Periodontal tissue regeneration with adipose-derived stem cells. Tissue Engineering Part A, 14(6), 945–953.

    Article  CAS  PubMed  Google Scholar 

  48. Mizuno, H., Tobita, M., & Uysal, A. C. (2012). Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells (Dayton, Ohio), 30(5), 804–810.

    Article  CAS  Google Scholar 

  49. Chandler, E. M., Seo, B. R., Califano, J. P., et al. (2012). Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 109(25), 9786–9791.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Sun, N., Panetta, N. J., Gupta, D. M., et al. (2009). Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15720–15725.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Galach, M., & Utikal, J. (2011). From skin to the treatment of diseases–the possibilities of iPS cell research in dermatology. Experimental Dermatology, 20(6), 523–528.

    Article  CAS  PubMed  Google Scholar 

  52. Dudakovic, A., Camilleri, E., Riester, S. M., et al. (2014). High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. Journal of Cellular Biochemistry, 115(10), 1816–1828.

    Article  CAS  PubMed  Google Scholar 

  53. Koch, T. G., Berg, L. C., & Betts, D. H. (2009). Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. The Canadian Veterinary Journal. La Revue Vétérinaire Canadienne, 50(2), 155–165.

    PubMed Central  PubMed  Google Scholar 

  54. Fortier, L. A., & Travis, A. J. (2011). Stem cells in veterinary medicine. Stem Cell Research & Therapy, 2(1), 9.

    Article  Google Scholar 

  55. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.

    Article  CAS  PubMed  Google Scholar 

  56. Rodriguez-Osorio, N., Urrego, R., Cibelli, J. B., Eilertsen, K., & Memili, E. (2012). Reprogramming mammalian somatic cells. Theriogenology, 78(9), 1869–1886.

    Article  CAS  PubMed  Google Scholar 

  57. Kang, K.-S., & Trosko, J. E. (2011). Stem cells in toxicology: fundamental biology and practical considerations. Toxicological Sciences: An Official Journal of the Society of Toxicology, 120(Suppl 1), S269–S289.

    Article  CAS  Google Scholar 

  58. Bilousova, G., Jun, D. H., King, K. B., et al. (2011). Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells (Dayton, Ohio), 29(2), 206–216.

    Article  CAS  Google Scholar 

  59. Wang, B., Miyagoe-Suzuki, Y., Yada, E., et al. (2011). Reprogramming efficiency and quality of induced pluripotent stem Cells (iPSCs) Generated from muscle-derived fibroblasts of Mdx mice at different ages. PLoS Currents, 3, RRN1274.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Yan, X., Ehnert, S., Culmes, M., et al. (2014). 5-azacytidine ımproves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation. PloS One, 9(6), e90846.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Lindroos, B., Aho, K.-L., Kuokkanen, H., et al. (2010). Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Engineering Part A, 16(7), 2281–2294.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

FU was supported by the funding program of Research Grants for Doctoral Candidates and Young Academics and Scientists from the German Academic Exchange Service (DAAD). IDM was funded by the Undergraduate Research and Mentoring grant from the National Science Foundation and through summer research grant from the Office of Graduate Studies at Mississippi State University. ADP was supported by the National Science Foundation under award EPS 0903787. SKT was funded by the Undergraduate Research and Mentoring (URM) grant and Research Experiences for Undergraduates (REU) grant DBI-1004842 from the National Science Foundation. AMP was supported by a Research Experiences for Undergraduates (REU) grant DBI-1004842 by the National Science Foundation. Partial funding was provided by Mississippi Agricultural and Forestry Experiment Station.

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Memili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzbas, F., May, I.D., Parisi, A.M. et al. Molecular Physiognomies and Applications of Adipose-Derived Stem Cells. Stem Cell Rev and Rep 11, 298–308 (2015). https://doi.org/10.1007/s12015-014-9578-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9578-0

Keywords

Navigation